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Abstract. Automatic multi-organ segmentation of the abdominal
region is a critical yet challenging task in computer-aided medical
image analysis. Recent advances in CNN- and Transformer-based
encoder-decoder models tend to implicitly learn context features by
using enhanced effective receptive fields to capture local and global
range dependencies. However, due to the complex anatomical struc-
ture, those models cannot recover the anatomical topology properly
and result in broken organs with inaccurate semantic labels. There-
fore, in this paper, by considering the anatomy priors of multi-organs,
we propose a Context Prior Network, namely CPNet, which inte-
grates the 3D context semantic relations and geometry priors as ex-
plicit anatomical constraints. Specifically, a Semantic Relation Prior
Propagation (SRPP) module is designed to propagate the semantic
relations between voxels progressively. Moreover, a Multiple Con-
text Prior Prediction (MCPP) module is adopted to preserve the accu-
rate shape and topology by recovering 3D contours and surface nor-
mal. Experimental results demonstrate our proposed model outper-
forms state-of-the-art models for multi-organ segmentation on Ab-
domen CT and MRI datasets, especially for recovering organs with
correct semantic labels and anatomical structures.

1 Introduction

Automatic multi-organ segmentation is crucial in facilitating
computer-aided medical image analysis and assisting disease diag-
nosis [22]. It aims at accurately grouping voxels into multiple organ
regions and recovering the typologies of the organs. In practice, au-
tomatic multi-organ segmentation can not only reduce the laborious-
ness of manual annotations of physicians and radiologists but also
offer potential for clinical applications, such as surgery planning, ra-
diation therapy planning, and morphology assessment [29, 22].

Thanks to the powerful generalization abilities of deep neural net-
works, Convolution Neural Network (CNN) and Vision Transform-
ers (ViT) based encoder-decoder models [44, 6, 3, 13, 14] have been
widely applied to medical image segmentation tasks and achieved
remarkable performance. Specifically, CNN-based 2D segmentation
models can be applied to 3D volume segmentation via slice-by-slice
prediction. Many representative CNN architectures for semantic seg-
mentation and medical image segmentation, including fully convo-
lutional network (FCN) [36], U-Net [35], DeepLab series [4, 5, 39],
etc., have significantly inspired the development of new models for
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Figure 1. Multi-context priors derived from the (a) ground-truth (GT)
semantic labels. Semantic relations (b) are extracted according to semantic
labels of neighbours surrounding a central voxel. Geometry priors can be
denoted by 3D contour (c) and surface normal (d) of abdominal organs.

multi-organ segmentation [40, 3]. However, the lack of 3D context
information modeling limits the performance in capturing complex
3D structures. Therefore, CNN-based 3D segmentation models are
proposed. Those models regarded 3D volumes as input and achieved
better performance by adopting 3D convolutional layers that can pro-
vide more effective 3D receptive fields [6, 24].

Generally, CNN-based models are well-suited for learning lo-
cal context features but may not be good at capturing global con-
text due to the limited effectiveness of receptive fields. Therefore,
to break such limitations, models with residual or skip connec-
tions [35, 32, 41], deformable convolutions [16], larger kernels [16],
multi-level feature fusion [3, 19], and attention mechanism [34, 2]
are advanced for producing rich context features. In contrast, ViT-
based models [8, 27, 3, 1, 13, 26, 14] are proposed to pattern the
long-range dependencies by utilizing transformer blocks, which are
tailored to establish the global context relations within a sequence of
tokens of 3D patches.

Albeit CNN- and ViT-based models tend to implicitly learn the
organ structures by leveraging context features covered by local re-
ceptive fields and global dependencies, these models cannot prop-
erly recover the shape and lead to segmenting 3D volume into wrong
organs with broken regions and incorrect topology. In practice, the
structure of an organ and its surrounding tissues should be taken into
consideration to draw a pathological diagnosis. On the other hand,
anatomical prior knowledge of abdominal organs is also crucial to
annotating voxels with correct labels by a radiologist. However, a
key issue of recent data-driven models is that the semantic relations
and geometry priors of the anatomical structure of abdominal organs
cannot be accurately captured by identifying organs voxel-wisely.

