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Abstract. Arbitrary-scale super-resolution (ASSR) aims to learn a
single model for image super-resolution at arbitrary magnifying scales.
Existing ASSR networks typically comprise an off-the-shelf scale-
agnostic feature extractor and an arbitrary scale upsampler. These
feature extractors often use fixed network architectures to address
different ASSR inference tasks, each of which is characterized by an
input image and an upsampling scale. However, this overlooks the
difficulty variance of super-resolution on different inference scenarios,
where simple images or small SR scales could be resolved with less
computational effort than difficult images or large SR scales. To tackle
this difficulty variability, in this paper, we propose a Task-Aware
Dynamic Transformer (TADT) as an input-adaptive feature extractor
for efficient image ASSR. Our TADT consists of a multi-scale feature
extraction backbone built upon groups of Multi-Scale Transformer
Blocks (MSTBs) and a Task-Aware Routing Controller (TARC). The
TARC predicts the inference paths within feature extraction backbone,
specifically selecting MSTBs based on the input images and SR
scales. The prediction of inference path is guided by a new loss
function to trade-off the SR accuracy and efficiency. Experiments
demonstrate that, when working with three popular arbitrary-scale
upsamplers, our TADT achieves state-of-the-art ASSR performance
when compared with mainstream feature extractors, but with relatively
fewer computational costs. The code is available at https://github.com/
Tillyhere/TADT.

1 Introduction

The goal of Arbitrary-Scale Super-Resolution (ASSR) is to learn a
single model capable of performing image super-resolution at arbi-
trary scales [19, 10, 43, 51]. Current ASSR methods [19, 10, 5, 28]
primarily focus on developing arbitrary-scale upsamplers to predict
the high-resolution (HR) image from the feature of a low-resolution
(LR) image extracted by an off-the-shelf feature extractor [32, 55, 31].
Inspired by the merits of meta-learning [14], the work of MetaSR [19]
learns adaptive upsamplers according to the SR scale. Later, the meth-
ods of [10, 51, 28, 7] leverage the implicit neural representation [11]
to predict the upsampled HR image by the coordinates and the fea-
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(a) (b)
Figure 1. PSNR results, GFLOPs and parameter amounts of different

feature extractors working with the upsampler LIIF [10] for (a) ×2 super-
resolution and (b) ×3 super-resolution on the DIV2K validation set [2]. The
disc radius is proportional to parameter amounts of different feature extractors.
Baseline and TADT are our feature extractors that will be introduced in §3.3.

ture map of the corresponding LR image. However, feature extrac-
tors [32, 55, 31] in these ASSR methods are usually scale-agnostic,
which discourage the adaptivity of extracted feature map to the multi-
ple user-defined SR scale and leads to inferior SR results [43, 15].

To extract scale-aware feature for image ASSR, some researchers
attempt to design scale-conditional convolutions to dynamically gener-
ate scale-aware filters [43, 15, 47]. For example, ArbSR [43] employs
scale-aware convolution which fuses a set of filters using weights
dynamically generated based on the scale information. The method
of EQSR [47] achieves adaptive modulation of convolution kernels
with scale-aware embedding. Implicit Diffusion Model [15] presents a
scale-aware mechanism to work with a denoising diffusion model for
high-fidelity image ASSR. In short, these methods mainly implement
feature-level or parameter-level modulation mechanisms for scale-
aware feature extraction. However, these feature extractors tackle the
input images and SR scales of different difficulty by fixed network ar-
chitectures. This inevitably emerges huge computational redundancy
in “easy” inference scenarios, e.g., “simple” images and/or small SR
scales, that can be effectively resolved with less computational effort.

The variability of restoring difficulty on different images is inherent
in image restoration [27]. It is more evident for image ASSR, since the
difficulty variance of ASSR comes from not only content-diverse input
images, but also different upsampling scales. On one hand, content-
diverse images often suffer from different restoration difficulty and
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require image-adaptive inference complexity [27, 20]. On the other,
the difficulty variability of image ASSR emerges as higher upsampling
scales usually need larger computational burden [3]. Considering
an input image and the corresponding upsampling scale factor as an
ASSR task, it is essential to develop task-aware feature extractors
with adaptive inference based on the difficulty of ASSR tasks.

