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Abstract. The transformer model has gained widespread adop-
tion in computer vision tasks in recent times. However, due to the
quadratic time and memory complexity of self-attention, which is
proportional to the number of input tokens, most existing Vision
Transformers (ViTs) encounter challenges in achieving efficient per-
formance in practical industrial deployment scenarios, such as Ten-
sorRT and CoreML, where traditional CNNs excel. Although some
recent attempts have been made to design CNN-Transformer hybrid
architectures to tackle this problem, their overall performance has
not met expectations. To tackle these challenges, we propose an effi-
cient hybrid ViT architecture named FMViT. This approach enhances
the model’s expressive power by blending high-frequency features
and low-frequency features with varying frequencies, enabling it to
capture both local and global information effectively. Additionally,
we introduce deploy-friendly mechanisms such as Multiple groups
of MLP (gMLP) Reparameterization, Lightweight Multi-head Self-
Attention (RLMHSA), and Convolutional Fusion Block (CFB) to
further improve the model’s performance and reduce computational
overhead. Our experiments demonstrate that FMViT surpasses exist-
ing CNNs, ViTs, and CNN-Transformer hybrid architectures in terms
of latency/accuracy trade-offs for various vision tasks. On the Ten-
sorRT platform, FMVIiT outperforms Resnet101 by 2.5% (83.3% vs.
80.8%) in top-1 accuracy on the ImageNet dataset while maintain-
ing similar inference latency. Moreover, FMVIiT achieves compara-
ble performance with EfficientNet-BS but with a 43% improvement
in inference speed. On CoreML, FMViT outperforms MobileOne by
2.6% in top-1 accuracy on the ImageNet dataset, with inference la-
tency comparable to MobileOne (78.5% vs. 75.9%).

1 Introduction

Vision Transformers (ViTs) have recently succeeded in various com-
puter vision applications such as image classification, object detec-
tion, and semantic segmentation and have received extensive atten-
tion from industry and academia. Despite this, Convolutional Neu-
ral Networks (CNNs) remain the preferred choice for real-world vi-
sion tasks, primarily because ViTs typically exhibit slower perfor-
mance than traditional CNNs, such as ResNets. The inference speed
of Transformer models is constrained by elements such as the Multi-
head Self-attention (MHSA) mechanism, non-fusible LayerNorm,
and GELU layers, along with frequent memory accesses.

Numerous endeavors have been undertaken to liberate Vits from
the high-latency issue. For instance, models such as Swin [22], Pool-
Former [37], Reformer [16], Max ViT [34], SepViT [18], and Mobile-
ViT [26], among others, strive to develop spatial attention methods
that are more efficient and mitigate the quadratic surge in computa-
tional complexity of MHSA. Concurrently, other initiatives, includ-
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Figure 1. Speed-performance(classification accuracy with Top-1) trade-off
on ImageNet1K

ing EfficientFormer [20] and MobileViT, are exploring ways to con-
struct CNN-Transformer hybrid architectures that balance accuracy
and latency. This is achieved by integrating effective convolutional
blocks with potent Transformer blocks. Notably, most of the current
state-of-the-art (SOTA) models are designed as CNN-Transformer
hybrids. These models predominantly utilize convolutional blocks in
the preliminary stages and reserve the stacking of Transformer blocks
for the final stages.

Presently, neither the Convolutional Block nor the Transformer
Block can simultaneously achieve efficiency and performance in ex-
isting works. Although the precision-latency tradeoff has improved
over the years, the overall performance of modern hybrid systems
still needs to improve. This study introduces four critical compo-
nents for designing effective vision Transformer networks to ad-
dress these challenges. Firstly, inspired by NextViT’s [17] mix-
ing of high-frequency features and low-frequency features, a po-
tent Multi-Frequency Fusion Block (FMB) is introduced, amalga-
mating multiple high-frequency and low-frequency features to en-
hance the model’s information flow and expressive capacity. Sec-
ondly, a Lightweight Convolution Fusion Block (CFB) is proposed
to efficiently blend the local modeling capability of convolution with
convolution multi-group reparameterization, further bolstering mod-
eling performance. Thirdly, convolutional multi-group reparameteri-
zation is suggested. It integrates the spatial information of different
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subchannels during the training phase. It fuses them into a convo-
lution in the inference phase, improving the model’s accuracy while
maintaining the inference speed. Lastly, a lightweight self-attention
block, termed RLMHSA, is developed. It employs a lightweight and
reparameterized design to augment the modeling ability and expedite
the inference stage.

A CNN-Transformer hybrid architecture, FMVIT, is introduced
based on the above methods. Analogous to NextViT [17], the use
of TensorRT and CoreML signifies real deployed architectures in
server-side and mobile devices, respectively, with their inference la-
tency representing the actual time consumption in the industry. As
depicted in Figure 1, FMViT achieves an optimal balance between
delay and accuracy in the ImageNet-1K classification task. On Ten-
sorRT, FMViT surpasses Resnetl01 by 2.5% in top-1 accuracy on
the ImageNet dataset, maintaining a comparable inference latency.
Concurrently, it exhibits performance on par with EfficientNet-B5,
enhancing the inference speed by 43%. On CoreML, the top-1 ac-
curacy on the ImageNet dataset exceeds MobileOne by 2.6% while
maintaining a similar inference latency.

