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Abstract. Lane detection is an important yet challenging task in au-
tonomous driving systems. Based on the development of the Visual
Transformer, early Transformer-based lane detection studies have
achieved promising results in some scenarios. However, for complex
road conditions such as uneven illumination intensity and heavy traf-
fic, the performance of these methods remains limited and may even
be worse than that of contemporaneous CNN-based methods. In this
paper, we propose a novel Transformer-based end-to-end network,
called SinLane, that attains the attention weights focusing on the
sparse yet meaningful locations and improves the accuracy of lane
detection in complex environments. SinLane is composed of a novel
Siamese Visual Transformer structure and a novel Feature Pyramid
Network (FPN) structure called Pyramid Feature Integration (PFI).
We utilize the proposed PFI to better integrate global semantics and
finer-scale features and to promote the optimization of the Trans-
former. Moreover, the designed Siamese Visual Transformer is com-
bined with multiple levels of the PFI and is employed to refine the
multi-scale lane line features output from the PFI. Extensive exper-
iments on three benchmark datasets of lane detection demonstrate
that our SinLane achieves state-of-the-art results with high accuracy
and efficiency. Specifically, our SinLane improves the accuracy by
over 3% compared to the current best-performing Transformer-based
method for lane detection on CULane.

1 Introduction

Lane detection is a fundamental task for autonomous driving sys-
tems, which helps vehicles allocate themselves and plan the driving
routes in a real-time state. In recent years, vision-based lane detection
methods have achieved remarkable progress.

Early lane detection studies relied on hand-crafted features to
extract information (e.g., color and texture), and applied methods
like Hough transform [17] and Kalman filter [33] to filter out un-
real or noncontinuous lanes. Afterward, convolutional neural net-
work (CNN) based methods were introduced to the lane detection
task, greatly improving the accuracy of prediction. These methods
either generate segmentation results or regress curves to attain pre-
diction. However, such methods may be ineffective and incapable of
clustering global semantics information and struggle with complex
environments, especially when involving strong light, shadows, and
dense traffic. To deal with these issues, some works introduced soft
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Figure 1: Attention map examples of (a) LSTR [19] and (b) our pro-
posed SinLane. The two models are both trained with the same num-
ber of epochs. The attention weights of LSTR concentrate on the
middle area of the lane lines. On the contrary, the attention weights
of our method are evenly distributed from top to bottom on each line
on the road.

attention-based methods [18] to extract more context information.
However, such methods focus only on the spatial weight of features
and neglect the dependencies among features. Recently, LSTR [19]
employed a Transformer-based architecture, which greatly improved
the speed of prediction, proving that the self-attention mechanism is
quite suitable for the lane detection task.

Although LSTR [19] gained promising results, some issues re-
main. As shown in Fig. 1, its attention weights designed for the slen-
der structures are distributed unevenly in the map. This phenomenon
causes the backbone to down-scale the input image to low-resolution
feature maps when extracting features, which leads to a loss of low-
level information. When the decoder of the Transformer calculates
cross-attention of the detection sequence, the attention coefficient is
required to be computed and optimized on the entire low-resolution
feature maps, giving rise to difficulties for the model learning to fo-
cus on the sparse yet meaningful locations. This also results in taking
a large number of training epochs to attain the relatively ‘proper’ at-
tention weights.

Recently, Feature Pyramid Network (FPN) based methods [16],
fusing multi-scale features through top-down and lateral connectiv-
ity, have achieved great success on several computer vision tasks.
Contemporaneous CNN-based methods (e.g., [38]) often adopt FPN
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structures to obtain multi-scale information. However, according to
previous studies [11], only semantic information from the high-level
feature layer in FPN is considered and passed to the low-level feature
layer, resulting in neglecting the balance of features in multi-levels.
Low-level features that are informative in image texture and seman-
tics are not fully utilized. By and large, effective fusion of low-level
features needs to be further explored.

In this paper, we propose a novel Transformer-based end-to-end
network called SinLane to improve the accuracy of lane detection in
complex environments. SinLane is composed of a novel Siamese Vi-
sual Transformer structure and a novel FPN structure called Pyramid
Feature Integration (PFI). For effective hierarchical information ex-
traction and fusion, inspired by the fusion factors in [11], our PFI is
designed to balance and integrate hierarchical features extracted from
different levels. The PFI promotes our Siamese Visual Transformer
to optimize and regress lane line sequences based on global seman-
tics and finer-scale features. Besides, we develop a novel encoder-
decoder architecture for the Siamese Visual Transformer. The output
sequence of the Transformer is refined by features from each level of
the PFI to fuse high- and low-scale information.

