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Abstract. Currently, one of the predominant approaches for optimal
classical planning is A∗ search with heuristics that partition action
costs among several abstractions of the input planning task. One
example of this approach is the Scorpion planner, which computes
saturated cost partitionings over projections and Cartesian abstrac-
tions. Scorpion participated in the International Planning Competition
2023 and achieved the second place in the optimal track. It was only
outperformed by the Ragnarok portfolio planner, which includes Scor-
pion as a component. In this invited paper for the ECAI Frontiers
in AI series, we present the components of Scorpion and analyze
their contributions to the overall performance in an ablation study.
As a result, the paper serves as a short introduction to many of the
techniques that are vital for state-of-the-art performance in optimal
classical planning.

1 Introduction

Classical planning is the task of finding a sequence of actions that
transforms a fully observable initial state into a goal state using deter-
ministic actions with known effects [9]. In the optimal setting, the task
is to find a plan that minimizes the sum of the action costs. Currently,
there are two main approaches to optimal classical planning: symbolic
search [41] and heuristic search [3]. Both approaches aim to com-
bat the state-space explosion problem. While symbolic search does
so by compactly representing sets of states and transitions between
them, heuristic search uses a heuristic function to focus the search on
promising parts of the state space. While there have been attempts
to combine symbolic and heuristic search [8, 7], so far the two ap-
proaches have been mostly pursued independently. The combination
is challenging because even perfect heuristic information can blow up
the data structures underlying symbolic search [40].

In this invited paper for the ECAI Frontiers in AI series, we fo-
cus on heuristic search for optimal classical planning and present a
state-of-the-art representative of this approach: the Scorpion planner.
By dissecting Scorpion, we provide a brief introduction to many of
the techniques that are necessary for state-of-the-art performance in
optimal classical planning.

Throughout the paper, we use the name Scorpion to refer to the
planner configuration (Scorpion 2023) we submitted to the sequential
optimization track of the International Planning Competition (IPC)
2023. However, Scorpion is also the name of the planning system
that we used to implement this configuration. The Scorpion planning
system is an extension of Fast Downward [13] and includes many

additional search algorithms and heuristics.1 The Scorpion planner,
which participated in the IPC 2023, uses A∗ [10] with an admissible
heuristic [21] to find optimal plans. The overall heuristic is based
on abstraction heuristics that are combined by saturated cost parti-
tioning [36]. Furthermore, it uses pruning techniques to reduce the
search space and improve the runtime performance. We discuss these
components in the following sections.

2 Abstraction Heuristics

Arguably the most important component of Scorpion are the abstrac-
tion heuristics. Several types of abstractions have been proposed for
classical planning, including projections [4, 6], domain abstractions
[15, 19], Cartesian abstractions [2, 31], and merge-and-shrink abstrac-
tions [5, 39], listed in increasing order of generality. They all have in
common that they reduce the size of the state space by aggregating
states and thus make it possible to precompute abstract goal distances,
which can then be used as heuristic estimates in the A∗ search.

Scorpion uses a combination of projections, a.k.a. pattern database
(PDB) heuristics (SYS-SCP), and Cartesian abstractions (CART).2 In
both cases, a single abstraction is usually not sufficient to solve the
task optimally. Therefore, we build several abstractions and combine
them using cost partitioning [17, 43]. By dividing action costs among
the abstractions, cost partitioning ensures that the sum of the admissi-
ble heuristic values remains admissible. This still leaves the question
of how to generate the abstractions and which cost partitioning method
to use.

The simplest method for generating PDB heuristics is to consider
all subsets of variables (each subset is called a pattern) and compute
a pattern database for each of them, possibly limiting the number
of variables per pattern to obtain reasonably-sized abstractions. This
naive method can be improved by considering only interesting pat-
terns [22], i.e., those sets of variables that cannot be decomposed
into two smaller sets without losing any information. In addition to
this systematic enumeration, there is also a local search algorithm
that iteratively generates larger patterns (iPDB) [12]. Recently, we
introduced another method for generating PDB heuristics, which is

1 https://github.com/jendrikseipp/scorpion
2 Since Cartesian abstractions do not support actions with conditional effects,

Scorpion only uses the SYS-SCP PDBs for such tasks. If a task contains
axioms after the translation phase, which converts the input PDDL task
[20] to finite-domain representation [14], we do not use any abstractions
and instead use the blind heuristic. For the presentation and experiments in
this paper, we only consider tasks without conditional effects and without
axioms.
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based on Dantzig-Wolfe decomposition [24]. Here, patterns are also
enumerated systematically from small to large, but only those patterns
are kept that increase the optimal cost partitioning value.