Our major contributions are outlined below:

e An efficient Multi-Frequency Fusion Block (FMB) is proposed to
combine multiple sets of high-frequency and low-frequency fea-
tures, enhance the information flow of the model, and enhance the
expression ability of the model.

e Proposes a lightweight Convolutional Fusion Block (CFB), which
efficiently blends the local modeling capabilities of Convolutions
and uses convolutional multi-group reparameterization to further
provide modeling performance.

e Convolutional multi-group reparameterization is proposed, which
fuses the spatial information of different subchannels in the train-
ing stage and fuses it into a convolution in the inference stage, so
as to improve the accuracy of the model while the inference speed
is unchanged.

e Multiple groups of Multilayer Perceptron Layer (gMLP) blocks
were proposed to fuse global signals and local information to en-
hance the expression ability of the model.

e Proposes a Lightweight Self-Attention Block (RLMHSA), which
adopts a lightweight and reparameterized design, enhances the
global modeling ability of the module, and improves the speed
of the inference stage.

2 Related Work
2.1 Convolutional Networks

Convolutional Neural Networks (CNNs) have been the de facto vi-
sion architecture standard for various computer vision applications,
such as semantic segmentation, object identification, and image clas-
sification, since 2012. ResNet [8] uses residual connections to stop
the network from deteriorating and keep the network deep and able
to capture high-level abstractions. On the other hand, DenseNet [12]
promotes the concatenation of feature maps and the reuse of fea-
tures. Convolution is introduced point-wise and depth-wise by Mo-
bileNets [29] to create models with less memory usage and quicker
response times. By using group point-wise convolution and channel
shuffling, ShuffleNet [40] substantially lowers computing expenses.
According to ShuffleNetv2 [25], network architecture design should
prioritize direct metrics, such as speed, over indirect metrics, like
FLOPs. ConvNeXt [23] explores the structure of vision Transform-
ers and proposes a pure CNN model that, while retaining the sim-
plicity and efficiency of traditional CNNs, can effectively compete

with state-of-the-art hierarchical vision Transformers across a range
of computer vision benchmarks.

2.2 Vision Transformers

The concept of the Transformer was initially introduced in the field
of natural language processing (NLP). ViT [7], in implementing self-
attention, segments the image into patches and treats these patches
as words, thereby demonstrating the Transformer’s efficacy in var-
ious vision-related tasks. The teacher-student method proposed by
DeiT [33] is designed explicitly for Transformers. T2T-ViT [38] in-
troduces a unique token-to-token process to progressively tokenize
images into tokens and aggregate them structurally. The Swin Trans-
former introduces a universal backbone that constructs hierarchical
features with a computational cost linearly proportional to the image
size. Meanwhile, PiT [11] incorporates a pooling layer into ViT and
conducts experiments to validate its efficacy.

2.3 Hybrid Models

Recent studies indicate that a hybrid design [20, 30, 26], integrating
both convolution and Transformer, effectively leverages the strengths
of both architectures. BoTNet [30] employs global self-attention to
supplant the spatial convolutions of the final three bottleneck blocks
in ResNet. Concurrently, lightweight and efficient ViTs, such as Mo-
bileViT [26] and MobileViTv2 [27], have been introduced for mo-
bile devices. The fusion of Mobile-Former [2] with the proposed
lightweight cross-attention model enhances computational efficiency
and boosts representational power. EfficientFormer [20] and Effi-
cientFormerV2 [19] adhere to size-consistent designs, seamlessly
employing hardware-friendly 4D MetaBlocks and potent 3D MHSA
blocks for joint size and speed search via NAS. ToMe [1] presents
a ViT model that accelerates without training. BiFormer establishes
an efficient pyramid network architecture through bidirectional atten-
tion routing. NextViT [17] captures one high-frequency feature and
one low-frequency feature in the network separately, which are then
blended to enhance the modeling capabilities of the model.

2.4 Structural Reparameterization

Reparameterization employs complex modules to enhance model
performance during the training phase. It consolidates these com-
plex modules into simpler ones during the inference phase, follow-
ing the linear principle of the convolution operator. This process aims
to boost the model’s inference speed without compromising perfor-
mance. ACNet [3] pioneered reparameterization to merge 3x3 con-
volutions into a 1x1 convolution, while RepVGG [6] applied repa-
rameterization to skip connections, thereby reducing memory access
costs. DBB [4] further expanded upon six prevalent reparameteri-
zation methods. The concept of linear training time overparameter-
ization was introduced to augment the power of such models [13].
MobileOne [35] employs over-parameterization to enhance the per-
formance of vision converters for mobile devices.

3 Methods

This section introduces the proposed FMViT architecture, followed
by a discussion and analysis of its key designs. These include
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the Convolutional Fusion Block (CFB), the Multi-Frequency Fu-
sion Block (FMB), the Lightweight Multi-head Attention Mod-
ule (RLMHSA), the Convolutional Multi-group Reparameteriza-
tion method (gMLP), and the MLP module constructed using this
method.