For this goal, in this work, we propose the Task-Aware Dynamic
Transformer (TADT) as an efficient feature extractor, with dynamic
computational graphs upon different ASSR tasks. Specifically, our
feature extractor TADT has a feature extraction backbone and a Task-
Aware Routing Controller (TARC). The backbone contains multiple
Multi-Scale Transformer Blocks (MSTBs) to exploit multi-scale rep-
resentation [30, 52, 53]. Our TARC predicts the inference path of the
backbone for each ASSR task, realizing task-aware inference with dy-
namic architectures. It is a two-branch module to transform the input
image and SR scale into a probability vector and an intensity indica-
tor respectively. The probability vector is modulated by the intensity
indicator to produce the sampling probability vector, which is used to
predict the final routing vector by Bernoulli Sampling combined with
the Straight-Through Estimator [4, 25]. The routing vector determines
the computational graph of the feature extraction backbone in our
TADT to make it aware of input images and scales for image ASSR.

To make TADT more efficient, we further design a loss function
to penalize the intensity indicator. Experiments on ASSR demon-
strate that, TADT outperforms mainstream feature extractors by fewer
parameter amounts and computation costs, and better ASSR perfor-
mance when working with arbitrary-scale upsamplers of MetaSR [19],
LIIF [10], and LTE [28] (a glimpse is provided in Figure 1).

Our main contributions can be summarized as follows:
• We propose the Task-Aware Dynamic Transformer (TADT) as a

new feature extractor for efficient image ASSR. The main backbone
of our TADT is built upon cascaded multi-scale transformer blocks
(MSTBs) to learn expressive feature representations.

• We develop a task-aware routing controller to predict adaptive in-
ference paths within the main backbone of TADT feature extractor
for different ASSR tasks defined by the input image and SR scale.

• We devise an intensity loss function to guide the prediction of infer-
ence paths in our feature extraction backbone, leading to efficient
image ASSR performance.

2 Related Work

2.1 Arbitrary-Scale Image Super-Resolution

Arbitrary-Scale Super-Resolution (ASSR) methods learn a single SR
model to tackle the image super-resolution of arbitrary scale fac-
tors [19]. Meta-SR [19] represents one of the earliest endeavors in
image ASSR, which dynamically predicts weights of filters for differ-
ent scales by the meta-upscale module inspired by the meta-learning
scheme [14]. Then, LIIF [10] pioneers local implicit neural repre-
sentation for continuous image upsampling. Following this direction,
Ultra-SR [50] integrates spatial encoding with implicit image function
to improve the recovery of high-frequency textures. LTE [28] trans-
forms the spatial coordinates into the Fourier frequency domain and
learns implicit representation for detail enhancement. Attention [41]
is also exploited in the methods of ITSRN, Ciao-SR [5] and CLIT [7].
These methods mainly focus on designing scale-aware upsamplers,
but often employ input-agnostic feature extractors [32, 55, 31] leading
to inferior image ASSR performance [43, 6, 47].

To mitigate this, recent ASSR methods [43, 6, 47] incorporate scale
information into the feature extractors. ArbSR [43] and EQSR [47]
dynamically predicts filter weights from scale-conditioned feature
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Figure 2. Computational FLOPs of SwinIR [31] and our TADT on one
image from DIV2K at different SR scales. The arbitrary-scale upsampler is
LIIF [10]. Our TADT uses less computational costs for smaller SR scales.
extraction. Differently, LISR [6] and IDM [15] learn scale-conditioned
attention weights to modulate scale-aware feature channels. These
methods mainly extract scale-aware feature by feature or parameter
level modulation, but with fixed inference architectures. This still
limits their efficiency to tackle the versatile images and SR scale
factors in ASSR. In this work, we propose a hyper-network [17] as the
feature extractor that is aware of both the image and scale to achieve
dynamic ASSR inference with adaptive computational efficiency.

2.2 Dynamic Networks

The dynamic inference is explored mainly from three aspects for ex-
pressive representation power and adaptive inference efficiency [18]:
spatially-adaptive [9, 8], temporal-adaptive [48, 16, 42], and sample-
adaptive [46]. By taking input image and SR scale as an inference
sample, our Task-Aware Dynamic Transformer (TADT) based ASSR
network belongs to the category of sample-adaptive dynamic infer-
ence. Sample-adaptive dynamic networks have been developed mainly
to learn dynamic parameters or architectures [18]. Parameter-dynamic
methods [13, 36] only tailor the network parameters according to the
input, but under fixed network architectures. Architecture-dynamic
methods mainly perform inference from three aspects: dynamic depth
[22], dynamic width [29, 26], and dynamic routing [34, 57]. The
depth-dynamic inference mainly resort to early exiting [18] or layer
skipping [46]. The width-dynamic inference [29, 26] typically lever-
age dynamic channel or neuron pruning techniques [33]. Dynamic in-
ference routing is usually employed to learn sample-specific inference
architecture [34, 57]. In this work, we develop a transformer-based
multi-branch feature extractor, and arm it with a task-aware network
routing controller for architecture-dynamic image ASSR inference.

