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Abstract. Flowcharts are graphical tools for representing complex
concepts in concise visual representations. This paper introduces the
FlowLearn dataset, a resource tailored to enhance the understanding
of flowcharts. FlowLearn contains complex scientific flowcharts and
simulated flowcharts. The scientific subset contains 3,858 flowcharts
sourced from scientific literature and the simulated subset contains
10,000 flowcharts created using a customizable script. The dataset
is enriched with annotations for visual components, OCR, Mermaid
code representation, and VQA question-answer pairs. Despite the
proven capabilities of Large Vision-Language Models (LVLMs) in
various visual understanding tasks, their effectiveness in decoding
flowcharts—a crucial element of scientific communication—has yet
to be thoroughly investigated. The FlowLearn test set is crafted to
assess the performance of LVLMs in flowchart comprehension. Our
study thoroughly evaluates state-of-the-art LVLMs, identifying ex-
isting limitations and establishing a foundation for future enhance-
ments in this relatively underexplored domain. For instance, in tasks
involving simulated flowcharts, GPT-4V achieved the highest accu-
racy (58%) in counting the number of nodes, while Claude recorded
the highest accuracy (83%) in OCR tasks. Notably, no single model
excels in all tasks within the FlowLearn framework, highlighting sig-
nificant opportunities for further development.

1 Introduction

Flowcharts are visual tools that simplify complex processes and con-
cepts across various domains, condensing intricate information into
concise visual representations that enhance both comprehension and
communication. In this paper, a flowchart is defined as a diagram that
outlines a sequence of operations using standardized symbols like
rectangles for steps and arrows to indicate process flow, as demon-
strated in Figure 1.

Flowchart comprehension, particularly in the domain of com-
puter vision and LVLMs, remains underexplored despite their ex-
tensive application. Resources like ACL-Fig [12] that include scien-
tific flowcharts are limited and often provide only basic figure cap-
tions and sparse inline reference annotations. Flowcharts’ complex
nature—requiring text recognition, identification of various visual
elements (e.g., boxes, nodes, symbols), and understanding of node
connections—demands more comprehensive annotations for effec-
tive evaluation, emphasizing the need for specialized resources.

Further underscoring the inadequacy of current resources, our pre-
liminary analysis of 208 flowcharts from ACL-Fig using Gemini-
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Pro-Vision [8] yielded a low BLEU score of 0.006 (refer to supple-
mentary material [21] for details). However, this score doesn’t fully
represent the model’s comprehension capabilities. The captions in
ACL-Fig, sometimes as brief as ‘Figure 2: Alignment learning algo-
rithm’, do not provide robust ground truths for meaningful evalua-
tion. With a median caption length of just nine words, ACL-Fig is
inadequate for evaluating flowchart understanding.

Addressing these gaps, we introduce the FlowLearn Dataset1,
which includes both scientific and simulated flowcharts. The scien-
tific subset features 3,858 flowcharts sourced from scientific liter-
ature, annotated with captions (median length of 25 words) and in-
figure text. The simulated subset consists of 10,000 flowcharts gener-
ated from Mermaid code. This simulated subset enhances the dataset
by providing detailed annotations of visual components, thereby en-
abling quantitative evaluations of component-specific tasks. Addi-
tionally, both subsets include Visual Question Answering (VQA)
question-answer pairs, further enhancing their utility for training and
model evaluation.

In addition to introducing a novel dataset tailored for enhancing
flowchart comprehension, this paper provides a rigorous analysis of
the performance of contemporary LVLMs in interpreting flowcharts.
Our findings reveal significant room for improvement in LVLMs,
with no single model excelling across all tasks within the FlowLearn
framework. For instance, in tasks involving simulated flowcharts,
GPT-4V achieved the highest accuracy (58%) in counting the num-
ber of nodes, while Claude recorded the highest accuracy (83%) in
OCR tasks. This varied performance highlights specific areas where
LVLM capabilities could be further developed. Given the rapid ad-
vancements in the fields of Large Language Models (LLMs) and
LVLMs, FlowLearn is both timely and valuable, providing a foun-
dation for future research in visual data interpretation and automated
reasoning, and setting new benchmarks in the field.

2 Related Works

This section overviews interdisciplinary research at the intersection
of computer vision and natural language processing, focusing on the
comprehension of visual figures in scientific contexts.

2.1 Scientific Figure Datasets

Significant efforts have been made to develop methodologies and
datasets aimed at extracting and understanding scientific figures.

1 Our dataset is available on https://huggingface.co/datasets/jopan/
FlowLearn. Our code for generation and evaluation is available on
https://github.com/Jo-Pan/FlowLearn
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Figure 1: Overview of the FlowLearn Dataset illustrating the detailed components within the Scientific and Simulated subsets.
Methods such as PDFigCapX [15], PDFMEF [28], PDFFIGURES
[5], and PDFFIGURES2 [4] facilitate the extraction of figures,
captions, and related information from scholarly articles. Whereas
datasets like VIS30K [3] and PDFFIGURES2 advance figure extrac-
tion by providing detailed annotations for figure locations. More-
over, ACL-Fig [12] and DocFigure [11] focus on figure classification,
enhancing the understanding of various figure types, including bar
charts and architecture diagrams. Additionally, specialized datasets
like SciCap [10] and Parsing-AUC [24] concentrate on image cap-
tioning and summarization for experimental results figures.

Despite advancements, a significant gap exists in datasets with
detailed annotations for flowcharts. For instance, ACL-Fig contains
only about 208 flowcharts, primarily as architecture diagrams and
neural networks, often duplicated, with brief captions or blurry fig-
ures from pre-2000 papers. CSDia [27] focuses on logical diagrams
but lacks detailed caption information as it is not derived from the
scientific literature.