3.1 Overview

Figure 2 illustrates the comprehensive FMViT architecture. FMViT
utilizes a conventional pyramidal structure, with each stage com-
prising a downsampling module and a Convolutional Fusion Block
(CFB) with convolution only or a Multi-Frequency Fusion Block
(FMB) with transformers. The stem reduces the spatial resolution
to a quarter of the original input image, and each subsequent stage
progressively halves the spatial resolution while incrementally in-
creasing the number of channels. We explore the information in-
teraction module and, inspired by MetaFormer [37], introduce the
Convolutional Fusion Block (CFB) to address short-range data de-
pendencies. A Multi-Frequency Fusion Block (FMB) is proposed
to further fuse local and global data by decomposing multiple fre-
quency bands. This multi-channel frequency fusion enhances the
model’s capacity for modeling. To decrease the computational com-
plexity of Multi-head Attention (MHSA), we propose a lightweight
RLMHSA module. The model’s inference speed is improved without
significantly compromising accuracy through parameter sharing and
re-parameterization. These core modules develop a series of CNN-
Transformer hybrid architectures that achieve an optimal balance be-
tween accuracy and latency on mobile-side CPUs and server-side
GPUs, surpassing the state-of-the-art model.

3.2 Convolutional multi-group reparameterization

The 1x1 convolution is a linear fusion or channel conversion mecha-
nism with global modeling capacity. The translation invariance char-
acteristic of the kxk convolution is utilized to depict local space. The
lack of local modeling between specific neighboring channel features
limits ungrouped convolution operators’ efficient information fusion
capabilities. During the training phase, we suggest group reparame-
terization of kxk convolutions, initially defining the convolution op-
eration as CONV (K}, K,,G), where K}, and K, represent the con-
volution kernel sizes, and G denotes the convolution group size.

Assuming that the original convolution is defined as CONVA =
CONV (K}, Ky, G), during the training phase, multiple convolu-
tions with diverse group sizes are connected in parallel:

N
CONVB =CONVA+ Z CONV (Kpi, Kwi,Gi) (1)
i=1
Where Vi € N,G; >= G, Kp; <= Kp, Kwi <= Ky,and Nis a
predefined constant.

Figure 3 illustrates the reparameterization of CONVB into
CONVA during the inference phase. Any CONV(Kp;, Kuwi, Gi)
convolution is equivalent to the sparse CONV(K},, K., G) convolu-
tion, signifying that the weight of the dotted line in the figure remains
at a constant zero, while the other weights are unchanged. Based
on additivity [4], the inference stage for two convolutions with the
same number of groups can be reparameterized as the convolution
CONVA, as depicted in the lower portion of Figure 3. Here, the left
side represents the training stage, and the right side represents the
inference stage, both of which are equivalent. Convolutional multi-
group reparameterization enhances model performance without af-
fecting the primary model’s inference time.

RepMLP [5] proposes the reparameterization of the multilayer
perceptron (MLP). RepMLP employs convKxK for fusion into
FC, but its weight conversion is sparse, and the parameters post-
conversion become KxK times the original, rendering it unsuitable
for lightweight scenarios. In the Transformer, MLPs significantly
contribute to performance due to their global modeling capabilities.
However, the absence of local modeling capability restricts its po-
tential. To aid the original convolutions in grouping modeling of lo-
cal channels, multiple parallel convlxl convolutions with G’ > 1
are introduced to the two original CONV(1,1,1) convolutions, recon-
structing the MLP module. This approach concurrently focuses on
information from different representation subspaces at various loca-
tions for efficient local representation learning.

N
CONV'X(1,1,1) = CONVX(1,1,1) + Y _ CONV(1,1,G;)

i=1

@)
In this context, X=1 or X=2 signifies either CONV1 or CONV2.
CONV1 and CONV?2 represent the two pre-reparameterized convo-
Iutions of the MLP, while the post-reparameterized convolutions of
the MLP are also denoted as CONV' 1 and CONV' 2.

To enhance the hybrid modeling of global and local aspects in
MLP, a depthwise convolution is incorporated between the two
convlxls. A shortcut connection ensures that the global and local
information flows do not interfere, and the added depthwise convolu-
tion is reparameterized. Experimental results indicate that augment-
ing the depthwise convolution capacity for local information fusion
enhances MLP performance by 1.96% on Imagenetlk.

3.3 Convolutional Fusion Block(CFB)

Transformer blocks have demonstrated significant results across vari-
ous vision tasks, with the attention-based token mixer module and the
MetaFormer [37] paradigm underscoring their inherent advantages.
However, the inference speed of Transformer blocks could be more
efficient, particularly on mobile devices where the performance of
multi-head attention, LayerNorm, and GELU calculations is subopti-
mal. We have demonstrated the success of the MetaFormer paradigm
and, building upon it, propose an efficient CFB module that exclu-
sively employs depthwise separable convolutions (DWConv) as the
token mixer. CFB maintains the deployment advantage of the Bot-
tleNeck block while achieving comparable performance to a Trans-
former block, as depicted in Figure 2. The CFB is constructed using
DWConv and MLP, adhering to the general MetaFormer design. CFB
ensures performance while significantly improving inference deploy-
ment performance. Additionally, reparameterization is implemented
during training to enhance further CFB’s performance, where DW-
Conv utilizes a standard, widely-used reparameterization. The MLP
employs the convolutional multigroup reparameterization proposed
in this work.