3 Methodology

3.1 Motivation

Scale-agnostic feature extractors for ASSR consume the same compu-
tation overhead for super-resolution of different images or scales, and
ignore the variance of super-resolution difficulty for diverse ASSR
tasks (input images and SR scales) [3]. This brings computational
redundancy to these feature extractors upon relatively “easy” ASSR
tasks. To illustrate this point, in Figure 2, we compare the SR images
of LIIF [10] using SwinIR [31] or our method (will be introduced
later) as the feature extractor on one 1020 × 768 image from the
DIV2K dataset. One can see that SwinIR needs a constant FLOPs of
9733.65G to extract features for ASSR task with SR scales of ×2,
×3, and ×4. On the contrary, our TADT needs less computational
costs for SR tasks of lower scales, and enables LIIF [10] to output SR
images with similar or even better image quality than those of SwinIR.
In the end, it is promising to develop a feature extractor with dynamic
computational graphs for image ASSR, which is the main motivation
of our work. Next, we will elaborate our method for image ASSR.
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(a) Architecture of Our ASSR Network

(b) Multi-Scale Transformer Block (MSTB) (c) Task-Aware Routing Controller

Figure 3. Illustration of our ASSR network. (a) Architecture of our ASSR network containing our Task-Aware Dynamic Transformer and an arbitrary-scale
upsampler. (b) Our Multi-scale Transformer Block (MSTB). “LSA” indicates local self-attention with a window size of mj for the j-th branch. “GSA” indicates
global self-attention with a window size of m. (c) Our Task-Aware Routing Controller is a two-branch module aware of the input image ILR and SR scale s.

3.2 Network Overview

The overall pipeline of our ASSR network is illustrated in Figure 3 (a).
It takes our Task-Aware Dynamic Transformer (TADT) as the feature
extractor and an arbitrary-scale upsampler to output the magnified
image. Our TADT extractor comprises a main multi-scale feature
extraction backbone and a Task-Aware Routing Controller (TARC).
The feature extraction backbone first utilizes a convolution layer to
obtain the shallow feature. It then learns scale-aware deep feature,
with the routing vector provided by our TARC, by N cascaded Multi-
Scale Transformer Groups (MSTGs) appended by a convolution layer.
Each MSTG group contains two Multi-Scale Transformer Blocks
(MSTBs) and a convolution layer, and each MSTB learns multi-scale
representation by four self-attention branches. A skip connection
is used to fuse the shallow feature and the extracted feature by N
MSTG groups. Our TARC controller predicts the routing vector of our
TADT feature extraction backbone, i.e., the selection of self-attention
branches, for different input LR images and SR scales. More detailed
structure of our TADT will be presented in §3.3.

For the arbitrary-scale upsampler, we employ the off-the-shelf
methods such as MetaSR [19], LIIF [10], and LTE [28], etc.

3.3 Proposed Task-Aware Dynamic Transformer

In this work, we propose a task-aware feature extractor based on trans-
formers [31, 53] for image ASSR. The proposed extractor can adjust
its computational graph according to different LR images and up-
sampling scales, to achieve dynamic feature extraction with adaptive

computational costs. Since each set of input LR image and upsampling
scale constitute the inputs of an inference task in ASSR, our feature
extractor is termed as Task-Aware Dynamic Transformer (TADT).

Given an inference task consisting of an LR image ILR and an up-
sampling scale factor s, our Task-Aware Routing Controller (TARC)
first predicts a binary routing vector r ∈ {0, 1}4N . Here, 4N is
the number of controllable self-attention branches in the feature ex-
traction backbone, since each MSTB block has four self-attention
branches and the two MSTBs in each MSTG group use the same
branches. The backbone then encodes the LR image ILR of an input
task and determine its computational graph according to the routing
vector r. Specifically, the routing vector r consists of N sets of 4-
dimensional routing sub-vectors as r =

[
r1, · · · , ri, · · · rN

]
, where

ri =
[
ri1, r

i
2, r

i
3, r

i
4

]
. Here, ri (i = 1, ..., N ) is the sub-vector of the

i-th MSTG and rij = 0 or 1 (j ∈ {1, 2, 3, 4}) is the routing index
of the j-th self-attention branch. rij = 1 means that the j-th branch
of two MSTBs in the i-th MSTG is used. Otherwise, this branch
will be bypassed. Our experiments show that using separate routing
sub-vectors for the two MSTBs in each MSTG achieves similar ASSR
performance. Thus, we share the same routing sub-vectors on the two
MSTBs in each MSTG for model simplicity.