We conduct experiments on three benchmark datasets (CULane
[25], Tusimple [30], and LLAMAS [1]), which show that our model
achieves state-of-the-art results on all the three datasets. Specifically,
it yields over 3% improvement in accuracy compared to the known
best-performing Transformer method [19] for lane detection on CU-
Lane.

Our main contributions are summarized as follows:

• We propose a novel FPN module, Pyramid Feature Integration
(PFI), to fully integrate global semantics and finer-scale features.

• We design a Siamese Visual Transformer to refine multi-scale lane
line features from the PFI.

• We achieve state-of-the-art results on three benchmark datasets,
with over 3% improvement in accuracy compared to best-known
Transformer methods on CULane.

2 Related Works

Early lane detection studies relied on hand-crafted features [6, 23],
resulting in limited feature capturing, and thus were not effective for
lane detection tasks in complex conditions.

To cope with complex environments, deep learning (DL) meth-
ods were introduced to the lane detection task. Segmentation-based
methods [9, 13, 35, 36] were first applied to lane detection, whose
detection outputs were based on per-pixel segmentation maps. Com-
pared to traditional methods, CNN-based methods make it possible
to capture more plentiful visual features and spatial structure infor-
mation, and thus DL-based methods outperform traditional detection
methods. However, per-pixel-based segmentation methods incur high
computational costs have limited real-time capability, and also strug-
gle with learning the long and thin characteristics of lane lines.

To address these issues, LaneNet [24] introduced a branched,
multi-task architecture to cast the lane detection task as an instance
segmentation problem. This method is more robust to variations in
road conditions compared to the previous methods, but it is more
time-consuming. RESA [37] was proposed to aggregate spatial infor-
mation by shifting sliced feature maps, which obtains good real-time
results but still fails under complex road conditions. Furthermore, the
output lane lines of most of the above methods may not be continu-
ous.

To attain more continuous lane lines with higher efficiency, in re-
cent studies, curve-based methods [19, 28, 8, 4] viewed the lane de-

tection task as a polynomial regression problem, and utilized para-
metric curves to fit lane lines. These methods depend heavily on the
parameters of the curves (e.g., x = ay3+by2+cy+d, where (x, y)
denotes the coordinates of a lane line pixel and a, b, c, and d are
the parameters of a curve). PloyLaneNet [28] first proposed an end-
to-end deep polynomial regression method that directly outputs pa-
rameters. To improve the stability and efficiency, BézierLaneNet [8]
proposed a parametric Bézier curve to model the geometric shape of
lane lines. However, even if with high efficiency, limited by the learn-
ing ability of global information, the accuracy of these curve-based
methods is not satisfactory on large datasets, especially in complex
road conditions.

After Transformer was introduced to the computer vision field [7],
it has achieved impressive results in model inference speed as well
as the acquisition of global information. DETR [3] obtained satisfac-
tory results in object detection, which were better than some CNN-
based methods. But, in the area of lane detection, Transformer-based
methods [19, 27] still struggle to produce satisfactory results. The
DETR-based method LSTR [19] is fast in inference but relatively
low in accuracy, especially in some complex road environments. Pri-
orLane [27] improved the accuracy of prediction compared to LSTR
with pre-training and local prior. However, there is still a gap in accu-
racy between the contemporaneous Transformer-based methods and
CNN-based methods.

In the detection tasks, the low-level layers are rich in geometric in-
formation but lack abstract semantic information, but deep layers do
the opposite. For lane detection tasks, the unique long and thin shape
of the lane lines and complex driving scenes pose high demand for
the integration of local and global information. FPN [16] proposes a
top-down feature pyramid architecture to merge low and high-level
features. A bottom-up architecture is proposed in PANet [20] for bet-
ter aggregation from low-level to high-level features. Kong [15] re-
formulates the FPN structure and applies global attention and local
reconfiguration to fuse low-level representations with high-level se-
mantic features. Cao [2] proposes a multi-branch and high-level se-
mantic network to bridge the gap between multi-scale feature maps.
Nas-FPN [10] and BiFPN [29] propose learnable fusion strategies
which improve the effect of feature fusion from multi-scale. How-
ever, all these methods ignore the scale distribution of datasets and
fail to fuse global and local information in complex self-driving
scenes.