2.2 Visual Understanding Resources and Methods

Research in image captioning [20, 34], particularly in scientific chart
image captioning [7], has seen significant advancements, exemplified
by works such as Parsing-AUC [24], which combines figure seman-
tics extracted via OpenCV with textual information from the main
text to generate comprehensive figure summaries for AUC figures.

The field of VQA [13] has progressed substantially, with datasets
like VL-ICL Bench [35] providing benchmarks for multimodal in-
context learning. In scientific contexts, CSDia [27] employs mod-
els based on Diagram Parsing Nets to tackle VQA tasks. In scien-
tific contexts, FigureSeer [26] automates figure localization, classi-
fication, and summarization. It extracts key visual components such
as axes, legends, and data points for analysis, emphasizing the im-
portance of figure decomposition in enhancing the understanding of
scientific figures.

In non-scientific contexts, innovative approaches such as Neural-
Symbolic VQA [29] and αILP [25] have been developed to transform
neural network outputs into symbolic representations, which are then
used to formulate answers. Additionally, the research highlighted in
[14] stresses the importance of incorporating structural information
in visualization retrieval processes. Their findings indicate a marked
preference among survey participants for evaluating similarity based
on visual elements rather than merely pixel-level details, suggesting a

deeper, more structural approach to image analysis that could greatly
benefit VQA systems.

Several works have focused on extracting objects and their rela-
tionships from scientific figures. Notably, [6] pioneers the conversion
of scientific equation images into LaTeX format. ChartDetective [19]
introduces an interactive application for converting result chart im-
ages into SVG, preserving semantics and component relationships.
However, it is essential to note that this approach relies on user in-
teraction and takes about 4 minutes for a single conversion. For non-
scientific domains, Flow2Code [9] converts hand-drawn flowcharts
to simple code by using object detection and rules.

The development of LVLMs has marked a significant leap in vi-
sual understanding, with models capable of integrating advanced
vision techniques with LLMs. These models can learn simultane-
ously from images and texts, tackling various tasks such as visual
question answering and image captioning. The OpenCompass Multi-
modal Leaderboard2 rank these LVLMs, includes entries such as
GPT-4V [33], Gemini [8], LLaVA [17], Claude [1], InternLM [31],
Qwen-VL [2], Step-1V3, and DeepSeek [18]. All of these models
were trained on diverse datasets, including datasets for VQA, opti-
cal character recognition (OCR), and academic-related VQA. These
are essential building blocks for achieving flowchart comprehension
and enhancing the understanding of scientific flowcharts. However,
among these models, only DeepSeek explicitly stated that its in-
house training datasets included flowchart-related VQA. This high-
lights a potential area for future research and development, sug-
gesting that incorporating more flowchart-specific data may enhance
model training and performance.

In conclusion, there is a notable gap in resources specifically tai-
lored for flowchart comprehension. Existing datasets and methods
primarily focus on general scientific figures without addressing the
unique complexities of flowcharts. Our FlowLearn dataset fills this
gap by providing detailed annotations for flowcharts and evaluating
LVLMs’ ability to interpret these diagrams. By enhancing LVLMs’
understanding of flowcharts, our work extends existing knowledge
and introduces crucial resources for research aimed at enhancing au-
tomated visual reasoning and comprehension.

2 https://rank.opencompass.org.cn/leaderboard-multimodal
3 https://www.stepfun.com/
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Task Simulated Flowchart Scientific Flowchart

OCR
Prompt

A flowchart will be provided where a red box is drawn around the text node of interest. Answer with
the text inside the red box. Ensure that the transcription is precise, reflecting the exact letters.

Question

Answer monotrochal Influence on

True/False
Prompt

The given image is a simulated flowchart. Based on the
process outlined in the flowchart, determine the correctness
of the given statement. Answer with either "true" or "false".

The given image is a flowchart extracted from a scientific
literature. Based on the process outlined in the flowchart,
determine the correctness of the given statement.
Answer with either "true" or "false".

Question There is an arrow between pennames vesuviate and monotrochal. Ecological Systems can be influenced by itself.
Answer FALSE TRUE

Description Prompt The image contains a flowchart. Generate the description of the flowchart, reflecting the text nodes and arrows as depicted.

Answer
pythagoreanly points to pennames vesuviate. pythagoreanly
points to monotrochal. monotrochal points to pythagoreanly.
pennames vesuviate points to pythagoreanly.

Figure 7: Influence matrix schematic graph, based on
[5, Figure 5]

Table 1: Common VQA tasks across both the Scientific and Simulated subsets of the FlowLearn Dataset.

Task Simulated Flowchart

Mermaid Code Prompt
The image contains a flowchart. Generate the
Mermaid code to represent the flowchart,
reflecting the text nodes and arrows as depicted.

Answer

```mermaid
flowchart LR
entity0(pythagoreanly)
entity1(monotrochal)
entity2(pennames vesuviate)
entity0 ==>entity2
entity0 –>entity1
entity1 –>entity0
entity2 –>entity0
```

Num. of Nodes Prompt

The given image contains a simulated flowchart.
You should find all text nodes and determine the
total number of text nodes in the flowchart.
Answer the question with a number.

Answer 3

Num. of Arrows Prompt

The given image contains a simulated flowchart.
You should find all arrows and determine the
total number of arrows in the flowchart.
Answer the question with a number.

Answer 4

Table 2: VQA tasks unique to the Simulated Flowcharts subset of the
FlowLearn Dataset.

3 FlowLearn Dataset

To address the scarcity of resources for flowchart comprehension, we
introduce the FlowLearn Dataset. This dataset comprises two dis-
tinct subsets: Scientific Flowcharts and Simulated Flowcharts. An
overview of the FlowLearn dataset, illustrating its components, is de-
picted in Figure 1. Table 1 details the common VQA tasks applicable
to both subsets, while Table 2 lists the VQA tasks that are unique to
the Simulated Flowcharts subset.