3.3.1 Multi-Scale Transformer Block

By leveraging the power of multi-scale learning [30, 52, 53] and
global learning [49, 40], we also propose a new Multi-Scale Trans-
former Block (MSTB) for comprehensive representation learning.
Take the MSTB in the i-th MSTG as an example. As shown in Fig-
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(a) (b)
Figure 4. Illustration of (a) local self-attention and (b) global self-attention.

ure 3 (b), the MSTB block in each MSTG mainly has three local
self-attention (LSA) branches with different window sizes {m1, m2,
m3} to learn abundant multi-scale representation and a global self-
attention (GSA) to provide global insight. It first splits the reshaped
feature map Fin ∈ R

(H×W )×C into four groups along the channel
dimension, yielding {Fj}4j=1 of size (H × W ) × C

4
. The routing

sub-vector ri indicates the forward path of four split feature maps
{Fj}4j=1. If the routing value rij = 1, the split feature map Fj will
be fed into the j-th self-attention (LSA or GSA) branch. Otherwise if
rij = 0, the split feature map Fj will be set as a comfortable zero ten-
sor and bypass the j-the attention branch. The outcome split feature
Oj of this process can be expressed as:

Oj =

{
SAj(Fj), rij = 1,

0, rij = 0,
(1)

where SAj is the j-th self-attention branch of this MSTB.
Subsequently, the outcome split features of four branches {Oj}4j=1

are concatenated to obtain the outcome feature Ocat. The Ocat is
further fed into our efficient slice-able linear projection. The resulting
outcome feature O is then added to the input feature Fin, and further
processed by a standard MLP in transformer blocks to output the
feature Fout of this MSTB.
Local self-attention (LSA). As illustrated in Figure 4 (a), given an
input feature of size (H × W ) × C

4
, the LSA branch first expands

the channel dimension to 3C
4

by a linear layer and then splits it along
the channel dimension into a Query matrix Q, a Key matrix K, and a
Value matrix V , all of size (H×W )× C

4
. The local window attention

partitions Q, K, V into windows of size mj ×mj (j = 1, 2, 3) and
computes the attention map within each window. After performing
self-attention along the window dimension, the LSA branch reshapes
the attention feature ×C

4
and output it for feature concatenation along

the channel dimension.
Global self-attention (GSA). As shown in Figure 4 (b), our GSA
branch is similar to the LSA branch on the first three steps of linear
projection, feature split, and window partition. Since self-attention in
large window size suffers from huge computational costs, we apply a
dimension reduction on the Key matrix K and Value matrix V after
the window partition step of our GSA branch, as suggested in [44, 45].
The window size of K and V is reduced from m × m to d × d
(d < m) by max-pooling, with proper reshape operations on the
window dimensions. The dimension-reduced matrices K̃ and Ṽ are
used to perform self-attention with the Query matrix Q. Finally, the
GSA branch reshapes the attention feature into (H ×W )× C

4
and

output it for feature concatenation.
Slice-able linear projection. The output concatenated feature Ocat

Figure 5. Illustration of our slice-able linear projection.
will be fused by linear projection in vanilla self-attention [35]. As
shown in Figure 5, denoting W ∈ R

C×C as the weight matrix of
linear projection, we split it along the row dimension and get four
sub-matrices of W1, W2, W3, and W4, all of size C

4
× C. The

vanilla linear projection is equivalent to multiplying the feature matrix
Oj with the corresponding weight matrix Wj for j ∈ {1, 2, 3, 4}.
In our MSTB, if the j-th branch is bypassed, its output split feature
Oj ∈ R

(H×W )×C/4 will be a comfortable zero tensor, and the cor-
responding matrix multiplication in linear projection also outputs a
zero tensor and hence can be bypassed.

To save possible computational costs, we design a slice-able linear
projection by removing the zero tensors in the output feature Ocat

and the corresponding sub-matrices in the weight matrix W . In our
slice-able version, we multiply the outcome split feature Oj and the
corresponding weight sub-matrix Wj with a routing value of ri

j = 1
for j =1, 2, 3, 4, and denote them as Oj(r

i
j = 1) and Wj(r

i
j = 1),

respectively. Thus, the vanilla linear projection in our MSTB can be
equally computed as

Ocat ×W =
[
Oj(r

i
j = 1)

]
×

[
W�

j (rij = 1)
]�

. (2)

The proposed slice-able linear projection reduces the computa-
tional complexity of the vanilla linear projection from O(HWC2) to
O( 1

4

∑4
j=1 r

i
jHWC2). Figure 5 gives an example of ri2 = ri4 = 0,

where Ocat ×W = [O1,O3]×
[
W�

1 ,W�
3

]�
.