To solve the above issues, this work presents a Context Prior Net-
work, namely CPNet, which integrates the 3D semantic context rela-
tions and geometry priors (See Figure 1) as explicit anatomical con-
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straints for multi-organ segmentation. To achieve this, a Semantic
Relation Prior Propagation (SRPP) module is designed to capture
the semantic relations between the organ voxel and its context by in-
jecting the semantic relation cues into the multi-scale feature maps
progressively. In addition, a Multi-Context Prior Prediction (MCPP)
module is proposed to encourage the model to recover the accurate
shape and topology of the organs by using 3D contours and surface
normal. Experimental results on both Abdomen CT [29] and MRI
datasets [22] demonstrate our proposed model outperforms state-of-
the-art models for multi-organ segmentation.

Our main contributions can be summarized as follows:

• This paper proposes to integrate multiple context priors in terms
of anatomy structures and topology for multi-organ segmentation
by explicitly modeling the semantic relations and geometries.

• A context prior propagation module is proposed to progressively
propagate surrounding semantic relation priors into multi-scale
features. It effectively alleviates the issues of inaccurate segmen-
tation results caused by the complex context of anatomical struc-
tures and peripheral organs.

• We develop a multi-contextual relation prediction module to pre-
serve more accurate topology and complete shape of multi-organs
by leveraging 3D contour and surface normal as geometry priors.

• Experimental results demonstrate that our model can outperform
state-of-the-art methods for multi-organ segmentation on the Ab-
domen CT and MRI datasets [29, 22], especially for recovering
the connectivity and consistency in terms of semantic label and
shape for different modalities.

2 Related Work

In this section, we mainly review recent advancements in deep
encoder-decoder models for medical image segmentation. These
models can be roughly divided into two categories based on whether
the encoder-decoder models are convolution or transformer-based.

2.1 CNN-based Encoder-Decoder Models

In recent years, CNN-based encoder-decoder models have rapidly
developed and achieved remarkable performance in biomedical im-
age segmentation. Among them, Ronneberger et al. [35] initially
proposed UNet, a symmetric encoder-decoder model that integrates
multi-level features with skip connections. Due to its powerful seg-
mentation capability, U-Net and its variants have gained significant
attention for solving computer-aided medical image analysis tasks,
including automatic multi-organ segmentation [16], brain tumour
segmentation [32, 40], coronary artery segmentation [42, 15], etc.

Specifically, Zhou et al. [45] presented UNet++ with a nested
UNet architecture to fuse multi-level features with dense skip con-
nections Huang et al. [18] proposed the UNet 3+ model to learn hi-
erarchical representations by aggregating the full-scale feature maps
with dense skip connections. However, initial 2D-based U-Net mod-
els typically perform full volumetric segmentation by processing
the 3D data slice-by-slice. To capture context features of 3D vol-
ume, 2.5D and 3D approaches are proposed to integrate features
from neighbouring slices in the 3D space. Çiçek et al. [6] devel-
oped 3D U-Net by replacing 2D convolution with its 3D convolu-
tion and achieved dense segmentation on volumetric data. In addi-
tion, Li et al. [25] proposed a hybrid architecture H-DenseUNet and
achieved efficient segmentation of liver and tumour from CT images.
It aims to incorporate intra- and inter-slice contextual information

by cascading 2D and 3D convolution networks. After that, Oktay et
al. [34] proposed an Unet model with attention gates, namely AG-
UNet. An attention gate layer is designed to encourage the model to
select useful features for segmentation. Unlike the above models that
introduced (dense) skip connections, residual connections, and atten-
tion mechanism into the original UNet, Isensee et al. [20] proposed a
self-configuring method, namely nnUNet, to achieve automatic and
adaptive configuration of training the UNet models. Techniques in
terms of choosing network architecture, data pre-processing, post-
processing, empirical settings during training and inference proce-
dures, optimizers, etc., can be automatically adopted based on the
given medical image dataset [20].

2.2 Transformer-based Models

Recent years have witnessed the rapid development of the Vision
Transformer (ViT) model [8] and its applications for medical im-
age segmentation [3, 1, 13]. Thanks to the powerful ability to cap-
ture long-range dependencies, ViT models have been explored for
implicitly pattern global context features within the volumetric data
and excepted to break the limitations in extracting insufficient con-
text features within local receptive fields covered by convolutional
kernels. Specifically, Valanarasu et al. [38] proposed MedT with a
gated axial-attention transformer block. Chen et al. [3] proposed
TransUNet, which is a hybrid framework that combines the Trans-
former block with the CNN-based UNet. Huang et al. [19] proposed
another hybrid CNN and Transformer architecture, namely Scale-
Former to aggregate and distribute inter- and intra-scale local-global
features by using transformer blocks. Lin et al. [2] proposed to in-
troduce a dual-scale encoding mechanism into the hierarchical Swin
Transformer UNet architecture. In contrast, Cao et al. [1] offered
SwinUNet, a pure Transformer-based UNet model built upon the hi-
erarchical Swin-Transformer.