3.1 Scientific Flowchart Dataset

The Scientific Flowcharts Dataset comprises a large collection of
flowchart images extracted from scholarly articles across diverse sci-
entific domains. This dataset serves as a crucial resource for enhanc-
ing visual comprehension of scientific content.

We initiated our dataset creation by downloading 27,000 scien-
tific articles from ArXiv. Using PDFFigures 2.0 [4], we extracted

figures and related metadata. Additional metadata were parsed by
the SciPDF Parser4, which utilizes GROBID5 for parsing PDFs.

Our selection process involved rule-based filtering combined with
manual verification to identify flowcharts. We selected figures based
on keywords relevant to flowcharts in captions, such as “illustration”,
“flowchart”, “model”, “step”, “overall”, and “graphical representa-
tion”. Figures with unrelated keywords like "normalized" and "plot"
were omitted. This meticulous curation yielded 3,858 flowcharts
from 2,674 documents, focusing on images that prominently feature
arrows, indicative of flowchart structures.

Each flowchart in our dataset is accompanied by comprehensive
metadata, exemplified in Figure 1. The Scientific Paper Meta in-
cludes parsed text from the source articles, along with related infor-
mation such as authors and titles. The Figure Meta encompasses the
figure caption and the in-text reference of the figure. Additionally, we
annotated all text appearing within each flowchart using PaddleOCR
[30]. These annotations support various subtasks crucial to flowchart
comprehension, including OCR and flowchart description.

3.2 Simulated Flowcharts

Recognizing that understanding flowcharts goes beyond caption gen-
eration, we developed the Simulated Flowcharts subset to enhance
comprehension of diagrammatic components like arrows and nodes,
which can be labor-intensive to annotate in scientific diagrams.

This subset was generated using Mermaid6, a JavaScript tool that
translates Markdown-inspired text definitions into flowcharts. Sam-
ple Mermaid code can be seen in Figure 1 and Table 2. We utilized
Python scripts to introduce variability in the flowchart definitions in
terms of the following aspects: 1) Nodes: Each flowchart contains
between 3 to 10 nodes, with node text consisting of randomized En-
glish words. 2) Links: The number of links between nodes is ran-
domized, with all nodes connected by at least one link, mimicking
real-world flowchart structures. We randomize the type of arrow links
between nodes, including solid lines, bold lines, or dashed lines. 3)
Background Color and Flowchart Orientation: Background col-

4 https://github.com/titipata/scipdf_parser
5 https://github.com/kermitt2/grobid
6 https://mermaid.js.org/
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ors are randomly generated in hexadecimal format. The orientation
of the flowcharts is randomized, encompassing all available options
in the Mermaid syntax.

We generated a total of 10,000 samples. Each sample includes: 1)
Flowchart Images: Available in JPEG and SVG formats. 2)Mer-
maid Code: Provided for each sample to facilitate programmatic
understanding and manipulation of the flowchart structure. 3)Visual
Component Annotations: Detailed annotations are provided, which
include the node text and the precise locations of text nodes, arrow-
heads, and tails, all derived from SVG. These annotations are crucial
for tasks such as object detection and structural analysis, enabling a
deeper understanding of the flowchart components.

The generation script provides fine-grained control over the cre-
ation of simulated flowchart samples, enabling integrated training
and experimentation for a wide range of applications.

3.3 Visual Question Answering

To evaluate the flowchart understanding capabilities using the
FlowLearn dataset, we developed tailored VQA question-answer
pairs for each tested flowchart. Examples of prompts, questions and
answers for each task are detailed in Table 1 and Table 2. We have
ensured that all prompts are elaborately detailed based on findings
from VL-ICL [35], which demonstrated that more detailed prompts
significantly enhance VQA performance compared to shorter ones.
Our own experiments confirm this finding, as we observed that de-
tailed prompts consistently outperform shorter ones in eliciting ac-
curate responses from models.

The common VQA tasks for both subsets include:
OCR: We randomly place a red box over one of the annotated

texts within the flowchart and prompt models to identify and return
the enclosed words.

True/False: We generate statements related to the flowchart
and query the model to determine their veracity. For Scientific
Flowcharts, we initially create two accurate statements using sen-
tences from the figure caption, subsequently verified by annotators
for their correctness based on the flowchart. In cases with insuffi-
cient caption data, annotators generate additional statements relate
to the flowchart. For false statements, annotators alter a few words in
a true statement to reverse its meaning, ensuring the vocabulary re-
mains consistent with the original author’s style. This process yields
one true and one false statement for each tested scientific flowchart.

For Simulated Flowcharts, we use predefined templates to create
True and False statements, such as: "An arrow exists between node
’{a}’ and node ’{b}’" and "An arrow points from node ’{a}’ to node
’{b}’." where {a} and {b} are placeholders for node texts identified
in Visual Component Annotations (Section 3.2).

Description: We prompt models to generate descriptions for the
flowcharts. For scientific flowcharts, the reference answers are de-
rived from their captions; for simulated flowcharts, reference answers
are generated by converting mermaid code to sentences using tem-
plates, “{a} points to {b}.”

Additionally, the Simulated Flowcharts includes 3 unique tasks:
Mermaid Code: Models are tasked with generating Mermaid

code that represents the flowchart. This task assesses the model’s
ability to comprehensively recognize flowchart components, includ-
ing text nodes and arrows.

Number of Nodes and Arrows: Models answer questions regard-
ing the count of text nodes and arrows present in the flowchart. This
task offers a quantitative measure of the model’s comprehension,
though it is less comprehensive than the Mermaid Code task.

4 Experiment Setups

In this section, we detail the experimental setup used to assess the
capabilities of various Large Vision-Language Models (LVLMs) us-
ing the FlowLearn Dataset. Our primary objective is to evaluate how
effectively these models comprehend and interpret flowcharts from
both the Scientific and Simulated subsets. We have implemented
all VQA tasks outlined in Section 3.3, which probe various facets
of flowchart comprehension—from fundamental text recognition to
more comprehensive overall understanding.