In the Scorpion planner, to generate a set of useful pattern database
(PDB) heuristics, we iteratively generate larger interesting patterns
[22] and keep the ones that are useful [27]. To judge the utility of
a PDB, we compute a cost partitioning among the PDBs already
selected and store the remaining action costs. For a new pattern, we
compute the induced projection and all its goal distances under this
remaining cost function. A PDB computed this way is useful if it
contains non-zero goal distances.

To obtain a diverse set of Cartesian abstraction heuristics, we con-
sider Cartesian abstractions of landmark and goal task decompositions
[31]. Each such abstraction simplifies the original task by focusing on
achieving only a single landmark or goal. To maintain shortest paths
in the abstractions with minimal effort, we use incremental search
[37].

3 Cost Partitioning

The easiest way to combine abstraction heuristics is to use the maxi-
mum of the individual heuristic values. However, this approach can
only be as informed as the most informed heuristic in each state. A
preferable way that can yield heuristics that are more informed than
any of the individual heuristics is to use cost partitioning [17, 43]. By
dividing the costs of actions among the abstractions, cost partitioning
ensures that no action cost is counted more than once in the sum of the
heuristic values. As a result, the sum of the heuristic values remains
admissible.

The first heuristic based on cost partitioning was the canonical
heuristic for PDBs [12]. It is based on the notion of independence:
two abstractions are independent if each action is relevant for at most
one of them. The canonical heuristic computes the maximal sets of
pairwise independent abstractions, sums their estimates and maxi-
mizes over the resulting heuristics. While the canonical heuristic is
the most accurate heuristic computable given only the information
about which actions are relevant in which abstractions, post-hoc opti-
mization [22] dominates it in terms of accuracy, because it also has
access to the heuristic values induced by the individual abstractions.

Two more basic cost partitioning algorithms are uniform cost parti-
tioning [17] and zero-one cost partitioning [11]. Uniform cost parti-
tioning divides the cost of each action evenly among the abstractions
that use it, while zero-one cost partitioning assigns the full cost of an
action to the first abstraction that uses it and zero cost to all others,
based on some arbitrary order of the abstractions.

All of these cost partitioning algorithms are dominated by opti-
mal cost partitioning [23], which can be computed in linear time
for abstraction [17, 18] and landmark [16] heuristics, by solving a
linear program. However, even for a moderate number of abstractions,
computing an optimal cost partitioning can be computationally pro-
hibitive. This remains the case even when using an algorithm based
on Dantzig-Wolfe decomposition [24].

Three of the cost partitioning algorithms above can be improved by
using the following insight: we can often reduce the costs assigned
to a heuristic without lowering any heuristic values. For abstraction
and landmark heuristics, we can even compute a unique minimum
cost function that preserves all estimates. We call such a cost function
saturated. By saturating the cost functions assigned to a heuristic by
zero-one cost partitioning, uniform cost partitioning, or post-hoc opti-
mization, we obtain the variants saturated cost partitioning [30, 36],
opportunistic uniform cost partitioning [34], and saturated post-hoc

optimization [38], respectively. The saturated variants dominate their
non-saturated counterparts in terms of heuristic quality. While there is
no dominance relation between saturated cost partitioning, saturated
post-hoc optimization, and opportunistic uniform cost partitioning,
saturated cost partitioning is often preferable in practice, which is
why it forms an integral part of Scorpion.

4 Saturated Cost Partitioning

Given an ordered sequence of heuristics, saturated cost partitioning
(SCP) iteratively assigns each heuristic h only the costs that h needs
for justifying its estimates and saves the remaining costs for sub-
sequent heuristics [36]. The quality of the resulting saturated cost
partitioning heuristic strongly depends on the order in which the com-
ponent heuristics are considered [33]. Additionally, we can obtain
much stronger heuristics by maximizing over multiple saturated cost
partitioning heuristics computed for different orders instead of using a
single saturated cost partitioning heuristic [33]. We therefore compute
a diverse set of SCP heuristics online during the search [28]. To this
end, we select every ten-thousandth evaluated state s, compute an SCP
heuristic hSCP tailored to s and add it to our initially empty set of SCP
heuristics if hSCP yields a higher estimate for s than all previously
added SCP heuristics. We limit the time for computing and adding
new SCP heuristics in this way to 100 seconds.

Originally, this diversification procedure was done offline before
the search, using states sampled with random walks from the initial
state [33]. Performing the diversification online during the search has
the advantage that the search can start right away instead of having to
wait for the offline computation to finish.