3 Method

In this section, we present the overall network architecture, the struc-
tures of Pyramid Feature Integration and Siamese Visual Trans-
former, and the training and inference details.

3.1 Architecture Design

The overall architecture of our SinLane network is shown in Fig. 2.
Since a lane line has distinct structural characteristics, it can be rep-
resented by a series of key points sampled at equal distance along the
y-axis, which can be expressed as:

li = {(x1, y1) , (x2, y2) , . . . , (xN , yN )} . (1)

Though the lane detection task can be viewed as a segmentation
task, by means of key point representations of lane lines, it can be
converted to a sequence prediction task, which has similarities to the
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Figure 2: The overall architecture of our proposed SinLane network. The backbone first extracts multi-scale features from the input image.
PFI is then applied to fully integrate global semantic information and local finer-scale features. Subsequently, Siamese Visual Transformer
(Encoder and Decoder) generates lane sequences. Specifically, e0 is the initial lane sequence, and e1, e2, and e3 denote refined lane sequences
optimized by different scales of feature maps from PFI.
task of object detection. Inspired by DETR [3], we propose an end-
to-end Transformer-based method, SinLane, to generate lane predic-
tions without complex post-processing steps such as Non-maximum
Suppression (NMS) [31]. The main structure of our network can be
divided into four parts, backbone (ResNet or DLA34), neck, head,
and training objective, as follows:

• Backbone. Commonly used backbones such as ResNet, DLA34,
and VGG can be adapted by our method.

• Neck. We propose PFI as the neck of our network to further in-
tegrate global semantic information and finer-scale features, al-
lowing feature maps as input to the Transformer to incorporate
more informative features, thus promoting the optimization of the
Transformer. The output of the neck is top-to-bottom multi-scale
features.

• Head. The head of our network is a Siamese Visual Transformer
structure. It contains four weight-sharing Transformers. The input
of each Transformer is composed of a sequence output from the
former Transformer and specific-scale feature maps from PFI after
flattening. The output of each Transformer is a fixed number of
lane line sequences. Global features of different scales are learned
by Siamese visual encoders and decoders.

• Training objective. The objective of the model can be divided
into two parts: (1) classification and (2) regression. We supervise
the generation of the fixed number of lane lines with the ground-
truth lane lines based on attendance and their properties, respec-
tively.

3.2 Pyramid Feature Integration

We develop PFI to integrate global semantic information and finer-
scale features. Fig. 3 shows the detailed structure of PFI.

3.2.1 Fusion Factor

The traditional FPN structure [16] generates multi-scale features
from high-level to low-level; but, it neglects the integration of fea-
tures in different scales. According to the study in [11], the perfor-
mance of FPN can be affected by two types of factors, (1) the down-
sampling factor and (2) the fusion factors, between adjacent feature

levels. Commonly, the larger the down-sampling factor, the better the
performance of FPN, and the slower the network is. Due to the trade-
off between time efficiency and accuracy, we use a suitable and fixed
value as the proportion of down-sampling. The main focus of this
section is on the fusion factors.

Fusion factors are the scale factors (α ∈ {α0, α1, α2} in Fig. 3)
between the semantic features of adjacent levels, which can be ex-
pressed as:

Pk = fconv1

(
fconv3(P

′
k) + αk−1 × finter(Pk−1)

)
, (2)

where k ∈ {1, 2, 3}, αk−1 is the fusion factor determined by the
input features, Pk is the k-th scale output features integrated by the
fusion factor, P

′
k is the k-th scale output features from the backbone,

fconv1(·) denotes 1× 1 convolution, fconv3(·) represents 3× 3 con-
volution, and finter(·) is 2 × up-sampling.

To obtain suitable fusion factors for the input feature maps, we
utilize a lightweight convolution module to learn the αi’s, which can
be expressed as:

αk−1 = Sigmoid(GAP (fconv3(P
′
k))), (3)

where GAP (·) denotes global average pooling.