4.1 Models

We selected LVLMs for evaluation based on their rankings in the
OpenCampass multi-modal leaderboard as of April 2024. Access to
some models was facilitated through APIs, including Step-1V-32K,
GPT-4V, Gemini-Pro-Vision, and Claude-3-Opus-20240229. Addi-
tional models assessed in our study were LLaVA-V1.6-Vicuna-34B,
InternLM-XComposer2-VL-7B, Qwen-VL-Chat from 2024/01/25,
and DeepSeek-VL-7B-chat. Our selection strategy aimed to choose
the best model available from each top-ranked model family, such as
selecting Claude-3-Opus from the Claude series.

4.2 Evaluation Metrics

To evaluate the performance of the models, we categorized the VQA
tasks into three groups, each assessed by tailored evaluation metrics:

Accuracy: We measure the accuracy for tasks including OCR,
True/False Statements, Number of Nodes, and Number of Arrows.
This metric is straightforward and evaluates whether the responses
are correct or incorrect based on the ground truth. Specifically for
True/False Statements, we calculated average accuracy separately for
the true and false subsets, and an overall average accuracy to provide
a comprehensive view of model performance.

Similarity: For description tasks, we assess the closeness of
model-generated descriptions to reference descriptions using four
similarity metrics: BLEU [22], ROUGE-L [16], BERT score [32]
and Sentence Transformer Similarity (SBERT) [23]. The BERT score
utilizes pre-trained BERT embeddings to assess semantic coherence
through cosine similarity of matched words. Similarly, SBERT con-
verts both response and reference sentences into embeddings with the
‘all-MiniLM-L6-v2’ model, using cosine similarity to quantitatively
gauge how closely the generated text matches the target description.
We also calculate median word count of responses.

Mermaid Code Generation: We developed two sets of metrics
specifically tailored for evaluating the correctness of generated Mer-
maid code:

• Node-Level Evaluation: This metric checks if all nodes present in
the ground truth are included in the model’s response. Each node
is only considered correct if it exactly matches the spelling in the
ground truth.

• Link-Level Evaluation: This metric assesses the generated re-
sponse includes all the links present in the ground truth. A link
is deemed correct if both the start and end nodes are accurately
predicted, regardless of the arrow type. We also permit some syn-
tactical flexibility in how node descriptions are expressed, allow-
ing the use of either the node variable name or the node text.

For both evaluation levels, we compute F1-score, precision, and
recall for each sample and average these metrics across all samples.
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4.3 Response Parsing

Given the variability in how LVLMs generate responses, which may
not always exactly match the ground truth even when correct, we
have developed specific rules to parse and evaluate the responses:

OCR: A prediction is deemed correct if it includes the exact
phrase from the ground truth.

True/False Statements: The response is assessed for the presence
of ’true’ or ’false’, case-insensitively. Responses lacking these tokens
or containing both are marked as incorrect.

Number of Nodes or Arrows: We extract the first numeric token
in the response, also converting English words representing numbers
into numeric tokens. If no such token appears, the response is marked
as incorrect.

Mermaid Code Prediction: We focus on statements encapsulated
within triple backticks (```) in model responses. From these, we ex-
tract nodes and links according to the Mermaid syntax rules.

4.4 Settings

For our evaluations, we utilized the testing subset of the FlowLearn
dataset, which included assessments of 500 scientific flowcharts and
2,000 simulated flowcharts. Due to cost constraints and API limita-
tions, we limited our evaluations to 100 samples per task for Claude-
3-Opus, GPT-4V, and Step-1V. All other evaluations were conducted
using an NVIDIA A100 80GB GPU.

We opted for few-shot prompting as our evaluation strategy to
align the output of the LVLMs more closely with the ground truth.
According to Zong et al. [35], few-shot prompting, particularly with
2-shot samples, generally yields the most significant performance
improvement in general vision-language VQA tasks across various
LVLMs. Additionally, using 2-shot samples provides a balanced ap-
proach for evaluating True/False statements, as it allows an equal rep-
resentation of both true and false scenarios within the prompts. This
method ensures that the models are not biased toward one answer
type over the other, facilitating a more accurate and fair assessment
of model capabilities.

For consistency, we employ the prompt format shown in Table 3
for evaluation.

Prompt: [Task Description]
Support Set: [Image][Question][Answer] (2-shot)
Query: [Image][Question]
Prediction: [Answer]

Table 3: 2-Shot prompt format used for evaluation.

5 Experiment Results

In this section, we present the results from our evaluation of the
LVLMs across three distinct groups of VQA tasks within the
FlowLearn dataset. Each task group was designed to test different
aspects of model performance using specialized evaluation metrics.
For a focused review of performance across a limited subset of 100
samples involving all models and all tasks, please refer to Section 2
of the Supplementary Materials [21]. The findings there align closely
with the results discussed here. Sample model responses to all VQA
tasks are shown in Section 3 and 4 of the Supplementary Materials.

5.1 Accuracy Tasks

The first group of tasks evaluates the accuracy of the LVLMs in re-
sponding to queries that require precise, binary, or short phrase an-
swers. These tasks are foundational for assessing flowchart compre-

hension. The performance of each model on these accuracy tasks is
summarized in Table 4, leading to several key observations:

1) No clear winner across all accuracy tasks. For scientific
flowcharts, Gemini-Pro-Vision showed the strongest performance on
the full test set. However, on smaller subsets, GPT-4V and Step-1V
also demonstrated strong performances. For simulated flowcharts, on
the full test set, InternLM excelled in True/False statements, Gemini-
Pro in OCR tasks, and Qwen-VL in counting nodes and arrows.