3.3.2 Task-Aware Routing Controller

The goal of our Task-Aware Routing Controller (TARC) is to predict
the inference path of the feature extraction backbone for each ASSR
task, consisting of an LR image and an SR scale. As shown in Figure 3
(c), our TARC is a two-branch module to process the LR image and SR
scale, respectively. The image branch estimates a sampling probability
vector e ∈ R

4N for the 4N branches from the LR image, while the
scale branch refines the probability vector by predicting an intensity
scalar β to indicate the difficulty of ASSR on this SR scale.

For the image branch, we estimate the sampling probability vector
e from the LR image ILR through two 3× 3 convolutions followed
by an average pooling and a linear projection. For i ∈ {1, .., N}
and j ∈ {1, 2, 3, 4}, the element eij of probability vector e is the
probability of whether using the j-th self-attention branch of MSTBs
in the i-th MSTG, estimated from the LR image ILR. Therefore, the
probability vector e varies for different LR images, which makes our
TARC image-aware.

To further make our TARC module aware of SR scales (i.e., scale-
aware), its scale branch transforms the SR scale s to a scale-aware
intensity scalar β via three linear layers, as shown in Figure 3 (c).
Then the scale-aware intensity scalar β is used to refine the probability
vector e to output the task-aware probability vector p:

pij = min

(
β × 4N × σ

(
ei
j

)
/

N∑
i=1

4∑
j=1

σ
(
ei
j

)
, 1

)
, (3)
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where σ is the sigmoid function. We interpret β as the intensity of
our TARC to modulate all the 4N elements of the probability vector
e. A small (or large) β implies that our TARC tends to decrease (or
increase) the element values of the task-aware probability vector p.

With the scale-aware probability vector p, each element rij ∈
{0, 1} (i ∈ {1, ..., N}, j ∈ {1, 2, 3, 4}) of the routing vector r can
be drawn from Bernoulli sampling of pij . Since Bernoulli sampling
is a non-differentiable operation, the gradient of the loss function L
(will be introduced in §3.4) with respect to the routing value rij cannot
be computed in backward pass. To resolve this issue, as suggested
in [56, 21, 24], we combine Straight-Through Estimator (STE) [4, 25]
with the Bernoulli sampling to make our TARC trainable. The STE
enables the backward pass of Bernoulli sampling to approximate
the outgoing gradient by the incoming one. Thus, we formalize the
forward and backward passes of STE as:

STE Forward Pass: rij ∼ Bernoulli
(
pij

)
,

STE Backward Pass:
∂L
∂rij

=
∂L
∂pij

.
(4)

In this way, the Bernoulli sampling can be learnable by approximating
the gradient ∂L/∂rij by the gradient ∂L/∂pij .

3.4 Loss Function

The loss function L is a combination of the commonly used L1 loss
and our newly proposed penalty loss Lβ (which will be defined later)
on the scale-aware intensity scalar β:

L = L1 + λLβ , (5)

where λ = 2× 10−4 is used to balance the two losses. Here, penalty
loss Lβ is responsible to control scale-aware intensity β in in Eqn. (3).
Since the scale-aware scalar β implies the intensity of our TARC to
select the 4N self-attention branches, it should be penalized by a loss
function to constraint the computational budget. A naive design is
Lβ = β, but it potentially results in a small β for all scale factors. To
avoid this problem, we simply incorporate a binary mask M ∈ {0, 1}
on β in λLβ , and M is thresholded by the scale s as follows:

M � β ≥ (α1 + α2s
α3). (6)

Then we can set the penalty loss Lβ of the scalar β by:

Lβ = βM. (7)

We set α1 = 0.25, α2 = 0.25, and α3 = 0.5.

4 Experiments

4.1 Experimental Setup

Dataset. Following previous ASSR works [10, 28, 51, 7], we use the
training set of DIV2K [2] for model training. For model evaluation,
we report Peak Signal-to-Noise Ratio (PSNR) results on the DIV2K
validation set [2] and benchmark datasets, including B100 [37], Ur-
ban100 [23] and Manga109 [38].
Implementation details. We implement two variants of TADT feature
extractor: 1) the Baseline, i.e., the feature extraction backbone of our
TADT (without the TARC), 2) the TADT. We combine our TADT
variants with the arbitrary scale upsamplers of MetaSR [19], LIIF [10],
or LTE [28] as our ASSR networks. All the three TADT variants
comprise N = 8 MSTGs with C = 224 channels. Each MSTB in
MSTGs has a global window size of m = 48 and local window sizes

of {m1 = 4,m2 = 8,m3 = 16}. Following [10], we set the channel
dimension of the final output feature as Cout = 64.