3.2.2 Integration Structure

After using the fusion factors to balance the features of adjacent high-
level and low-level, we adopt an integration structure to further fuse
them. For FPN-based information integration, there are some known
methods such as PANet [20] and NAS-FPN [10]. When applied to
the lane detection task, because lane lines in the images are usually
long and thin, balancing global information and finer-scale features
is relatively difficult for these methods.

Thus, we develop a new integration structure to integrate global
semantic information and finer-scale features. First, we reshape the
multi-scale features (which have been balanced by the fusion factors)
to the same scale. Note that the feature shape is an adjustable param-
eter depending on the balance of accuracy and efficiency. Next, we
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Figure 3: The architecture of our proposed PFI. The inputs of PFI are
different scales of feature maps generated by the backbone.
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Figure 4: The main structure of the Siamese Visual Transformer.
average the reshaped features, which can be expressed as:

B
′
=

1

lnum

lnum−1∑
k=0

(Re(Pk)), (4)

where B
′

denotes the output of the integration, lnum represents the
number of scales that need to be integrated, and Re(·) denotes the
reshape function.

To ensure that our PFI is a plug-and-play module and prevent the
loss of multi-scale information from the backbone, we need to re-
store B

′
to multi-scale feature maps. We employ self-attention to

better extract feature information from B
′
, and then down- and up-

sample the output B to M0, . . . , M3, which share the same sizes as
P0, . . . , P3, respectively (see Fig. 3). Our PFI adopts the non-local
method in [32] as the default attention module. Some other methods
(e.g., HANet [5]) can also be supported here, but their lane detection
results might not be as good. The whole process of B′ to M0 −M3

can be expressed as:

Mi = finter(fsa(B
′)) + Pi, (5)

where finter(·) denotes the interpolation operation and fsa(·) is a
self-attention module.

Compared to previous works like PANet [20], our PFI exhibits two
advantages:

(1) It is lightweight and plug-and-play, which can be easily im-
plemented by parallel computation and applied to other tasks and
networks;

(2) it is suitable for tasks that heavily rely on the fusion of global
and local information, such as the lane detection task.

3.3 Siamese Visual Transformer

We propose the Siamese Visual Transformer to extract rich informa-
tion from multi-scale feature maps. Fig. 4 shows the detailed Siamese
Visual Transformer structure. The main structure is made up of four
Siamese Visual Transformers with shared parameters [14].

3.3.1 Object Sequences

Because lane lines are thin, long, and have distinctive structural fea-
tures, we use object sequences (e0, . . . , e3 in Fig. 2) to represent
them, which can help reduce computational costs and is easy to opti-
mize for the Transformer. An object sequence can be expressed as:

ei = {xs, ys, len, θ, o1, o2, . . . , oN}p=pi
, (6)

where ei is the i-th sequence of an input image, (xs, ys) denotes the
starting point of the lane line (the point at the bottom of the lane line),
len is the length of the lane line, θ denotes the starting angle of the
lane line, pi represents the probability that the i-th sequence is a lane
line, and the j-th element in {oj}Nj=1 represents the offset of the j-th
key point on the lane line. The initial object sequence e0 is generated
by embedding and is sequentially refined by multi-scale feature maps
output by PFI through the Transformer.

By supervising the generation of the object sequences using the
ground truth, we can force the output sequences to correspond to the
actual lanes in the image one by one, so as to realize the detection of
the lane lines.

3.3.2 Transformer Encoder

We divide the input feature maps from PFI into patches to reduce the
burden of the Transformer calculation. The 3-D patches are then flat-
tened to 2-D sequences with positional embeddings added. Different
from the traditional Transformer encoder, we utilize a Siamese struc-
ture to enable the Transformer to learn richer multi-scale information
with shared parameters. Specifically, we apply attention between the
sequences from the input feature maps and those from the output of
the upper-level Transformer (or the pre-generated sequence e0) in-
stead of the original self-attention. This process can be expressed as:

ei = Softmax

(
ei−1m

T
i√

di

)
mi + ei−1, (7)

where mi is the i-th flattened sequence with positional embeddings
and di is the length of the sequence.

After the attention mechanism, a feed-forward network is used to
obtain features that are nonlinear.