2) Irrelevant model responses. Although most models generally
produced task-related responses, irrelevant responses were still ob-
served. For True/False tasks, Qwen-VL and LLaVA often scored
close to zero, indicating a lack of ’true’ or ’false’ tokens in its re-
sponses.

3) Challenges in counting nodes and arrows. Counting tasks,
which require comprehensive image understanding rather than par-
tial recognition, proved difficult for most models, leading to lower
average scores. Notably, despite its underperformance in other areas,
Qwen-VL’s results were comparatively better in these tasks.

5.2 Similarity Tasks (Description)

The second group of tasks assesses LVLMs’ ability to generate ac-
curate descriptions of flowcharts, with detailed performance data for
each model presented in Table 5.

For scientific flowcharts, DeepSeek and Gemini achieved the high-
est scores on most metrics. Qwen-VL produced the longest re-
sponses, while DeepSeek provided the shortest. We also reviewed
responses from the widely-used GPT4V. Out of 100 samples, only 24
were error-free. Analysis at the sentence level yielded 597 sentences
with a 59% accuracy rate, meaning 41% of sentences contained er-
rors. Sentences were marked as incorrect only if evidence from the
image contradicted the text. Supplementary material [21] includes
examples. We identified several common trends:

1) Generally, models provided satisfactory responses, accurately
inferring full names from acronyms and offering reasonable aca-
demic interpretations of the depicted processes.

2) Models handled complex images effectively, including those
with high resolutions and multiple parts.

3) Longer descriptions were more error-prone, whereas shorter
ones, while accurate, lacked comprehensive coverage, explaining the
lower sample-wise compared to sentence-wise accuracy.

4) In many cases, models produced logical but inaccurate descrip-
tions. Examples of this are shown in Table 6.

For simulated flowcharts, Gemini outperformed other models
across most metrics, typically scoring higher than for scientific
flowcharts. This discrepancy likely stems from the structured,
template-generated reference answers for simulated flowcharts, con-
trasted with the varied language and additional contextual informa-
tion in scientific flowchart captions.

5.3 Mermaid Code Task

This task assesses the comprehensive ability of LVLMs to encapsu-
late their understanding of a flowchart in a code format, summarizing
aspects such as OCR, counting nodes and arrows, and recognizing
relationships between nodes. The performance of each model on the
Mermaid Code task for simulated flowcharts is summarized in Ta-
ble 7. In evaluations on the full dataset, Gemini achieved the high-
est scores across all metrics. On a smaller evaluation subset, Claude
demonstrated superior performance, particularly excelling in node-
level prediction with an F1 score of 94%.
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Task Claude† GPT4V† Step-1V† Gemini
ProVision

InternLM
-XComposer2-VL

LLaVA
16-34B

Qwen-VL
-chat

DeepSeek
-VL-7B-chat

Scientific Flowchart
OCR 0.44 0.51 0.66 0.43 0.06 0.01 0.08 0.05

TRUE 0.69 0.63 0.9 0.55 0.89 0.15 0.18 0.86
FALSE 0.53 0.74 0.36 0.7 0.28 0 0 0.21Statements

Average 0.61 0.68 0.63 0.62 0.59 0.08 0.09 0.53
Simulated Flowchart

OCR 0.83 0.75 0.71 0.69 0.18 0 0.58 0.23
Num. Nodes 0.52 0.58 0.31 0.02 0.15 0.12 0.4 0.22

Num. Arrows 0.23 0.26 0.26 0.09 0.12 0.1 0.2 0.15
TRUE 0.42 0.28 0.62 0.69 0.82 0.05 0.34 0.61

FALSE 0.71 0.77 0.72 0.52 0.5 0.01 0 0.56Statements: Between AB
Average 0.56 0.52 0.67 0.61 0.66 0.03 0.17 0.59

TRUE 0.18 0.15 0.41 0.16 0.85 0.11 0.04 0.55
FALSE 0.49 0.61 0.5 0.63 0.49 0.03 0.01 0.58Statements: A to B

Average 0.34 0.38 0.45 0.4 0.67 0.07 0.03 0.57

Table 4: Experiment results for accuracy tasks. Models† are evaluated on a subset of the evaluation set. Regardless of evaluation size, the
best-performing model is bolded. The best-performing model among those evaluated on the full set is underlined.

Evaluation Metrics Claude† GPT4V† Step-1V† Gemini
ProVision

InternLM
-XComposer2-VL

LLaVA
16-34B

Qwen-VL
-chat

DeepSeek
-VL-7B-chat

Scientific Flowchart
Median Word Count 98 97 65 190 101 19 354 9

BLEU 0.47 0.43 0.33 0.49 0.05 0 0.02 0.13
ROUGE-L 0.13 0.13 0.12 0.09 0.1 0.11 0.07 0.17

BERTScore-F1 0.84 0.83 0.84 0.83 0.83 0.81 0.79 0.86
Sent.Transformer Similarity 0.49 0.46 0.42 0.30 0.34 0.25 0.38 0.36

Simulated Flowchart
Median Word Count 28 34 35 33 58 19 200 32

BLEU 0.02 0.01 0.01 0.01 0.01 0 0 0.02
ROUGE-L 0.54 0.52 0.52 0.56 0.19 0 0.13 0.41

BERTScore-F1 0.90 0.90 0.89 0.92 0.82 0.77 0.80 0.87
Sent.Transformer Similarity 0.84 0.84 0.84 0.88 0.41 0.18 0.51 0.71

Table 5: Experiment results for Flowchart Description task. Models† are evaluated on a subset of the evaluation set. Regardless of evaluation
size, the best-performing model is bolded. The best-performing model among those evaluated on the full set is underlined.