3.4  Multi-frequency Fusion Block(FMB)

While CFB has effectively learned local representation, the press-
ing need to handle global information collection remains. Trans-
former blocks capture low-frequency signals, providing global infor-
mation such as shape and structure. Existing research indicates that
Transformer blocks may partially diminish high-frequency informa-
tion, including local texture details. To extract more fundamental and
unique features, signals from various frequency bands must be metic-
ulously integrated, as they are crucial to the human visual system.
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Figure 2. The figure shows the overall structure of FMViT. It mainly includes the Convolutional Fusion Block (CFB), the Multi-Frequency Fusion Block
(FMB), the lightweight Multi-head Attention Module (RLMHSA), and the parameterized Multi-layer Perceptron Module (gMLP).

be efficiently computed, especially on mobile devices, with minimal
performance loss due to their speed-friendly nature.

High-frequency signals provide local information, which is in-
tegral to preserving the completeness of the information. Distinct
frequency features contribute unique information, rendering high-

FMB can gather and integrate multi-frequency information
within a lightweight framework, thereby significantly enhancing the
model’s performance compared to the traditional pure Transformer

frequency signals vulnerable to degradation by the Transformer
module.

Block. The amalgamation of various high-frequency characteristics

with low-frequency features could enhance the model’s informa-
tion flow and expressive capacity, drawing inspiration from infor- :

mation distillation and frequency mixing in image super-resolution WE‘ F/D 7 - -\E(D o D//IL:,IF
[14]. As illustrated in Figure 2, the CFB module initially captures L \ﬁ/ 5] o
high-frequency features, subsequently outputting three sets of high-

frequency features at different frequencies. Patch embedding fusion
is then employed to splice the output of the lightweight multi-head
attention module, creating a signal with both high and low frequen-
cies. Through MLP layers, more fundamental and pronounced traits

are extracted. The following formula can be expressed as follows: Figure 3. Top: A schematic depiction illustrating the notion of

convolutional multi-group reparameterization, CONV(K},;, Ky i, Gi) is
comparable to sparse CONV (K}, Ky, G). Bottom: By reparameterizing

numerous groups of convolutions in the training phase, different groups of
convolutions in the training phase are equal to a single convolution in the

2= fi(a' )
22 = fa(21)
23 = f3(z2) inference phase.
za = fa(zs)
z=CONCAT (2", 21, 20, 23, z4) 3.5 Lightweight Multi-head Self-Attention (RLMHSA)
z' =2+ MLP(z) The computational demand of the Transformer is proportional to the
square of the input token dimension, making it computationally in-
tensive when dealing with large input dimensions. Despite its rel-

atively small number of parameters, the inference time on mobile

Here, '~ is defined as the input of the (I — 1)th block, while !
signifies the output of the Ith block. CONCAT refers to the CAT

join operation. fi—f3 represent high-pass filters that generate differ-
ent high-frequency signals, as exemplified by CFB. fy is the low-
pass filter that produces the low-frequency signal, as demonstrated

by RLMHSA.
Unlike LN and GELU, FMB consistently employs BN and ReLU
as the effective norm and activation layers [17]. These operators can

devices, for instance, is extensive, necessitating a more lightweight
design for the self-attention module. ViT-LSLA [10] substitutes the
Key (K) and Value (V) of self-attention with the original input (X)
to achieve a lightweight self-attention structure. As depicted in Fig-
ure 2, we propose a lightweight multi-head self-attention method that
shares parameters and then applies reparameterization in this study.
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The original MSA is defined as follows:
Atten(Q, K, V) = Softmax(QKT)V 3)

Where Q = XWy, K = XWy,and V = XW,, input X €
RMXd, Query, Key, and Value matrices W, Wy, and W, € Rdx‘i,
respectively, M is the number of tokens, and d is the dimension of
tokens. By deforming Equation 3, we obtain:

Atten(Q, K, V) = Softmaz(XWy(XWi)") X W,
= Softmaz(XW, W XT)XW,
= Softmaz(XWu XT)XW,
= Softmaz(X (XWh)" )XW,
= Atten(X,K',V)

The projection matrices of Q and K are consolidated for parame-
ter sharing, which equates to a new matrix W, with K = X W;‘Z.
Moreover, allowing W, and W, to share parameters, they share a

projection convolution, denoted as W = Wqu = W, then:

Atten(X, K', V') = Softmaz(X(XW)") XW 4)

Where K’ = XW,V’ = XW, and the structure is shown in Fig-
ure 2 for RLMHSA. Consequently, a single convolution is required
to map the input vector, with the K and Q vectors sharing the same
convolution, thereby eliminating the need for two separate convo-
Iutions. During training, convolutional multi-group parameterization
is employed to emulate the blend of local and global information
that characterizes the RLMHSA module and enhances MHSA per-
formance. Experimental results indicate that, compared to MHSA on
the Imagenetlk classification task, RLMHSA reduces the parame-
ter count by 8M, accelerates speed by 3%, and enhances the top-1
classification accuracy by 0.5%.

3.6 Stem block and Patch Embedding block

The model’s initial stage employs a stem with two down-sampling
operations to reduce computational load, as suggested by FastViT
[36]. A lightweight structure is achieved through the use of a
Conv3x3+DWConv3x3 design. Initial convolutions utilize Conv3x1
and Conv1x3 to reparameterize vertical and horizontal edge extrac-
tion.