3.3.3 Transformer Decoder

We take the traditional Transformer decoder as our Transformer
decoder, which utilizes multi-head self-attention mechanisms. The
feed-forward network is made up of two fully connected layers: One
is for generating the probability that the sequence is a lane line, and
the other is for computing structural information about the lane line
(see Eq. (6)).
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Dataset Train Val Test Scene
CULane 88880 9675 34680 Urban & Highway
Tusimple 3268 358 2782 Highway
LLAMAS 58269 20844 20929 Highway

Table 1: Detailed description of the three datasets we use.

3.4 Training and Inference Details

3.4.1 Training Objective

The training objective can be divided into two parts: (1) the accuracy
of the classification, and (2) the overlap of the prediction and ground
truth. The objective of the classification accuracy can be described
as:

�cls =
L∑

i=1

L (pi, gi) , (8)

where L(·, ·) denotes the cross-entropy loss and L is the number of
sequences. If the predicted lane line matches the ground truth, then
gi = 1 (0 otherwise).

The degree of overlap between the predicted lane line and ground
truth can be evaluated in two aspects: the Euclidean distance between
their starting points and the horizontal distance between their corre-
sponding key points. The overlap objective can be written as follows:

�reg =
L∑

i=1

(∥∥∥Ŝi − Si

∥∥∥
2
+

λdis

N

N∑
j=1

|ŷij − yij |
)
, (9)

where Ŝi is the starting point of the predicted lane line, Si is the
starting point of the ground truth, ‖ · ‖2 is L2-norm, and λdis is an
objective coefficient.

The training objective function is a weighted sum of the two ob-
jectives, which can be defined as:

� = λcls�cls + λreg�reg, (10)

where λcls and λreg are two hyper-parameters for balancing the im-
portance of the two objectives.

In particular, we compute the objective function � after each de-
coder. The final objective function is the sum of lnum objective func-
tions from each refined sequence (e0, . . . , e3 in Fig. 2). In this way,
more lane line information can be obtained for optimization.

3.4.2 Inference Details

Our method generates a fixed number of sequences corresponding to
lane lines in the input image. Our method is an NMS-free method,
and we use a one-to-one assignment during the inference stage.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of our proposed SinLane method, we
conduct experiments on three well-known public datasets: CULane
[25], Tusimple [30], and LLAMAS [1]. CULane is a widely-used
large dataset for lane detection including eight hard-to-detect scenar-
ios in urban areas and on highways. Tusimple is also a widely-used
dataset with images collected on US highways under clear weather.
LLAMAS is a recently released dataset captured on highways, with
unsupervised labels generated by high-definition maps. Details of
these datasets are given in Table 1.

4.2 Evaluation Metrics

For CULane [25] and LLAMAS [1], we adopt the F1-measure pro-
posed by SCNN [25] as the evaluation metric. Intersection-over-
Union (IoU) between the ground truth (GT) label and the predicted
lane line of the model is calculated to determine whether a sample is
True Positive (TP), False Positive (FP), or False Negative (FN). The
IoU and F1-measure are calculated as in the following formulas:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (11)

IoU =
Intersection

Union
, (12)

F1 =
2× Precision×Recall

Precision+Recall
. (13)

For Tusimple [30], the evaluation metrics are composed of three
official indicators: accuracy, False Positive Rate (FPR), and False
Negative Rate (FNR). The accuracy is calculated as:

Accuracy =

∑
clip Cclip∑
clip Sclip

, (14)

where Cclip is the number of correct points and Sclip is the number
of ground truth (GT) points in an input image. If the accuracy of
a predicted lane is greater than 85%, it will be considered a True
Positive (TP). The F1 score is also used in the evaluation.

4.3 Implementation Details

In the experiments, we adopt ResNet and DLA34 as the backbones
for our model. For all the proposed models, the number of multi-
scale layers is set to 4, and the number lnum of scales that need to
be integrated is set to 4. For the object sequences, the number N of
key points is set to 72, and the number of lane lines is set to 192.
In terms of training objective calculation, the objective coefficients
λdis, λcls, and λreg are set to 0.5, 2.0, and 1.0, respectively. For data
augmentation, we adopt the affine transformation method (horizon-
tal flip, rotation), and brightness and saturation addition method. All
input images are resized to 800×320 pixels for both the training and
testing stages. In the optimizing process, we adopt AdamW [22] and
the cosine decay learning rate strategy [21] with the initial learning
rate set to 6e-4. All the experiments are conducted on a machine with
an NVIDIA RTX3090 GPU with 24GB memory.