Due to runtime efficiency and computational complexity, the
above Transformer-based models are generally worked on 2D slices
or 2D medical images. In contrast, Wang et al. [40] proposed Trans-
BTS for brain tumour segmentation. It integrates a Transformer into
a 3D CNN architecture to model local and global context features.
Hatamizadeh et al. [14] proposed UNETR, a transformer-based UNet
tailored to perform segmentation on 3D volumetric data directly. In
addition, inspired by self-supervised learning, Tang et al. [13] pro-
posed a 3D Transformer-based model, namely SwinUNETR with a
pre-trained Swin Transformer backbone. Zhou et al. [43] proposed
nnFormer to learn the 3D volumetric context representations by de-
signing a local and global volume-based self-attention mechanism.
Recently, the state space model (SSM) and its variants [9, 11, 12, 10]
were proposed to capture the log-range dependencies more effi-
ciently by using different scanning strategies, it becomes competi-
tive with CNN and Transformer-based models and has been applied
in natural language processing and computer vision tasks [21, 33].
In particular, Ma et al. [30] introduced SSMs in the multi-organ seg-
mentation task to establish long-term dependencies between organs.

However, the above models are inclined to implicitly realize the
anatomical organ structures by modeling local and global context
features following a data-driven training pipeline. Some recent works
proceed to introduce topological constraints to regularize the learning
process of models for coronary artery segmentation [42] and natural
image segmentation [17]. Nevertheless, due to the complex geometry
of the organs, the anatomical constraints are not well perceived, but
they can be regarded as strong guidance for segmentation in practice.
Therefore, we propose to introduce anatomy structure and topology
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Figure 2. The overview of our proposed CPNet. The input medical data is encoded by using a 3D backbone network. Multi-scale features are integrated
and decoded under a 3D U-Net Encoder-Decoder framework (a). A SRPP module (b) is designed to predict and propagate semantic relations (d) to multi-scale

features. A MCPP module (c) is developed to predict semantic segmentation with correct 3D contour (e) and surface normal (f).

priors, including spatial semantic relation, 3D contour, and surface
normal to facilitate multi-organ segmentation by comprehensively
considering organ shapes and their relations.

3 Method

3.1 Overview

Let I denotes the input 3D CT or MRI abdominal volume data, our
main goal is to predict the accurate semantic labels and recover the
correct geometry of multiple organs. To this end, we developed CP-
Net by introducing multiple context priors in terms of organ struc-
tures and topology as anatomical constraints. The overview of our
proposed CPNet architecture is illustrated in Figure 2. It consists of
three main modules: (a) A 3D U-Net for encoding and fusing multi-
scale features, (b) A Semantic Relation Prior Propagation (SRPP)
module to inject context semantic relations into multi-scale features
progressively, and (c) A Multi-context Prior Prediction (MCPP) mod-
ule for recovering the correct geometry by using 3D contour and sur-
face normal. To construct multiple context priors of anatomical struc-
tures of organs, we extract 3D semantic relations (d) according to 26
connected neighbourhoods surrounding a central voxel. In addition,
3D contours (e) are generated by slicing the ground-truth semantic
labels from tri-plane perspectives and the surface normal (f) of the
3D shape is computed consequentially.

3.2 Multi-scale 3D Feature Extraction and Fusion

Recent works have demonstrated the effectiveness of UNet archi-
tecture for medical image segmentation. As a widely used encoder-

decoder model, a 3D U-Net architecture is adapted for multi-scale
feature extraction and fusion in our proposed CPNet. As shown in
Figure 2(a), CPNet inherits a basic 3D U-Net network from [20], in-
cluding a 3D backbone network as an encoder with 3D convolution
blocks, a decoder for iteratively upsampling and fusing multi-scale
features by using skip connections. This can be expressed as:

[ẑ0, ẑ1, · · · , ẑl] = 3DDec(3DEnc(I)), (1)

where ẑi denotes the i-th level of features produced by the decoder
3DDec. I denotes the input 3D CT or MRI data volume with reso-
lution resolution D × H × W , where D, H and W are the spatial
depth, height and width, respectively. In practice, high-level feature
ẑl models the high-level semantic and coarse instance-level location
of each organ in the 3D volumetric space, while low-level feature ẑ0
contains more detailed local information which can be used to re-
cover fine shapes and structures of multiple organs. We fuse high-
and low-level features by concatenating two adjacent scales of fea-
tures produced by the encoder 3DEnc and decoder 3DDec parts.