Several scenarios exist for patch embedding: no operation is nec-
essary if the input and output channel numbers and token dimen-
sions are identical. Convlx1 is employed for channel number con-
version when the input and output channel numbers differ, but the
token dimension remains the same. If the token dimensions vary, a
lightweight downsampling operation, avg-pool, is utilized for down-
sampling, followed by a Conv1x1 convolution for fusion or transfor-
mation. During the training phase, convolutional multi-group repa-
rameterization is also applied to enhance accuracy.

3.7 FMVIT Architectures

As delineated in Table 1, this study presents five model structures
for reference based on the number of parameters and model size,
specifically FMVIT-T, FMViT-S, FMViT-M, FMViT-B, and FMViT-
L. Here, “Channels" refers to the number of output channels from
the internal submodule of the module; “FM-Channels" denotes the
number of FMB intermediate frequency division channels, and “S"
represents the stride in convolution, or Avg-pool. The expansion ratio

for each MLP layer is set at 2, and the head dimension in RLMHSA
is fixed at 32. In alignment with Nextvit [17], BatchNorm, and ReLU
are employed for normalization and activation functions.

Table 1.  Architecture details of FMViT variants.

Stages | Output size Layers FMVIT-T \ FMViT-S \ FMVIT-M \ FMVIT-B \ FMVIiT-L
Convixs, 522
DWConv3x3, S=2
Stem (H/4, W/4) CNN Layers Convixl. S=1
(3232.32) (@8,4848) (64.64.64)
Convlxl, S=1
Patch Embedding %) 8 o
Stagel | (H/4, Wi [ Channels (323232) (48,48.48) (64.96,96)
B ™ Biocks 3 3 3 3 3
Avg-Pool.S=2
Patch Embedding ConvixI,S=1
) s %
Stage2 | (H/8, WIS) Channels (2,64.80) | (48.96,160) | (96,128,160) (96,256,320)
FMB | FM-Channels 16 ) 2 64
Blocks 1 1 1 1
Avg-Pool.S=2
Patch Embedding ConvixI.S=1
50 160 160 320
Stage3 | (H/16. W/16) Channcls | (80.128.160) | (160,192.320) | (160.320.480) (320,384,480)
FMB | FM-Channels ) 64 9% 9%
Blocks 1 1 1 2 5
Avg-Pool.S=2
Patch Embedding Convixl,S=1
160 320 30
Staged | (H/32. W/32) Channels | (160,192320) | (320.384.640) | (480,512,960) (480,640,1280)
FMB | FM-Channels 64 128 192 256
Blocks 1 1 1 1

4 Experimental Results

In this experiment segment, we utilize PyTorch version 1.12.1 for Py-
Torch inference latency and the TensorRT-8.5.3 framework for Ten-
sorRT (TRT) inference latency. Both are measured in a hardware en-
vironment with an A10 GPU and CUDA 11.3. CoreML inference
latency is gauged using an iPhone 13 with iOS 16.6. All batch sizes
are uniformly set to 1.

4.1 ImageNet-1K Classification
4.1.1 Implementation

We executed an image classification experiment on the ImageNet-1K
[28] dataset, comprising approximately 1.28 million training images
and 50,000 validation images across 1,000 categories. To maintain
fairness, we replicated the training parameters of the most recent vi-
sion Transformer with minor adjustments. All FMVIiT variants un-
derwent training on eight V100 GPUs with a total batch size 2048
for 300 iterations. The input image was resized to a resolution of 224
x 224. Utilizing a weight decay of 0.1, we employed the AdamW
[24] optimizer. For all FMVIT variants, the learning rate was grad-
ually reduced based on the cosine strategy, starting at 4e-5, and a
linear warm-up approach was used for 20 epochs.

4.1.2  Comparison with State-of-the-art Models

As illustrated in Table 2, our method achieves an optimal balance
of accuracy and latency when juxtaposed with recent state-of-the-
art techniques such as CNNs, ViTs, and hybrid networks. When
benchmarked against renowned CNNs like ResNet101 [8], FMViT
surpasses ResNetl01 by 2.5% in top-1 accuracy on the ImageNet
dataset (83.3% vs. 80.8%) and is 45% faster on CoreML (3.5 ms vs.
2.4 ms). Concurrently, its performance is on par with EfficientNet-
BS5 [31], with a 43% improvement in inference speed. In the con-
text of ViT, FMViT-B outperforms Swin-T [22] by being up to 6x
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faster on CoreML and TensorRT, yet with a 1.1% superior perfor-
mance. FMViT-S exceeds DeiT-T [32] by 6.3% on TensorRT at an
equivalent inference speed (78.5% vs. 72.2%). FMViT-S surpasses
CoreML by 8.1 percent (80.3% vs. 72.2%) with a similar infer-
ence speed. FMViT-L matches the performance of EfficientFormer-
L7 [20] when compared to the hybrid approach, but the inference is
30% and 96% faster on TensorRT and CoreML, respectively. FMViT-
S achieves 2.6% higher performance (78.5% vs. 75.9%) with a com-
parable CoreML inference speed when compared to MobileOne-S1
[35], and CoreML achieves 11% faster inference performance while
achieving 2.9% higher accuracy (78.5% vs. 75.6%). These results
suggest that the proposed FMViT design is a feasible and promising
paradigm.