4.4 Results

Results on CULane. We compare the results of recent known meth-
ods and our method on the CULane dataset, shown in Table 2. In
terms of the total F1 score, our method achieves state-of-the-art re-
sults and yields big improvement compared to previous Transformer-
based methods (see the middle section of Table 2). Among all the dif-
ficult scenarios, our “Hlight” result is over 8% higher than that of the
best-known Transformer-based method, demonstrating that our pro-
posed network can adapt well to complex environments. Compared
with CLRNet, our SinLane performs better under complex road con-
ditions such as “Hlight" and “Night".

Fig. 5 shows some visual results of several known methods and
our proposed method. LSTR is an open-source Transformer-based
method and CLRNet is the second-best-performing method on CU-
Lane. When road signs are missing or unclear, LSTR and CLRNet
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Method Backbone Total Normal Crowded Hlight Shadow Noline Arrow Curve Cross Night FPS(↑) GFlops(↓)
SCNN [25] VGG16 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5 328.4
UFLD [26] ResNet18 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 341 8.4
UFLD [26] ResNet34 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 184 -
RESA [37] ResNet34 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 51 -
RESA [37] ResNet50 75.30 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90 39 -
ADNet [34] ResNet18 77.56 91.92 75.81 69.39 76.21 51.75 87.71 68.84 1133 72.33 87 -
ADNet [34] ResNet34 78.94 92.90 77.45 71.71 79.11 52.89 89.90 70.64 1499 74.78 77 -
CondLane [18] ResNet18 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 201 10.2
CondLane [18] ResNet101 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 56 44.8
CLRNet [38] ResNet18 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11 203 11.9
CLRNet [38] ResNet101 80.13 93.85 78.78 72.49 82.33 54.48 89.79 75.57 1262 75.51 115 42.9
CLRNet [38] DLA34 80.47 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37 131 18.5
LSTR [19] ResNet18 68.72 86.78 67.34 56.63 59.82 40.10 78.66 56.64 1166 59.92 126 2.9

Laneformer [12] ResNet18 71.71 88.60 69.02 64.07 65.02 45.00 81.55 60.46 25 64.76 - -
Laneformer [12] ResNet34 74.70 90.74 72.31 69.12 71.57 47.37 85.07 65.90 26 67.77 - -
Laneformer [12] ResNet50 77.06 91.77 75.41 70.17 75.75 48.73 87.65 66.33 19 71.04 - -
PriorLane [27] ResNet18 76.27 92.36 73.86 68.26 78.13 49.60 88.59 73.94 2688 70.26 - -
SinLane ResNet18 79.90 93.48 78.31 75.96 81.02 53.44 90.56 73.00 1084 75.41 225 14.2
SinLane ResNet34 80.13 93.98 78.72 72.65 81.76 53.94 90.10 75.94 1185 75.41 173 23.6
SinLane DLA34 80.68 93.90 79.45 75.89 81.59 54.19 90.51 76.01 1143 75.98 160 20.8

Table 2: Comparison results of recent methods and our method on the CULane dataset. In order to compare the computation speeds in the same
environment, we remeasure FPS on the same machine with an RTX3090 GPU using open-source code (if code is available).

Method Backbone F1 Acc FP FN
SCNN VGG16 95.97 96.53 6.17 1.80

RESA ResNet34 96.93 96.82 3.63 2.48
UFLD ResNet18 87.87 95.82 19.05 3.92
UFLD ResNet34 88.02 95.86 18.91 3.75
PolyLaneNet EfficientNetB0 90.62 93.36 9.42 9.33
LaneATT ResNet18 96.71 95.57 3.56 3.01
LaneATT ResNet122 96.06 96.10 5.64 2.17
ADNet ResNet18 96.90 96.23 2.91 3.29
ADNet ResNet34 97.31 96.60 2.83 2.53
CLRNet ResNet18 97.41 96.84 2.28 1.92
CLRNet ResNet101 97.68 96.83 2.37 2.38
LSTR ResNet18 96.84 96.18 2.91 3.38
Laneformer ResNet18 97.30 96.54 4.35 2.36
Laneformer ResNet34 97.41 96.56 5.39 3.37
Laneformer ResNet50 97.56 96.80 5.60 1.99
PriorLane ResNet18 97.15 96.58 3.91 2.95
SinLane ResNet18 97.93 96.81 2.03 2.11
SinLane ResNet34 97.74 96.81 2.18 2.34
SinLane ResNet101 97.92 96.77 1.76 2.40
SinLane DLA34 97.55 96.94 3.03 1.85

Table 3: Comparison results on the Tusimple dataset.