For network training, we employ the same experimental setup of
previous works [10, 28]. To synthesize paired HR and LR data, given
the images from the DIV2K training set and an SR scale s evenly
sampled from the uniform distribution U(1, 4), we first crop 48s×48s
patches from the images as the ground-truth (GT) HR images, and
then utilize bicubic downsampling to get the paired LR images of size
48× 48. We sample 48× 48 pixels from the same coordinates of the
SR image and the GT HR images to compute the training loss.

We train our TADT variants with each arbitrary-scale upsampler,
i.e., MetaSR [19], LIIF [10], or LTE [28], as our ASSR networks
described in §3.2. Note that our Baseline is scale-agonostic and thus
trained with only the L1 loss function by setting λ = 0 in the loss
function (5). Our TADT is trained on the pre-trained Baseline under
the same settings, but with the loss function (5).

4.2 Main Results

Quantitative results. We compare our TADT variants with six off-
the-shelf feature extractors, i.e., EDSR-baseline [32], RDN [55],
RCAN [54], NLSA [39], SwinIR [31], and CAT-R-2 [12]. The PSNR
results on the DIV2K validation set and the five benchmark datasets
are summarized in Table 1 and Table 2, respectively. We also provide
results of other ASSR methods including ArbSR [43], LIRCAN [6]
and EQSR [47] in Table 2 for reference. Our TADT achieves overall
superior performance across all the test sets and SR scales, when
working with MetaSR [19], LIIF [10], or LTE [28]. More results can
be found in our supplementary materials [1].
Qualitative results. We provide the qualitative results of TADT along
with comparison feature extractors in Figure 6. Here, we compare
our TADT with NLSA [39], SwinIR [31], and CAT-R-2 [12], since
they achieve comparable PSNR results in Tables 1 and 2. We observe
that the SR results of different upsamplers working with our TADT
exhibit more accurate structures, e.g., the shape of character “S” (the
2-nd row) and the shape of X-type steel pole (the 3-rd row), as well
as the textures of stone (the 1-st row), than the SR results of these
upsamplers working with the other feature extractors.
Computational costs. In Table 3, we summarize the parameter
amounts and computational costs of different feature extractors when
working with the upsampler LIIF [10]. One can see that our Baseline
and TADT are more efficient on both aspects than other competitors.

4.3 Ablation Study

Here, we perform ablation studies to investigate the working mech-
anism of our TADT feature extractor on image ASSR tasks. In all
experiments, we use LIIF [10] as the arbitrary-scale upsampler to
work with our TADT feature extractor.
1) Does the scale branch in our TARC contribute to our TADT

on scale-aware ASSR performance? To answer this question, we
compare our TADT with two other variants: a) directly using scale-
agnostic β = 0.5 and b) manually setting β = 0.25s, where s is the
SR scale. As summarized in Table 4, although achieving reasonable
results on ×2 upsampling, our ASSR network with β = 0.5 in our
TARC suffers from inferior PSNR results on upsampling for higher
scales when compared with our TADT. Manually setting β = 0.25s
enables our ASSR network to achieve comparable results with our
TADT at high SR scales of s = 6, 8, but falls short in ASSR at lower
scales, e.g., 0.08 dB lower than our TADT on ×2 SR tasks. Our TADT
well balances the performance across all the scales. As revealed in
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Table 1. Quantitative (PSNR (dB)) comparison of different feature extractors working with any arbitrary-scale upsampler on the

DIV2K validation set. † indicates our implementation, while the others are directly evaluated with the released pre-trained models. “-” indicates
unavailable results due to out-of-memory (OOM) issue. The best results are highlighted in bold.

Method In-scale Out-of-scale
Upsampler Feature Extractor ×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

MetaSR [19]

EDSR-baseline [32] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
RDN [55] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47

RCAN† [54] 35.02 31.29 29.26 26.89 23.74 22.20 21.18 20.48
NLSA† [39] - 31.32 29.30 26.93 23.80 22.26 21.26 20.54
SwinIR [31] 35.15 31.40 29.33 26.94 23.80 22.26 21.26 20.54

CAT-R-2† [12] 35.15 31.38 29.29 26.90 23.77 22.23 21.24 20.52
Baseline (Ours) 35.15 31.38 29.31 26.92 23.76 22.21 21.20 20.50

TADT (Ours) 35.21 31.47 29.41 27.02 23.87 22.31 21.31 20.58

LIIF [10]

EDSR-baseline [32] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
RDN[55] 34.99 31.26 29.27 26.99 23.89 22.34 21.34 20.59

RCAN† [54] 35.02 31.30 29.31 27.02 23.91 22.36 21.33 20.60
NLSA† [39] - 31.39 29.40 27.11 23.98 22.41 21.38 20.64
SwinIR [31] 35.17 31.46 29.46 27.15 24.02 22.43 21.40 20.67