The image depicts a neural network architecture for processing
volumetric data, possibly for a segmentation task. It features an encoder-
decoder structure with skip connections. Here is the flow:
1. The network inputs a volume of 16x112x112x1.
2. It goes through four convolutional layers with the following
specifications:
- Conv1a: 64 feature maps, output size 16x112x112
- Conv2a: 128 feature maps, output size 16x56x56
- Conv3a: 256 feature maps, output size 8x28x28
- Conv4a: 512 feature maps, output size 4x14x14
3. There’s another convolutional layer Conv5a with 512 feature
maps reducing the volume size to 2x7x7.
... (cropped) ...
Lastly, there’s a Conv-pre layer (size not specified) followed by
Bounding Box (BB) Regression to predict ’K’ classes, and a voxel-wise
loss is computed at the final output.
Note: The sizes of the feature maps in the decoder part are not explicitly
stated, but they are likely to match the corresponding encoder layer sizes
due to skip connections. The dotted lines indicate feedback of loss or
gradients back through the network during training.

Table 6: Example GPT-4V’s response (cropped) to the Flowchart-to-
Caption tasks on Scientific Flowcharts from the FlowLearn Dataset.
Incorrect parts are highlighted in red.

Challenges were notable in models like InternLM, LLaVA, Qwen-
VL, and DeepSeek, all of which recorded scores close to zero. Sev-
eral issues were identified during the evaluation of their outputs:

Syntax Compliance: These models did not adhere to the proper
syntax of Mermaid code, failing to correct their outputs even after
2-shot prompting designed to teach them the correct code format.

Node Recognition: Disregarding syntax issues, these models still
struggled to accurately predict correct nodes. The node-level eval-
uation, which also indirectly assesses models’ OCR capabilities by
checking for the presence of all node text in the predictions, reflected
poor performance. This aligns with results from Table 4, where these
models underperformed in OCR tasks that required text detection
within specified areas.

Link-level predictions, which depend on accurate node-level re-
sults, consider a prediction correct only if the start and end nodes
and the direction of the link are identified accurately. Hence, scores
for link-level evaluations generally fall below those for node-level
evaluations. Claude, which scored highly at the node level, encoun-
tered many challenges with link prediction, achieving only a 30% F1
score for link-level accuracy. This highlights the difficulty models
face in understanding complex relationships within flowcharts.

5.4 Ablation Study on Chain-of-Thought

For complex tasks such as converting a flowchart into Mermaid code,
a methodical approach can be beneficial. This process typically in-
volves several sequential steps: initially detecting text nodes, then
recognizing the links between them, and finally compiling these in-
formation into a standardized format, such as Mermaid code. Given
the multi-step nature of this task, we hypothesized that introducing
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Evaluation Metric Claude† GPT4V† Step-1V† Gemini
ProVision

Gemini
ProVision (CoT)

InternLM
-XComposer2-VL

LLaVA
16-34B

Qwen-VL
-chat

DeepSeek
-VL-7B-chat

Link
Precision 0.35 0.23 0.14 0.26 0.25 0.01 0 0.02 0.05

Recall 0.26 0.22 0.15 0.25 0.24 0.02 0 0.02 0.04
F1 0.3 0.22 0.14 0.25 0.25 0.02 0 0.02 0.04

Node
Precision 0.94 0.72 0.68 0.75 0.71 0.09 0 0.06 0.29

Recall 0.95 0.73 0.68 0.75 0.71 0.16 0 0.08 0.29
F1 0.94 0.72 0.68 0.75 0.71 0.12 0 0.07 0.28

Table 7: Results for Flowchart-to-Mermaid on Simulated Flowcharts. Models† are evaluated on a subset of the evaluation set. Regardless of
evaluation size, the best-performing model is bolded. The best-performing model among those evaluated on the full set is underlined.
a chain-of-thought (CoT) process could potentially enhance model
performance. Consequently, we conducted an experimental ablation
study on the simulated subset using Gemini-Pro-Vision, a model that
incurs no querying cost and can be evaluated on the full test set. No-
tably, this model has shown the best performance on the Mermaid
code task (Section 5.3).

First, the flowchart includes the following nodes: {1}
Then, it contains the following edges: {2}
Finally, the Mermaid code for the flowchart is: {3}

Table 8: Chain-of-Thought answer template.

For this experiment, we modified the 2-shot example answers us-
ing a structured template (Table 8) that guides the model through a
step-by-step reasoning process. In this template, {1} is replaced with
all text appearing in the simulated flowchart, {2} is derived from
the flowchart description generated as per the templates described in
Section 3.3, and {3} is the corresponding Mermaid code. Addition-
ally, we appended the phrase "Let’s think step by step" at the end of
the original prompt (as illustrated in Table 2) to further emphasize
the sequential reasoning process.

We selected Gemini, the top-performing model for the Mermaid
Code Task, for this ablation study. Surprisingly, as shown in Table 7,
the performance using the CoT approach indicated a slight decrease
compared to the original model configuration without it. This un-
expected outcome suggests that while the chain-of-thought method
is intended to foster clearer and more structured reasoning, it may
introduce additional complexities or dependencies that hinder the
model’s ability to synthesize and process information efficiently. Fur-
ther analysis and refinement of the chain-of-thought implementation
may be necessary to fully realize its potential benefits and address
these challenges.

6 Discussion

The initial version of the FlowLearn dataset presents inherent limita-
tions, offering opportunities for future enhancements.

6.1 Scientific Flowchart Subset

First, True/False statements are missing for the training set of sci-
entific flowcharts. Annotators generate these statements only for test
samples, which is time-consuming, averaging three minutes per pair.
Future versions should aim to include these statements for all entries.

Second, the dataset size is currently limited. With fewer than
4,000 images, FlowLearn’s scientific flowchart collection is small
compared to larger visual-language datasets. While the inclusion of
simulated flowcharts helps to mitigate this limitation by broadening
the scope of the training data, expanding the collection of scientific
flowcharts would be advantageous.