Method Backbone F1@50 F1@75 GFlops
LaneATT ResNet18 94.64 82.36 9.3

LaneATT ResNet34 94.96 82.79 18.0
LaneATT ResNet122 95.17 84.01 70.5
LaneAF DLA34 96.90 84.71 23.6
CLRNet ResNet18 96.96 85.59 11.9
CLRNet DLA34 97.16 85.33 18.5
SinLane ResNet18 96.75 84.57 14.0
SinLane DLA34 97.07 85.80 20.7

Table 4: Comparison results on the LLAMAS dataset.

both struggle to capture lane lines. When the lane lines are blocked
by vehicles or pedestrians, CLRNet is unable to recognize lane lines.
Furthermore, these two methods are sensitive to light. Our method
performs stably both in complex road conditions and at night, show-
ing the robustness of our model.
Results on Tusimple. Comparison results of recent methods and our
method on the Tusimple dataset are given in Table 3. The dataset con-
sists of images captured in different weather conditions. Our method
achieves state-of-the-art results in F1 score, Accuracy, and False
Negative Rate (FN), demonstrating that our method can be adapted
to both complex urban environments and simple highway scenarios.

PFI Encoder Decoder F1 score
68.40

� 75.63 (+7.23)
� � 78.94 (+10.54)
� � 77.78 (+9.38)

� � 78.99 (+10.59)
� � � 79.90 (+11.50)

Table 5: Results of the overall ablation study on the CULane dataset
with the same backbone ResNet18.
Note that because the dataset was collected on US highways where
the road conditions are relatively simple (lane features are obvious
and clear), the results of various methods are close.
Results on LLAMAS. Comparison results of recent methods and
our method on the LLAMAS dataset are shown in Table 4. Our Sin-
Lane performs well and achieves state-of-the-art results in F1@75
score, and it achieves the second-best in F1@50 score. Due to the
simplicity of the LLAMAS dataset (on highways), the results of var-
ious methods are close.

4.5 Ablation Study

To examine the effects of different modules in our method, we con-
duct ablation experiments.

4.5.1 Overall Ablation Study

To verify the role of each module in our proposed method, we carry
out overall ablation experiments with the same baseline UFLD [26].
The results of the experiments are shown in Table 5. Our proposed
PFI can greatly improve the accuracy of the detection of lane lines,
which improves the F1 score from 68.40% to 75.63% with a 7.23%
increase. Moreover, the Encoder module and the Decoder module
further improve the F1 score by 3.31% and 2.15%, respectively. The
combination of the Encoder and Decoder further improves the de-
tection results by 0.96%, which achieves state-of-the-art results on
CULane with ResNet18 as the backbone.

4.5.2 Ablation Study on Pyramid Feature Integration

Compared to the traditional FPN, our PFI can balance finer-scale
features and global semantics for better prediction of lane lines.
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Figure 5: Visualization results of ground truth (GT), LSTR [19], CLRNet [38], and our SinLane method on the benchmark dataset CULane
[25]. The results are generated using the same backbone ResNet18.
As a plug-to-play module, it can be applied to other networks eas-
ily. As shown in Table 6, we add our PFI to ConaLaneNet and
CLRNet, which are curve-based methods. When PFI is added to
ConaLaneNet and CLRNet, the total F1 scores increase consider-
ably, which demonstrates the effectiveness of our proposed PFI mod-
ule. In particular, the F1 scores of “Hlight”, “Shadow”, “Curve”, and
“Night” show great improvements, proving that our PFI can combine
finer-scale features and global semantics to detect lanes in a better
manner under complex scenarios.