3.3 Progressive Semantic Relation Prior Propagation

Since the core of our model is to introduce context priors as explicit
anatomical constraints, it aims to encourage the model to learn to re-
cover semantic labels with correct organ structures and topology. The
semantic relation can be regarded as a strong context prior knowledge
of the layout of multi-organs. To achieve this, the semantic relation
prior is extracted by recording the semantic labels of the neighbour
voxels surrounding a central voxel. Figure 2(d) illustrates the con-
struction of semantic relation for a voxel. It is defined by the current
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voxel and its 26 neighbours within a 3×3×3 receptive field. There-
fore, for each position, the semantic relation prior is expanded by
semantic labels of the central voxel and its neighbour voxels. For dif-
ferent levels of features, the semantic relation priors indicate differ-
ent scales of relations. Intuitively, the high-level semantic relations
indicate global anatomical structures of abdominal organs, such as
the location, distributions, and layouts of the anatomy priors. The
low-level semantic relations indicate the fine-grained local patterns
of the inter- and intra-organ semantic context relations. Therefore, as
shown in Figure 2(b), to take full use of the local and global semantic
relation priors, we propose to progressively propagate the semantic
relations to multi-level features for predicting the coarse-to-fine se-
mantic context priors under the deeply supervised framework. Con-
cretely, we adopted a semantic relation prediction head in each layer
of the decoder. The i-th level of the decoded feature is concatenated
with the semantic relation predicted by the previous i − 1-th level.
After that, a 1 × 1 × 1 convolutional layer is applied to obtain the
current layer semantic relation feature. The computation of the pro-
gressive semantic relation prior propagation (SRPP) module can be
formulated as:

ŝ
(r)
i =

{
P
(r)
i (CONVi(CAT(ẑi−1, ŝ

(r)
i−1))) if i = 1, 2, · · · , l − 1

P
(r)
i (CONVi(ẑi)) if i = l

,

(2)
where P

(r)
i denotes the i-th prediction head of the i-th level of fea-

tures. ŝ(r)i refers the i-th semantic relation prediction with spatial
size R

ĉ×d×h×w, where ĉ denotes the number of voxels within the
neighbourhoods.

3.4 Multiple Context Prior Prediction

As mentioned above, our key insight is to accurately recover the se-
mantics and geometry of abdominal organs by explicitly introducing
anatomical constraints. To achieve this, a Multiple Context Prior Pre-
diction (MCPP) module is presented to accurately predict the shape
and topology of the organs by using 3D contours and surface normal
(See Figure 2(c)). Specifically, we designed an additional 3D con-
tour prediction head to identify the discontinuity between the voxels
of an organ and its surrounding tissues. In addition, an extra surface
normal prediction head is introduced to discriminate the intra- and
inter-class voxels around the 3D surface of an organ and recover the
correct topology.

In practice, low-level feature contains more detailed local infor-
mation. It is more suitable for realizing correct geometry with fine
shapes and structures. Therefore, the low-level feature ẑ0 is fed into
the MCPP module to simultaneously predict semantic labels and ge-
ometry: [

ŝ(r), ĝ(n), ĝ(c), ŷ
]
= MCPP

(
CAT(s

(r)
1 , ẑ0)

)
, (3)

where ĝ(n) and ĝ(c) denote the predicted surface normal and contour
respectively. ŝ(r) represents the final predicted semantic relation and
ŷ is the predicted semantic label. The structure of the MCPP module
consists of four separate prediction heads for semantic relation pre-
diction, contour prediction, normal vector regression, and semantic
segmentation, respectively.

To generate the ground truth (GT) of the 3D contour and surface
normal shown in Figure 2 (e) and (f), we first slice the 3D segmen-
tation labels from the tri-plane perspectives in terms of axial, sagittal
and coronal views. Specifically, for each view, boundaries of 2D se-
mantic masks are extracted slice-by-slice and the corresponding in-
dex numbers of the slice are recorded. After that, the GT 3D contour

g(c) can be obtained by gathering all the boundary points w.r.t. axial,
sagittal and coronal views according to the recorded 3D coordinates.
In addition, for calculating the GT 3D surface normal g(n), we fol-
low the approach presented in Open3D [44]. Concretely, a KD-Tree
searching algorithm is first used to retrieve the nearest points in a
searching ball with a specific radius for each point on the contour.
Then, a covariance analysis method is adopted to estimate a normal
vector based on the nearest neighbours. For clarity, we refer the read-
ers to supplementary meterial [23] for more details.