Third, the descriptive task is limited. The descriptive task for sci-
entific flowcharts is currently evaluated against figure captions. How-
ever, the descriptive text for scientific diagrams is often scattered

throughout the associated literature, as outlined in Context247: Con-
textualizing Scientific Figures and Tables. A more robust approach
would involve annotators extracting and collating descriptive text
from the full text of scientific articles to provide a more compre-
hensive base for evaluating LVLM-generated descriptions.

6.2 Simulated Flowchart Subset

The simulated flowchart subset was designed to augment the scien-
tific subset by offering a more granular evaluation of flowchart com-
prehension and providing additional training data. Future iterations
could improve upon this by incorporating a greater diversity of di-
agram types, such as state diagrams and quadrant charts, to enrich
the dataset further. While FlowLearn currently focuses exclusively
on flowcharts, expanding the range of diagram types could enhance
its applicability.

6.3 Model Selection

Our model selection was biased towards LVLMs due to their broad
capabilities and general applicability. However, many task-specific,
smaller visual-language models may also be well-suited for these
tasks. Future work will explore the potential of these models, which
might offer more specialized insights or efficiencies in specific as-
pects of flowchart comprehension.

7 Conclusion

In this study, we introduced and evaluated the FlowLearn dataset, a
novel resource aimed at advancing the understanding of flowcharts
for visual-language models. Our experiments spanned various tasks,
including OCR, True/False assessments, counting nodes and arrows,
flowchart description, and generating Mermaid code, across two dis-
tinct subsets: scientific and simulated flowcharts.

Our findings demonstrate that while LVLMs are capable of im-
pressive performance on certain tasks, challenges remain. Notably,
the models excelled at OCR and True/False statements in certain con-
texts but struggled with the more complex task of accurately generat-
ing Mermaid code from flowcharts. This underscores a broader issue:
LVLMs often struggle to fully comprehend the intricate relationships
between visual components and to synthesize this information into
structured code formats effectively.

Given the rapid advancements in the fields of LLMs and LVLMs,
the FlowLearn dataset is timely and provides valuable insights into
a relatively underexplored area. It not only serves as a critical tool
for benchmarking and refining these models but also helps illumi-
nate the specific difficulties they encounter with visual reasoning in
a structured context. By pushing the boundaries of what LVLMs can
understand and achieve, we can bridge the gap between human and
machine comprehension of visual and language tasks, paving the way
for more intelligent and capable automated systems.

7 https://sdproc.org/2024/sharedtasks.html#context24

H. Pan et al. / FlowLearn: Evaluating Large Vision-Language Models on Flowchart Understanding 79



Acknowledgements

This work was supported by the National Science Foundation awards
III-2107213, III-2107518, and ITE-2333789. We also thank under-
graduate students Eric Reizas and Elle Nguyen at Temple University
for their valuable contributions to our project.

References
[1] Anthropic. The claude 3 model family: Opus, sonnet, haiku. URL

https://api.semanticscholar.org/CorpusID:268232499.
[2] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and

J. Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond, 2023.

[3] J. Chen, M. Ling, R. Li, P. Isenberg, T. Isenberg, M. Sedlmair, T. Möller,
R. S. Laramee, H.-W. Shen, K. Wünsche, and Q. Wang. Vis30k: A col-
lection of figures and tables from ieee visualization conference publica-
tions. IEEE Transactions on Visualization and Computer Graphics, 27
(9):3826–3833, 2021. doi: 10.1109/TVCG.2021.3054916.

[4] C. Clark and S. Divvala. Pdffigures 2.0: Mining figures from research
papers. 2016.

[5] C. Clark and S. K. Divvala. Looking beyond text: Extracting figures,
tables and captions from computer science papers. In AAAI Work-
shop: Scholarly Big Data, 2015. URL https://api.semanticscholar.org/
CorpusID:16285667.

[6] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush. Image-to-markup
generation with coarse-to-fine attention. In Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70, ICML’17,
page 980–989. JMLR.org, 2017.

[7] A. M. Farahani, P. Adibi, M. S. Ehsani, H.-P. Hutter, and A. Darvishy.
Automatic chart understanding: A review. IEEE Access, 11:76202–
76221, 2023. doi: 10.1109/ACCESS.2023.3298050.

[8] C. Fu, R. Zhang, Z. Wang, Y. Huang, Z. Zhang, L. Qiu, G. Ye, Y. Shen,
M. Zhang, P. Chen, S. Zhao, S. Lin, D. Jiang, D. Yin, P. Gao, K. Li,
H. Li, and X. Sun. A challenger to gpt-4v? early explorations of gemini
in visual expertise, 2023.

[9] J.-I. Herrera-Camara and T. Hammond. Flow2code: from hand-
drawn flowcharts to code execution. In Proceedings of the Sym-
posium on Sketch-Based Interfaces and Modeling, SBIM ’17, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450350792. doi: 10.1145/3092907.3092909. URL https://doi.org/
10.1145/3092907.3092909.

[10] T.-Y. Hsu, C. L. Giles, and T.-H. Huang. SciCap: Generating captions
for scientific figures. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3258–3264, Punta Cana, Dominican
Republic, Nov. 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.findings-emnlp.277. URL https://aclanthology.org/
2021.findings-emnlp.277.

[11] K. V. Jobin, A. Mondal, and C. V. Jawahar. Docfigure: A dataset for
scientific document figure classification. 2019 International Confer-
ence on Document Analysis and Recognition Workshops (ICDARW),
Sep 2019. doi: https://doi.org/10.1109/icdarw.2019.00018. URL https:
//ieeexplore-ieee-org.libproxy.temple.edu/document/8892905.

[12] Z. Karishma, S. Rohatgi, K. S. Puranik, J. Wu, and C. L. Giles. Acl-fig:
A dataset for scientific figure classification, 2023.

[13] V. Kodali and D. Berleant. Recent, rapid advancement in visual question
answering: a review. 2022 IEEE International Conference on Electro
Information Technology (eIT), pages 139–146, 2022. URL https://api.
semanticscholar.org/CorpusID:250367882.