Table 2. Comparison of different state-of-the-art classification methods for
ImageNet-1K.

Image | Param  FLOPs Latency(ms) Top-1
Method .

Size (M) G) pytorch TRT CoreML (%)

MobileVIT-XXS 224 1.3 0.3 8.1 1.2 13.10 69.0
Mobileformer-52M 224 35 0.1 13.3 2.9 1.17 72.8
Mobileformer-96M 224 4.6 0.1 143 3.1 1.86 68.7
RepVGG-AO 224 83 14 2.1 0.7 1.06 72.4
MobileNetV1 224 4.2 0.6 22 0.5 0.84 70.6
MobileNetV3-S 224 2.5 0.1 5.0 0.7 7.65 67.4
FasterNet-TO 224 39 0.3 5.1 0.8 0.72 71.9
MobileOne-S0 224 2.1 0.3 2.5 0.4 0.65 71.4
MobileNetV2x1.0 224 35 0.3 5.0 0.7 0.87 71.8
DeiT-T 224 59 1.2 5.1 12 1.68 72.2
FMVIiT-T 224 2.0 03 6.7 0.8 0.55 72.9
RepVGG-B1 224 51.8 1.8 3.1 2.5 4.12 8.4
RepVGG-A2 224 25.5 5.1 24 1.4 2.11 76.5
Mobileformer-151M 224 7.6 0.2 18.9 4.3 2.61 75.2
Mobileformer-214M 224 9.4 0.2 20.1 4.6 2.93 76.7
Mobileformer-294M 224 11.4 0.3 19.5 50 327 71.9
FasterNet-T1 224 7.6 0.9 54 0.9 0.93 76.2
MobileOne-S1 224 4.8 0.8 24 0.6 0.87 75.9
MobileOne-S2 224 7.8 1.3 25 0.6 0.92 774
EfficientNet-BO 224 53 0.4 7.9 1.1 1.64 77.1
FastViT-T8 256 3.6 0.7 4.9 13 0.92 75.6
EfficientFormerV2-S0 224 3.5 0.4 10.2 1.3 0.89 757
MobileViTv2-1.0 256 49 1.8 83 24 5.12 78.1
MobileViT-XS 224 23 0.8 8.6 1.4 20.84 74.8
FMViT-S 224 6.4 0.8 7.0 L1 0.83 78.5
FasterNet-T2 224 15.0 19 5.1 12 1.44 78.9
Mobileformer-508M 224 14.0 0.5 19.9 5.7 4.14 79.3
EfficientNet-B1 224 7.8 0.6 11.4 1.6 2.08 79.1
EfficientViT-B1 224 9.1 0.5 8.8 0.7 21.95 79.4
FastViT-T12 256 6.8 1.4 6.0 1.7 1.42 79.1
MobileOne-S4 224 14.8 3.0 4.5 12 1.52 79.4
DeiT-S 224 22.0 4.6 52 2.0 374 79.8
PoolFormer-S24 224 21.1 34 9.8 39 245 80.3
ResNeXt101-32x4d 224 44.2 8.0 13.5 39 3.65 78.8
EfficientFormer-L1 224 123 1.3 6.9 1.3 1.57 79.2
FMViT-M 224 12.8 2.0 7.1 15 142 80.3
EfficientNet-B3 224 12.0 1.0 12.5 2.0 271 81.6
MobileViTv2-2.0 256 18.5 72 82 37 11.83 81.2
EfficientViT-B2 224 243 1.6 12.0 2.4 36.90 82.1
FasterNet-S 224 31.1 45 6.3 22 241 81.3
ResNeSt50 224 27.5 54 13.0 2.9 32.90 81.1
ConvNeXt-T 224 29.0 45 5.6 35 68.00 82.1
Swin-T 224 29.0 45 8.0 24 1475 81.3
PoolFormer-S36 224 31.2 5.0 13.0 5.7 3.40 81.4
EfficientFormer-L3 224 314 39 10.3 2.6 261 824
ResNet101 224 44.6 79 12.7 3.4 3.46 80.8
RegNetY-8G 224 39.2 8.0 11.7 35 3.65 81.7
ResNet152 224 60.2 4.0 19.0 6.1 4.54 81.7
PoolFormer-M36 224 56.1 8.8 13.4 7.0 5.68 82.1
FastViT-SA24 256 20.6 3.8 10.1 34 2.84 82.6
Next-ViT-S 224 31.7 5.8 13.5 2.8 2.90 82.5
FMViT-B 224 24.3 4.2 9.1 24 2.40 82.4
EfficientNet-B5 224 30.0 24 20.1 4.5 4.66 83.6
PoolFormer-M48 224 73.0 11.6 17.4 9.2 721 825
RegNetY-16G 224 83.6 16.0 134 59 6.67 82.9
EfficientFormer-L7 224 82.2 10.2 15.4 5.1 6.49 83.3
FasterNet-M 224 535 8.7 9.4 37 4.28 83.0
ResNesSt101 224 48.0 10.2 25.0 5.7 4220 83.0
ConvNeXt-S 224 50.0 8.7 10.1 6.5 147.30 83.1
Swin-S 224 50.0 8.7 153 43 20.63 83.0
Next-ViT-B 224 44.8 8.3 20.5 4.0 375 83.2
FMViT-L 224 353 7.1 15.2 39 3.30 83.3