It is worth noting that some of the estimated normal vectors may
point toward the inside of the organ according to the default set-
tings of randomly choosing normal candidates. Therefore, to elim-
inate such confusing cases, we reverse the directions of those normal
vectors so that all the estimated normal vectors point to the outside of
the organ. In practice, we identify the direction of normal vectors by
the semantic labels of a surface point and its nearest neighbour that
the normal vector pointing to. If the semantic labels are the same, the
direction of a normal vector is towards the inside of the organ and
should be reversed.

3.5 Loss Functions

Multiple loss functions are used in training our model to predict
the semantic label and recover the correct geometry of multi-organs.
Specifically, we used a compound loss function of the cross-entropy
loss CELoss and dice loss DiceLoss for semantic segmentation by
following [20]:

Lseg = λceCELoss(y, ŷ) + λdiceDiceLoss(y, ŷ), (4)

where y and ŷ denote the GT semantic label and predicted semantic
label, respectively. λce and λdice are the weights for each loss. In
addition, a relation-balanced cross-entropy loss RCELoss is adopted
to predict and propagate semantic relations to multi-scale features
progressively:

Lrce =
l∑

i=0

RCELoss(s(r), ŝ
(r)
i ), (5)

where s(r) and ŝ
(r)
i represent the GT semantic relation and predicted

relation, respectively. i denotes the i-th side-way output and l is the
number of levels of semantic relation predictions. We design the
RCELoss by reweighting the losses w.r.t. three types of difficulties
of different semantic relations. For more details, we refer the readers
to the supplementary document [23].

Moreover, to recover the geometry of multi-organs, we adopted
cross-entropy loss CELoss and L1 loss L1Loss to penalize the wrong
boundary points and inaccurate normal vectors. Specifically, for 3D
contour prediction, we introduce the cross-entropy loss to encourage
the model to produce accurate contours:

Lgce = CELoss(g(c), ĝ(c)), (6)

where g(r) and ĝ(r) are GT 3D contours and predicted contours of
multi-organs. Finally, an L1Loss is adopted to regress surface nor-
mal, which can be defined as:

Lgn = L1Loss(g(n), ĝ(n)), (7)

where g(n) and ĝ(n) are GT 3D surface normal vectors and predicted
normal vectors of multi-organs. The overall loss can be defined as:

L = λsegLseg + λrceLrce + λgceLgce + λgnLgn, (8)

where λseg , λrce, λgce, and λgn are the loss weights to trade-off
different terms.
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Table 1. Organ-wise quantitative results of 3D segmentation on Abdomen CT dataset. The best result for each class is bolded.

DSC(%)↑ NSD(%)↑
nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours

liver 97.06 95.21 90.47 93.02 97.13 93.25 95.82 91.57 81.25 82.97 95.92 91.36
right kidney 87.38 82.95 71.05 75.40 86.53 89.03 86.21 80.27 66.09 70.53 86.40 88.06

spleen 91.62 86.46 78.69 84.02 93.57 93.81 90.38 84.21 73.47 80.20 93.61 93.57
pancreas 83.62 74.40 60.10 69.73 86.51 86.59 91.39 83.53 68.59 71.91 94.02 94.49

aorta 96.18 94.91 89.16 93.83 95.70 97.13 97.45 95.58 87.01 93.40 97.27 98.59

inferior vena cava 88.39 83.74 75.92 82.50 88.22 89.46 87.76 82.42 71.99 78.34 87.84 89.20

right adrenal gland 82.31 72.77 63.73 74.66 81.40 80.09 93.18 85.79 76.15 87.03 92.36 90.00
left adrenal gland 79.21 68.51 47.50 67.67 83.23 81.75 88.84 79.45 58.66 78.88 92.58 91.42

gallbladder 72.93 66.78 53.21 57.25 74.36 79.33 73.31 64.11 47.47 53.20 74.67 80.61

esophagus 86.06 79.27 69.29 78.53 85.23 82.58 93.08 87.06 78.26 86.63 91.49 89.55
stomach 89.02 82.07 71.28 76.56 89.31 89.38 90.33 83.02 69.03 69.81 90.76 91.03

duodenum 75.61 63.88 49.51 60.42 77.94 78.41 88.30 79.61 69.32 75.31 89.30 90.60

left kidney 90.50 79.49 67.24 73.67 89.63 89.26 90.35 76.86 63.24 67.99 90.19 88.62

Avgerage 86.15 79.26 68.24 75.94 86.83 86.95 89.72 82.58 70.04 76.63 90.49 90.78

Table 2. Organ-wise quantitative results of 3D segmentation on Abdomen MRI dataset. The best result for each class is bolded.