[14] H. Li, Y. Wang, A. Wu, H. Wei, and H. Qu. Structure-aware visual-
ization retrieval. In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’22, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450391573.
doi: 10.1145/3491102.3502048. URL https://doi.org/10.1145/3491102.
3502048.

[15] P. Li, X. Jiang, and H. Shatkay. Extracting figures and captions from
scientific publications. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18,
page 1595–1598, New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450360142. doi: 10.1145/3269206.3269265.
URL https://doi.org/10.1145/3269206.3269265.

[16] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries.
In Annual Meeting of the Association for Computational Linguistics,
2004. URL https://api.semanticscholar.org/CorpusID:964287.

[17] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual
instruction tuning, 2023.

[18] H. Lu, W. Liu, B. Zhang, B. Wang, K. Dong, B. Liu, J. Sun, T. Ren,
Z. Li, H. Yang, Y. Sun, C. Deng, H. Xu, Z. Xie, and C. Ruan. Deepseek-
vl: Towards real-world vision-language understanding, 2024.

[19] D. Masson, S. Malacria, D. Vogel, E. Lank, and G. Casiez. Chartdetec-
tive: Easy and accurate interactive data extraction from complex vector
charts. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, CHI ’23, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450394215. doi: 10.1145/
3544548.3581113. URL https://doi.org/10.1145/3544548.3581113.

[20] Y. Ming, N. Hu, C. Fan, F. Feng, J. Zhou, and H. Yu. Visuals to text:
A comprehensive review on automatic image captioning. IEEE/CAA
Journal of Automatica Sinica, 9(8):1339–1365, 2022. doi: 10.1109/
JAS.2022.105734.

[21] H. Pan, Q. Zhang, C. Caragea, E. Dragut, and L. J. Latecki. Flowlearn:
Evaluating large vision-language models on flowchart understanding,
2024. URL https://arxiv.org/abs/2407.05183.

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method
for automatic evaluation of machine translation. In Annual Meeting
of the Association for Computational Linguistics, 2002. URL https:
//api.semanticscholar.org/CorpusID:11080756.

[23] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings us-
ing siamese bert-networks. In Conference on Empirical Methods in
Natural Language Processing, 2019. URL https://api.semanticscholar.
org/CorpusID:201646309.

[24] I. Safder, H. Batool, R. Sarwar, F. Zaman, N. R. Aljohani, R. Nawaz,
M. Gaber, and S.-U. Hassan. Parsing auc result-figures in ma-
chine learning specific scholarly documents for semantically-enriched
summarization. Applied Artificial Intelligence, 36(1):2004347, 2022.
doi: 10.1080/08839514.2021.2004347. URL https://doi.org/10.1080/
08839514.2021.2004347.

[25] H. Shindo, V. Pfanschilling, D. S. Dhami, and K. Kersting. alphailp:
thinking visual scenes as differentiable logic programs. Machine
Learning, 112(5):1465–1497, Mar 2023. doi: https://doi.org/10.1007/
s10994-023-06320-1. URL https://link.springer.com/article/10.1007/
s10994-023-06320-1#citeas.

[26] N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi. Figureseer:
Parsing result-figures in research papers. In European Conference on
Computer Vision (ECCV), 2016.

[27] S. Wang, L. Zhang, X. Luo, Y. Yang, X. Hu, T. Qin, and J. Liu. Com-
puter science diagram understanding with topology parsing. ACM
Trans. Knowl. Discov. Data, 16(6), jul 2022. ISSN 1556-4681. doi:
10.1145/3522689. URL https://doi.org/10.1145/3522689.

[28] J. Wu, J. Killian, H. Yang, K. Williams, S. R. Choudhury, S. Tuarob,
C. Caragea, and C. L. Giles. Pdfmef: A multi-entity knowledge extrac-
tion framework for scholarly documents and semantic search. In Pro-
ceedings of the 8th International Conference on Knowledge Capture,
K-CAP 2015, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450338493. doi: 10.1145/2815833.2815834.
URL https://doi.org/10.1145/2815833.2815834.

[29] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B. Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and lan-
guage understanding. In Neural Information Processing Systems, 2018.
URL https://api.semanticscholar.org/CorpusID:52919654.

[30] D. Yu, X. Li, C. Zhang, T. Liu, J. Han, J. Liu, and E. Ding. Towards
accurate scene text recognition with semantic reasoning networks. In
Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 12113–12122, 2020.

[31] P. Zhang, X. Dong, B. Wang, Y. Cao, C. Xu, L. Ouyang, Z. Zhao,
H. Duan, S. Zhang, S. Ding, W. Zhang, H. Yan, X. Zhang, W. Li, J. Li,
K. Chen, C. He, X. Zhang, Y. Qiao, D. Lin, and J. Wang. Internlm-
xcomposer: A vision-language large model for advanced text-image
comprehension and composition, 2023.

[32] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and Y. Artzi.
Bertscore: Evaluating text generation with bert. In International Con-
ference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SkeHuCVFDr.

[33] X. Zhang, Y. Lu, W. Wang, A. Yan, J. Yan, L. Qin, H. Wang, X. Yan,
W. Y. Wang, and L. R. Petzold. Gpt-4v(ision) as a generalist evaluator
for vision-language tasks, 2023.

[34] Z. Zohourianshahzadi and J. K. Kalita. Neural attention for image cap-
tioning: review of outstanding methods. Artificial Intelligence Review,
55:3833 – 3862, 2021. URL https://api.semanticscholar.org/CorpusID:
244729197.

[35] Y. Zong, O. Bohdal, and T. Hospedales. Vl-icl bench: The devil in the
details of benchmarking multimodal in-context learning, 2024.

H. Pan et al. / FlowLearn: Evaluating Large Vision-Language Models on Flowchart Understanding80