CAT-R-2† [12] 35.23 31.49 29.49 27.18 24.03 22.45 21.41 20.67
Baseline (Ours) 35.24 31.51 29.50 27.19 24.04 22.46 21.42 20.69

TADT (Ours) 35.28 31.55 29.54 27.23 24.07 22.49 21.45 20.71

LTE [28]

EDSR-baseline [32] 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
RDN [55] 35.04 31.32 29.33 27.04 23.95 22.40 21.36 20.64

RCAN† [54] 35.02 31.30 29.31 27.04 23.95 22.40 21.38 20.65
NLSA† [39] - 31.44 29.44 27.14 24.03 22.48 21.44 20.70
SwinIR [31] 35.24 31.50 29.51 27.20 24.09 22.50 21.47 20.73

CAT-R-2† [12] 35.27 31.52 29.52 27.21 24.09 22.51 21.46 20.73
Baseline (Ours) 35.27 31.53 29.52 27.21 24.08 22.50 21.46 20.73

TADT (Ours) 35.31 31.56 29.56 27.24 24.10 22.52 21.48 20.75

Table 2. Quantitative (PSNR (dB)) comparison of different ASSR methods on benchmark datasets . † indicates our implementation,
while the others are directly evaluated with the released pre-trained models. The best results are highlighted in bold.

Method B100 Urban100 Manga109
Upsampler Feature Extractor ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8

MetaSR [19]

RDN [55] 32.33 29.26 27.71 25.90 24.83 32.92 28.82 26.55 23.99 22.59 - - - - -
RCAN† [54] 32.35 29.29 27.73 25.91 24.83 33.14 28.98 26.66 24.06 22.65 39.37 34.44 31.26 26.97 24.5
NLSA† [39] 32.35 29.30 27.77 25.95 24.88 33.25 29.12 26.80 24.20 22.78 39.43 34.55 31.42 27.11 24.71
SwinIR [31] 32.39 29.31 27.75 25.94 24.87 33.29 29.12 26.76 24.16 22.75 39.42 34.58 31.34 26.96 24.62

CAT-R-2† [12] 32.40 29.29 27.72 25.91 24.85 33.35 29.11 26.69 24.11 22.73 39.49 34.52 31.17 26.86 24.54
Baseline (Ours) 32.40 29.32 27.74 25.92 24.85 33.34 29.12 26.74 24.14 22.74 39.47 34.53 31.28 26.88 24.53

TADT (Ours) 32.47 29.36 27.80 25.97 24.91 33.50 29.32 26.96 24.32 22.91 39.57 34.76 31.59 27.20 24.79

LIIF [10]

RDN [55] 32.32 29.26 27.74 25.98 24.91 32.87 28.82 26.68 24.20 22.79 39.22 34.14 31.15 27.30 25.00
RCAN† [54] 32.36 29.29 27.77 26.01 24.95 33.17 29.03 26.86 24.35 22.92 39.37 34.34 31.31 27.37 25.05
NLSA† [39] 32.39 29.35 27.83 26.06 24.99 33.44 29.35 27.15 24.58 23.07 39.58 34.67 31.65 27.65 25.26
SwinIR [31] 32.39 29.34 27.84 26.07 25.01 33.36 29.33 27.15 24.59 23.14 39.53 34.65 31.67 27.66 25.28

CAT-R-2† [12] 32.44 29.38 27.86 26.09 25.02 33.58 29.44 27.23 24.67 23.19 39.53 34.66 31.69 27.72 25.31
Baseline (Ours) 32.44 29.38 27.85 26.08 25.03 33.54 29.49 27.27 24.68 23.22 39.63 34.74 31.77 27.74 25.34

TADT (Ours) 32.46 29.41 27.87 26.10 25.05 33.65 29.58 27.37 24.75 23.27 39.68 34.79 31.83 27.84 25.39

LTE [28]

RDN [55] 32.36 29.30 27.77 26.01 24.95 33.04 28.97 26.81 24.28 22.88 39.25 34.28 31.27 27.46 25.09
RCAN† [54] 32.37 29.31 27.77 26.01 24.96 33.13 29.04 26.88 24.33 22.92 39.41 34.39 31.30 27.44 25.09
NLSA† [39] 32.43 29.39 27.86 26.08 25.02 33.56 29.43 27.25 24.62 23.15 39.64 34.69 31.66 27.83 25.37
SwinIR [31] 32.44 29.39 27.86 26.09 25.03 33.50 29.41 27.24 24.62 23.17 39.60 34.76 31.76 27.81 25.39