DSC(%)↑ NSD(%)↑
nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours nnU-Net SegResNet UNETR SwinUNETR U-Mamba Ours

liver 97.35 96.54 93.44 96.27 97.32 97.50 97.47 95.90 89.05 94.79 97.53 97.83

right kidney 96.25 93.90 82.66 93.55 95.94 95.96 97.47 95.88 82.28 93.90 97.66 97.61
spleen 91.31 90.23 86.17 91.34 93.83 93.00 92.01 90.69 82.80 90.19 94.17 93.86
pancreas 86.39 82.49 72.71 77.50 86.50 87.48 95.53 92.28 82.68 87.42 95.65 96.78

aorta 93.27 93.31 85.24 89.07 92.43 95.02 95.72 95.56 86.52 90.55 94.79 97.41

inferior vena cava 81.92 82.79 72.86 78.44 83.22 83.54 86.98 87.62 76.05 82.71 88.12 88.30

right adrenal gland 62.38 60.66 45.39 55.40 62.87 63.94 80.47 77.78 62.57 73.16 80.10 81.54

left adrenal gland 70.21 67.79 47.35 47.86 72.25 72.21 84.74 83.01 61.43 62.55 85.88 86.17

gallbladder 77.20 78.72 48.33 65.37 82.84 85.28 75.51 75.81 40.95 61.85 82.79 85.13

esophagus 74.89 74.08 56.55 64.77 79.55 79.60 90.71 89.76 73.95 80.38 93.87 94.48

stomach 82.60 76.09 66.97 71.98 82.57 83.76 85.95 79.89 69.19 75.53 85.97 87.60

duodenum 70.08 66.34 48.78 59.21 73.09 72.48 88.92 87.20 74.95 81.48 90.78 91.01

left kidney 96.37 96.09 86.22 92.66 96.49 96.57 98.05 97.98 84.79 93.77 98.42 98.26

Avgerage 83.09 81.46 68.67 75.65 84.53 85.10 89.96 88.41 74.40 82.18 91.21 92.00

4 Experiments

In this section, we start by presenting the datasets, evaluation metrics,
and implementation details. Following that, we discuss the experi-
mental results obtained from comprehensive comparison and abla-
tion studies to demonstrate the effectiveness of our proposed CPNet.

4.1 Datasets and Evaluation Metrics

To verify the effectiveness of our method on various types of multi-
organ segmentation datasets, we evaluated CPNet on the Abdomen
CT and MRI datasets. The Abdomen CT dataset was provided by
MICCAI 2022 FLARE Challenge [29] for the segmentation of 13
abdominal organs. It contained 50 CT scans collected from the MSD
Pancreas dataset [37] used for training and another 50 scans from
different medical centers [7] for testing. The annotations of the train-
ing set were from the AbdomenCT-1K dataset [28], while annota-
tions of the testing set were provided by the challenge organizers.
The Abdomen MRI dataset was released by MICCAI 2022 AMOS
Challenge [22], we followed settings of U-Mamba [30] that merge
the 40 training scans and 20 validation scans for training, and 50 ex-
tra annotated MRI scans were used for testing. As with the Abdomen
CT dataset, the same set of 13 organs was selected to train the model
and facilitate the comparison of abdominal organ segmentation based
on different modalities. Following [31], we adopted two widely used
metrics, i.e. the Dice Similarity Coefficient (DSC) and Normalized
Surface Distance (NSD) to evaluate the segmentation performance.

4.2 Implementation Details

We implement CPNet based on nnU-Net [20] framework and we fol-
low the same hyperparameter setting and training policy of nnU-Net.