4.2 Object Detection and Instance Segmentation
4.2.1 Implementation

We evaluate FMViT on object detection and instance segmentation
tasks based on the Mask R-CNN [9] architecture and COCO2017
[21]. Specifically, all our models are initially trained on ImageNet-
1K and subsequently fine-tuned using the settings from previous

work [22]. The AdamW optimizer is employed with a weight decay
of 0.05, and the training spans 12 epochs. A warm-up of 500 itera-
tions is performed during training, and the learning rate is decreased
by 10 at the 8th and 11th epochs. Input resolution is 1344x800. For
an equitable comparison, we solely assess backbone latency, and the
testing environment aligns with that of classification.

4.2.2  Comparison with State-of-the-art Models

Table 3 presents the evaluation results utilizing the Mask R-CNN
architecture. For fairness, we exclusively measured the backbone la-
tency. As per Table 3, FMViT-B surpasses ResNet101 3.7 AP® while
achieving a 16% faster inference on TensorRT. FMViT-B matches
the inference speed of PoolFormer-S12 [37], on TensorRT but with a
6.8 AP? enhancement. Compared to EfficientFormer-L3, FMViT-B
exhibits a 7% faster inference on TensorRT and a 2.7 AP® superior
performance. Against Next-ViT-S [17], FMViT-B demonstrates a 3.9
times faster inference on CoreML and a 0.3 AP? increased perfor-
mance. FMViT-L outperforms EfficientFormer-L7 by 3.8 AP®, and
its inference is 32% quicker on TensorRT. FMViT-L and ResNeSt101
have identical inference speeds on TensorRT, but FMViT-L shows a
1.2 AP’ higher performance. The AP for masks exhibits a similar
advantage. In conclusion, FMViT excels in object detection and in-
stance segmentation while maintaining a reduced inference latency.

Table 3. Comparison of different backbones on Mask R-CNN-based
object detection and instance segmentation tasks. The superscripts b and m
denote box detection and mask instance segmentation.

Image  Param  FLOPs Latency(ms) Mask R-CNN
backbone Size ™) (G) | pytorch TRT CoreML | AP® AP}, APh; AP™ APj

ResNet101 1344800 445 1678 | 340 269 662 | 404 6L1 442 364 5.7 3
ResNeXt101-32x4d | 1344x800 442 1717 | 405 35.1 692 | 419 625 459 315 594 402
ResNeS50 1344x800 275 1156 | 359 24.1 / 26 / 38.1 / /
Swin-T 1344x800 478 2640 / / / 422 644 462 390 646 420
PoolFormer-S12 1344800 119 390 | 483 231 321 | 373 590 401 346 558 369
PoolFormer-$24 1344800 214 731 95.8 456 588 | 401 622 434 370 590 396
EfficientFormer-L3 | 1344x800 314 896 | 305 247 661 | 414 639 447 381 6L0 404
Next-ViT-s 1344x800 518 30L1 | 455 347 8430 | 438 657 479 398 630 426
FMVIiT-B 1344x800 721 2699 | 278 231 2138 | 441 661 480 418 651 450
ResNeXt101-64xdd | 1344x800 835 3325 | 628 65.2 1078 | 428 638 473 384 606 413
ResNeSt101 1344800 483 2194 | 632 421 / 452/ / 402 / /
Swin-S 1344800 691 3540 / / / 448 666 489 409 634 442
PoolFormer-$36 1344800 309 1072 | 1433 68.9 892 | 410 631 448 377 600 40.0
EfficientFormer-L7 | 1344x800 822 2286 | 669 556 1555 | 426 650 461 390 622 417
Next-ViT-B 1344800 649 3541 | 618 48.1 9320 | 453 670 497 410 642 442
FMVIT-L 1344x800 949 3330 | 454 42.0 2760 | 464 681 512 419 654 451

4.3 ADE20K Semantic Segmentation
4.3.1 Implementation

We conducted semantic segmentation tests utilizing the ADE20K
[41] dataset, which comprises approximately 20K training images
and 2K validation images across 150 categories. For a fair compari-
son, we adhered to the training protocol of the preceding vision trans-
former on the Semantic FPN [15] framework. The model was ini-
tially pre-trained on ImageNet-1K at a resolution of 224x224, then
trained on ADE20K with an input size of 512x512. For the Semantic
FPN framework, we employed the AdamW optimizer with a learn-
ing rate and weight decay of 0.0001. We trained the entire network
for 40K iterations with a total batch size of 32. Given the complexity
of implementing various modules of Mask R-CNN on TensorRT and
CoreML, we limited our latency assessment to the backbone for a
fair comparison, maintaining the same test setup as for classification.
For simplicity, We used an input size of 512x512 to measure latency.