Method Neck Total Normal Crowded Hlight Shadow

CondLane
FPN 78.07 92.31 76.7 71.09 76.62
PFI 78.36 92.74 76.81 71.69 78.54

(+0.29) (+0.43) (+0.11) (+0.60) (+1.92)

CLRNet
FPN 79.36 93.18 77.69 73.62 80.73
PFI 79.66 93.45 78.50 74.29 81.42

(+0.30) (+0.27) (+0.81) (+0.67) (+0.69)

SinLane (ours)

FPN 79.56 93.44 78.09 73.5 78.49
PFI 79.90 93.48 78.31 75.96 81.02

(+0.34) (+0.04) (+0.22) (+2.46) (+2.71)
Method Neck Noline Arrow Curve Cross Night

CondLane
FPN 51.14 88.67 67.95 1137 72.82
PFI 52.04 89.08 70.15 1303 73.01

(+0.90) (+0.41) (+2.2) (+166) (+0.19)

CLRNet
FPN 52.22 90.18 67.87 1101 74.93
PFI 52.95 90.3 69.81 1263 75.54

(+0.73) (+0.12) (+1.94) (+162) (+0.61)

SinLane (ours)

FPN 52.83 90.17 69.32 1033 74.82
PFI 53.44 90.56 73.00 1084 75.41

(+0.61) (+0.39) (+3.68) (+51) (+0.59)

Table 6: Results of the ablation study on PFI. The configurations of
ConaLaneNet and CLRNet are the same as the original code pro-
vided by the authors with the same backbone ResNet18 except for
the neck of the network.

4.5.3 Ablation Study on Siamese Visual Transformer

The main difference between our proposed network and the previ-
ous Transformer-based networks is that we propose Siamese Visual
Transformer. To promote the optimization of Transformers, previous
studies (e.g., Deformable DETR [39]) utilized multi-scale features.
But, they only concatenated feature maps in different scales to in-
tegrate multi-scale features. In the process of concatenation, due to
the different sizes of feature maps, some high-scale features can be
lost, resulting in a loss of multi-scale features. Our proposed Siamese
Visual Transformer structure can refine the output sequence from
high-level to low-level, which can better utilize features in different
scales with different sizes. We conduct ablation studies on CULane to

PFI Integration method F1 score
- - 72.53
� - 68.54
� 3-D concat at PFI 73.38
� 2-D concat before Encoder 74.68
� 2-D concat after Decoder 75.01
� Siamese Visual Transformer 79.90

Table 7: Results of the ablation study on Siamese Visual Transformer
on the CULane dataset with the same backbone ResNet18.
evaluate the efficiency of Siamese Visual Transformer with the same
backbone ResNet18. The results are shown in Table 7. Not using the
Integration method means that a particular scale feature map output
from PFI is directly fed into the Transformer. “3-D concat at PFI" de-
notes that multi-scale feature maps output from PFI are spliced into
a tensor and then fed into the Transformer. “2-D concat before En-
coder" denotes that the flattened multi-scale feature maps are spliced
into a sequence and then perform self-attention in the process of the
encoder. “2-D concat after Decoder" denotes that the flattened multi-
scale feature maps use self-attention in the process of the encoder
respectively and are spliced after the Transformer, which is similar
to Deformable DETR [39]. As can be seen from Table 7, our method
yields the best results among the above methods, demonstrating the
effectiveness of our proposed Siamese Visual Transformer structure
compared to those Transformer-based networks utilizing concatena-
tion for feature integration.

5 Conclusions

In this paper, we proposed a novel Transformer-based end-to-end
network, called SinLane, for lane line detection. SinLane is com-
posed of a novel Siamese Visual Transformer structure and a novel
FPN structure called Pyramid Feature Integration (PFI). We showed
that our proposed PFI can effectively integrate global semantics
and finer-scale features and promote the optimization of the Trans-
former. Moreover, the designed Siamese Visual Transformer refines
multi-scale lane line features output from our PFI. We evaluated
our proposed method on three benchmark datasets, CULane, Tusim-
ple, and LLAMAS. Experimental results demonstrated that our pro-
posed SinLane achieved state-of-the-art results and improved the ac-
curacy of lane line detection in complex environments. Specifically,
it improved the accuracy by over 3% compared to the known best-
performing Transformer-based method for lane line detection on the
CULane dataset.
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