During training, the CPNet is optimized by using an SGD optimizer
with the initial learning rate 5 × 10−3 and weight decay 3 × 10−5.
The model is trained for 1,000 epochs. For each iteration, a batch
of two volumes are randomly selected and cropped to resolution
40 × 224 × 192 (Abdomen CT) and 48 × 160 × 224 (Abdomen
MRI) from the original data. For loss weights in Eq. (8), λseg , λrce,
λgce, and λgn are set to 1.0. Moreover, we set the relation-balanced
CE loss weight according to the type of each voxel. Specifically, for
easy cases in the background and intra-organ regions, we set the loss
weights in RCELoss to 0.1 and 0.3, respectively. For hard cases, i.e.
voxels are surrounded by different classes, the loss weight is set to
0.6. Moreover, to augment the diversity of the training data volume,
we follow the medical image data preprocessing steps presented in
[20]. To generate the GT surface normal, we set the radius of the
searching ball to 10 and the maximum number of nearest neigh-
bours to 100. All the experiments are implemented using PyTorch
on a workstation with one NVIDIA GeForce RTX 4090 (24G) GPU.

4.3 Main Results

We performed experiments on the Abdomen CT and MRI datasets
by comparing our CPNet with five state-of-the-art (SOTA) models
for multi-organ segmentation, including nnU-Net [20], SegResNet
[32], UNETR [14], SwinUNETR [13] and U-Mamba [30]. For a fair
comparison, these models are implemented based on the nnU-Net
and trained with the default settings of training policies and hyperpa-
rameters released by the authors.

Evaluation results on Abdomen CT dataset. Table 1 summa-
rized the quantitative comparison results w.r.t. different organs on the
Abdomen CT dataset. It shows that our model outperforms SOTA
methods by achieving 86.95% on the Average DSC and 90.78%
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Figure 3. Qualitative results of our proposed CPNet on the Abdomen CT (the first two lines) and MRI (the last two lines) slices.

Figure 4. Qualitative results of our proposed CPNet on the abdomen CT (the first row) and MRI (the second row) volumes.

on the Average NSD, respectively. Specifically, in comparison with
the baseline nnU-Net, our model improves the Average DSC and
NSD by 0.80% and 1.06%, respectively. It demonstrates the effec-
tiveness of introducing semantic relation and geometry priors to im-
prove the segmentation performance. On the other hand, for SOTA
transformer- and Mamba-based models, which aim to learn the im-
plicit long-range contextual dependencies, our model still achieves
0.12% and 0.29% improvement in comparison with U-Mamba on
the Average DSC and NSD, respectively. However, it is worth noting
that our model is built upon the nnU-net with basic 3D convolutional

blocks but no bells and whistles modules, such as the feature pyramid
network (FPN) and its variants, feature fusion with attention mech-
anism, non-local blocks for capturing long-range dependencies, etc.
We believe our model can be further improved by integrating the im-
plicit local-global context information.

Evaluation results on Abdomen MRI dataset. Organ-wise quan-
titative results on the Abdomen MRI dataset are listed in Table 2.
It shows that our model outperforms SOTA methods by achieving
85.10% and 92% w.r.t. the Average DSC and NSD, respectively.
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Similarly, significant improvement can be observed by comparing
CPNet with nnU-Net. Specifically, our model gains 2.01% improve-
ments on DSC and 2.04% on NSD. Moreover, compared to U-
Mamba, our CPNet also shows 0.57% improvement on DSC and
0.79% improvement on NSD. Moreover, the performance improve-
ments in terms of DSC and NSD on the MRI dataset are more signif-
icant than the CT dataset. This may be related to the diversity of the
testing CT data collected from different medical centers. Addition-
ally, experimental results for other metrics, i.e. Jaccard Index, 95%
Hausdorff distance (HD95), and the runtime efficiency, can be found
in the supplementary material [23].

Visual Comparison. To better visualize the multi-organ segmen-
tation results, we present Figure 3 and Figure 4 to illustrate some
qualitative segmentation results w.r.t. 2D (axial plane) and 3D views.
In comparison to the SOTA methods, our proposed model shows
strengths in three aspects: (1) Predicting accurate semantic labels.
For results in Figure 3, the “liver” and “pancreas” are correctly seg-
mented without broken regions. On the contrary, the Transformer-
and Mamba-based models with the capability to capture long-range
context dependencies produce over-segmentation results with intra-
organ holes and outlier tissues. This may be related to invalid rela-
tions between the queries and keys were also picked up and learned
using transformer or SSM blocks. In addition, such implicit long-
range context relations may also be impacted by the noise and cor-
rupt the segmentation results. (2) Recovering the correct geometry. It
can be observed that the shapes of the abdomen organs can be well
preserved and the connectivity and consistency with the anatomi-
cal structure are well-preserved, especially for organs “pancreas”,
“aorta”, “right kidney”, etc. (See Figure 4). (3) Handling medical
data from different data centers and modalities, results in Figure 3
also indicate that our model can achieve better robustness on CT and
MRI modalities in comparison with SOTA methods.