4.3.2  Comparison with State-of-the-art Models

Table 4 illustrates that FMViT-B surpasses ResNet101 [8] by 4.7
mloU while maintaining consistent inference speed on TensorRT
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and CoreML. It exceeds Swin-T[22] by 2.0 mloU. Compared to
PoolFormer-S24 [37], it achieves 3.2 mloU higher performance and
is 8% faster in TensorRT inference. Our performance improvement
of 0.5 mloU is accompanied by 18% and 43% faster inference
on TensorRT and CoreML, respectively, compared to Next-ViT-S.
FMVIT-L outperforms Swin-S by 1.7 mloU and is 4.5 mIoU higher
than CoreML while being 25 times faster than ResNeSt101 [39]. It
matches the inference performance of PoolFormer-S36 but with a
4.9 mloU advantage. Inference on TensorRT and CoreML is 2.5%
and 29% faster than Next-ViT-B, with comparable mloU. Compre-
hensive testing indicates that our FMViT holds significant potential
for segmentation tasks.

Table 4. Comparison of different backbones on the ADE20K semantic
segmentation task.

Image Latency(ms) Semantic FPN 80k

backbone Size pytorch TRT CoreML | Param(M) FLOPs(G) mloU
ResNet101 512x512 12.9 7.4 10.9 44.5 40.9 38.8
ResNeXt101-32x4d | 512x512 13.8 10.1 14.1 442 41.8 39.7
ResNeSt50 512x512 12.7 6.5 356.0 27.5 28.2 39.7
Swin-T 512x512 / / / 31.9 182.0 415
PoolFormer-S12 512x512 9.1 4.1 6.2 1.9 9.5 37.2
PoolFormer-S24 512x512 17.8 7.8 10.8 21.4 17.8 40.3
EfficientFormer-L3 | 512x512 10.5 6.6 10.0 314 20.7 435
Next-ViT-S 512x512 14.5 8.5 15.6 36.3 52.0 43.0
FMViT-B 512x512 9.0 7.2 109 24.8 222 43.5
ResNeXt101-64x4d | 512x512 17.9 17.4 22.5 83.5 81.1 40.2
ResNeSt101 512x512 25.1 11.3 423.0 48.3 53.5 424
Swin-S 512x512 / / / 532 274.0 452
PoolFormer-S36 512x512 26.4 1.5 15.2 30.9 26.1 4.0
PoolFormer-M36 512x512 415 16.5 22.1 56.1 46.0 424
EfficientFormer-L7 512x512 16.9 14.4 21.4 822 53.6 45.1
Next-ViT-B 512x512 20.8 122 21.1 49.3 64.9 47.1
FMViT-L 512x512 15.2 119 16.3 36.5 374 46.9

4.4 Ablation Study

We established a series of experiments to validate the efficiency of
the FMB, gMLP, and RLMHSA modules within FMViT, as depicted
in Table 5. Here, we incorporated our proposed modules into the
FMVIiT-TO model and adhered to the same training methodology
as the original model. RLMHSA substitutes the traditional MHSA,
gMLP supersedes the standard MPL, and FMB is not utilized for
mixing; only the standard MHSA output features are directly fed into
the MLP.

The experimental findings indicate that substituting the standard
MHSA with our more streamlined RLMHSA decreases classifica-
tion performance despite increasing parameters and FLOPs. When
the conventional MLP module is replaced with the convolutional
multi-group reparameterized gMLP, the number of parameters and
FLOPs during the inference stage remain comparable, yet classifi-
cation performance improves. Lastly, introducing the FMB module
significantly increases the number of parameters and FLOPs, but it
also boosts classification accuracy to the final level.

Table 5. Compare different modules.

FMB | ¢gMLP | RLMHSA | MParams | FLOPs(M) | Top-1(%)
261 479.24 68.63
v 225 338.05 67.34
v v 225 338.05 69.30
v v v 2.52 395.30 72.90

4.5 Visualization

NextViT [17] establishes that CNN convolutional blocks favor high-
frequency signals, while ViT is inclined towards low-frequency

signals. Our proposed FMB simultaneously captures diverse high-
frequency and low-frequency signals, thereby enabling the acquisi-
tion of richer texture information and more precise global informa-
tion, enhancing the modeling capability of FMViT. To better under-
stand FMVIiT, we visualize the Fourier spectrum of RLMHSA out-
put features in FMVIT-TO at both high and low frequencies. Within
RLMHSA are five features with varying frequencies, each repre-
senting different frequency characteristics, denoted as f1-f5. Fig-
ure 4 illustrates this. The RLMHSA output feature, f1, captures the
low-frequency signal, suggesting that RLMHSA excels at modeling
global information. f2-f5, the outputs of various CFBs, capture dif-
ferent high-frequency signals. Each output corresponds to a distinct
frequency, so they are proficient at handling various textures. The
fusion of f1-f5 frequency features enhances the model’s expressive

capacity.
=
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Figure 4. The Fourier spectrum of the output features of different modules
in FMViT.

5 Conclusion

In this study, we introduce a hybrid ViT architecture optimized for
efficient deployment on mobile devices and server GPUs. This ar-
chitecture enhances the model’s predictive power by amalgamating
high-frequency and low-frequency features at varying frequencies,
thereby bolstering the model’s capacity to capture both local and
global information. Experimental results demonstrate that FMViT
achieves state-of-the-art latency and accuracy trade-offs across mul-
tiple vision tasks, including image classification, object detection,
and semantic segmentation. However, the models we provided are
stacked together without further scrutiny. Future work could employ
Network Architecture Search (NAS) or other stacking methods to
explore the impact of different combination models on performance.
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