CAT-R-2† [12] 32.47 29.39 27.87 26.09 25.03 33.60 29.48 27.27 24.68 23.21 39.61 34.75 31.76 27.84 25.39
Baseline (Ours) 32.46 29.39 27.86 26.09 25.04 33.67 29.51 27.33 24.67 23.23 39.66 34.77 31.77 27.85 25.39

TADT (Ours) 32.47 29.41 27.88 26.11 25.05 33.70 29.57 27.36 24.72 23.26 39.72 34.86 31.85 27.93 25.47

ArbSR (ICCV’2021) [43] 32.39 29.32 27.76 25.74 24.55 33.14 28.98 26.68 32.70 22.13 39.37 34.55 31.36 26.18 23.58
LIRCAN (IJCAI’2023) [6] 32.42 29.36 27.82 - - 33.13 29.11 26.88 - - 39.56 34.77 31.71 - -
EQSR (CVPR’2023) [47] 32.46 29.42 27.86 26.07 - 33.62 29.53 27.30 24.66 - 39.44 34.89 31.86 27.97 -
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Figure 6. Visual comparison of different ASSR networks for natural image ASSR. The ASSR networks are made up of different feature extractors and
arbitrary-scale upsamplers, i.e., MetaSR [19] (1-st row), LIIF [10] (2-nd row), and LTE [28] (3-rd row). The highlighted regions are zoomed in for better view.

Table 3. Parameter amounts (M) and FLOPs (G) of different

feature extractors working with LIIF [10], for ASSR at scale s = 2,
3, or 4 on the DIV2K validation set. “-”: the result is unavailable due
to out-of-memory.

Feature Extractor Params (M) FLOPs (G)
×2 ×3 ×4

RDN [55] 21.97 15567.48 6918.88 3891.87
RCAN [54] 15.33 10774.88 4788.83 2693.72

SwinIR [31] 11.60 8832.28 3923.36 2227.08
NLSA [39] 39.58 - 13357.80 7513.77

CAT-R-2 [12] 11.63 8760.82 4038.19 2274.76
Baseline (Ours) 9.17 7454.65 3407.59 1952.41

TADT (Ours) 9.18 6986.92 3207.16 1845.57

β

Scale s

Figure 7. The predicted β in our TADT w.r.t. different SR scales s.

Figure 7 β in our TADT basically grows with the SR scale in ASSR,
which is consistent with our intent on its role of intensity indicator.
2) The influence of penalty loss Lβ to our ASSR network. We
investigate this point by comparing our ASSR networks trained with
or without using Lβ . In Figure 7, we visualize the curves of predicted
β v.s. SR scales after training our TADT based ASSR network with
Lβ and without Lβ . We observe that„ without using Lβ in training,
our ASSR networks are prone to predict saturated β when the SR scale
increases, with higher computational costs. As summarized in Table 5,
training our TADT without Lβ obtains a minor PSNR increase of
0.02dB for ×2 SR tasks on the DIV2K validation set, but also leads
to a 388.75G FLOPs growth on computational costs. Therefore, it is
necessary to use our intensity penalty loss Lβ in training our ASSR
networks for computational efficiency.

Table 4. PSNR (dB) results of our ASSR network with different designs

of intensity indicator β on Urban100 [23].

β
In-scale Out-of-scale

×2 ×3 ×4 ×6 ×8

β = 0.5 33.66 29.53 27.33 24.72 23.23
β = 0.25s 33.57 29.53 27.34 24.74 23.24
Our TARC 33.65 29.58 27.37 24.75 23.27

Table 5. Results of PSNR (dB) and FLOPs (G) by our TADT

trained with (w) or without (w/o) the intensity loss Lβ on the
DIV2K validation set.

Feature Extractor ×2 ×3 ×4

PSNR FLOPs PSNR FLOPs PSNR FLOPs

TADT, w Lβ 35.28 6986.91 31.55 3207.16 29.54 1845.57
TADT, w/o Lβ 35.30 7375.66 31.56 3378.02 29.55 1936.01

5 Conclusion

In this paper, we proposed an efficient feature extractor, i.e., the Task-
Aware Dynamic Transformer (TADT), for image ASSR. The proposed
TADT contains cascaded multi-scale transformer groups (MSTGs) as
the feature extraction backbone and a task-aware routing controller
(TARC). Each MSTG group consists of two multi-scale transformer
blocks (MSTBs). Each MSTB block has three local self-attention
branches to learn useful multi-scale representations and a global self-
attention branch to extract distant correlations. Given an inference
task, i.e., an input image and an SR scale, our TARC routing con-
troller predicts the inference paths within the self-attention branches
of our TADT backbone. With task-aware dynamic architecture, our
TADT achieved efficient ASSR performance when compared to the
mainstream feature extractors.
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