4.4 Ablation Study

Ablation on SRPP module. To analyze the effectiveness of our
SRPP module (Sec.3.3), we used the nnU-Net as the baseline. The
models with and without adding progressive propagation in the SRPP
module are trained for ablation analysis. In addition, we also inves-
tigated the semantic context relation construction strategy w.r.t. dif-
ferent sizes of context scopes. The quantitative results are listed in
Table 3. Specifically, the “SMP” denotes that the SRPP module pro-
gressively injects the predicted semantic relations. In contrast, “SM”
means the counterpart without progressive propagation. “L” and “S”
represent that the GT semantic relations are extracted according to
26- and 6-neighbors, respectively. It can be observed that adding se-
mantic relations, i.e. “+SM-L”, achieves minor improvement on the
CT dataset but realizes a 0.99% improvement in DSC and 0.92% in
NSD on the MRI dataset. In addition, the performance can be further
improved by propagating context semantic relations progressively.
The “+SMP-L” obtains 0.67% improvement in DSC and 0.92% in
NSD on the CT dataset. In addition, it also gains 1.67% improve-
ment in DSC and 1.56% in NSD on the MRI dataset compared with
the baseline. Furthermore, by comparing the results of baseline mod-
els with “L” and “S” settings, it indicates that the larger the number
of connected neighbourhoods, the better the performance.

Ablation on MCPPModule. We further ablated the MCPPmodule by
introducing different combinations of geometry priors, i.e. 3D con-
tour and surface normal. Quantitative results are reported in Table 4.

Table 3. Quantitative results of ablation study on SRPP module.

Abdomen CT Abdomen MRI

DSC(%) NSD(%) DSC(%) NSD(%)

baseline 86.15 89.72 83.09 89.96
baseline+SM-S 86.34 90.19 84.08 90.88
baseline+SM-L 86.78 90.47 84.70 91.38
baseline+SMP-S 86.57 90.23 84.61 91.33
baseline+SMP-L 86.82 90.64 84.76 91.52

Table 4. Quantitative results of ablation study on MCPP module.

Abdomen CT Abdomen MRI

Contour Normal DSC(%) NSD(%) DSC(%) NSD(%)

� � 86.15 89.72 83.09 89.96
� � 86.35 90.11 83.66 90.52
� � 86.47 90.15 83.48 90.60
� � 86.65 90.42 83.91 90.89

Specifically, the nnU-Net trained without any geometry as supervi-
sion is regarded as the baseline model. We evaluated the performance
of models trained by introducing 3D contour and surface normal sep-
arately and jointly. It shows that introducing 3D contour alone as the
geometry prior brings a slight improvement in terms of Average DSC
and NSD on the CT and MRI datasets. In addition, leveraging surface
normal as supervision to recover the geometry achieves better perfor-
mance in comparison with using 3D contour. The reason may be that
the surface normal is derived from the surface point and its neigh-
bours. In comparison to 3D contour, it can be regarded as a more
strict constraint to encourage the model to recover the geometry with
the correct neighbour coordinates. Furthermore, using both 3D con-
tour and surface normal brings significant improvement w.r.t. 0.50%
in DSC and 0.70% in NSD on the CT dataset, 0.70% improvement
in DSC and 0.93% NSD on the MRI dataset, respectively.

5 Conclusions and Future work

In this paper, we proposed a context-prior network, dubbed CPNet,
which aims to recover anatomical organ structure with accurate se-
mantic labels and geometry for multi-organ segmentation. To achieve
this, a Semantic Relation Prior Propagation (SRPP) module is pro-
posed for more accurate semantic prediction by explicitly propagat-
ing semantic relation priors into multi-scale features. Moreover, a
Multi-context Prior Prediction (MCPP) module is presented to re-
cover the correct geometry of organs by using 3D contour and surface
normal. Experimental results on the Abdomen CT and MRI datasets
demonstrate our model can outperform state-of-the-art models, espe-
cially for recovering connectivity and consistency in terms of seman-
tic labels and shapes. In the future, it is worth further investigations
on model variations, such as combining implicit local-global context
feature learning modules and exploring extra anatomical constraints
as regularizers w.r.t. different segmentation tasks.
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