4.1 Orders for Saturated Cost Partitioning

To tailor an SCP heuristic for a given state s, we order the abstractions
with a greedy algorithm using the q h

stolen
scoring function [26, 36]. It

considers those abstractions first that have a high ratio of heuristic
value for s divided by the costs that are “stolen” from other abstrac-
tions to justify this value.

4.2 Subset Saturation

Instead of preserving all estimates, we can also compute a subset-
saturated cost partitioning, which only preserves the estimates for
a subset of the states [32], for example only for a single state. The
variant of subset-saturated cost partitioning that offers the best trade-
off between the quality of the resulting heuristic and the runtime of the
computation is called perim. It preserves all heuristic values within a
given perimeter around the goal state. When computing a perim SCP
heuristic for state s, we preserve all heuristic estimates smaller than
or equal to the estimate for s. In Scorpion, we use the perim* variant,
which first computes a perim SCP and then uses the remaining costs
to compute an SCP preserving the estimates of all states (under the
reduced cost function).

5 Pruning Techniques

Scorpion uses two pruning techniques as another measure to combat
combinatorial explosion. It computes h2 mutexes [1] to remove irrele-
vant operators and atoms. This method has proven to be very effective
in practice, since it often prunes a large fraction of actions and has a
low runtime overhead.
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Table 1. Comparison of base Scorpion planner to variants with individual components turned off. The rows show the total number of solved tasks and the
number of domains where a variant solves more and less tasks than the base variant. SYS-SCP only uses the systematic SCP PDBs and drops the Cartesian

abstractions. CART only uses the Cartesian abstractions and drops the SCP PDBs. MAX maximizes over abstraction heuristics instead of computing saturated cost
partitionings. OFFLINE computes SCP heuristics offline instead of online. RANDOM uses random orders for SCP heuristics instead of greedy orders. ALL

computes SCP heuristics that preserve the estimates of all states instead of using the perim* variant. NO-h2 does not prune irrelevant operators. NOPOR does not
compute stubborn sets for partial order reduction.

BASE SYS-SCP CART MAX OFFLINE RANDOM ALL NO-h2 NOPOR

Coverage 1353 1300 1265 995 1354 1325 1350 1320 1345
#Domains better than BASE 0 5 3 1 8 6 6 7 3
#Domains worse than BASE 0 15 27 37 6 8 9 11 6

The second pruning technique are stubborn sets [42, 25], a form of
partial order reduction. For a given state, a stubborn set is a subset of
the applicable actions that guarantees that at least one of the actions
starts an optimal plan. By ignoring all other applicable actions, we
can reduce the branching factor without sacrificing optimality. Since
stubborn sets have a non-negligible runtime overhead, we only com-
pute them for a state if the fraction of pruned successor states is at
least 20% of the total successor states after 1000 expansions.

6 Ablation Study

We now analyze the contributions of the major components of Scor-
pion to the overall performance by turning off each component in turn.
We use the Downward Lab toolkit [35] for running this experiment
and limit runtime and memory to 30 minutes and 8 GiB. Our bench-
mark set consists of all 1947 tasks without conditional effects from 54
domains used by the optimal sequential tracks of the IPCs 1998–2023.
All benchmarks, code and experiment data are available online [29].

Tables 1 and 2 show the results of the ablation study. Since the
total number of solved tasks can depend heavily on the coverage in a
single domain, we focus mostly on the two bottom rows in Table 1,
which show for how many domains a variant solves more or fewer
tasks than the base variant. Regarding the choice of abstractions,
we can see that the SYS-SCP PDBs are more important than the
Cartesian abstractions, but both of them are necessary for maximum
coverage. Disabling cost partitioning and instead maximizing over the
abstraction heuristics (MAX) leads to the largest drop in performance
among the tested variants, confirming that cost partitioning is one of
the main recent innovations in classical planning. Computing SCP
heuristics offline instead of online (OFFLINE) actually helps more
often than it hurts performance on a per-domain basis. However,
computing cost partitionings online has a much lower runtime than the
offline computation with its fixed time limit [28]. Using random orders
for SCP heuristics (RANDOM) instead of greedy orders only leads
to a small drop in performance and it even helps in some domains.
This suggests that it could be beneficial to investigate better ways
for ordering heuristics for SCP. Saturating for all states instead of
using the perim* variant (ALL) incurs the lowest drop in overall
coverage among the tested variants. Since there are even six domains
that benefit from using the simpler variant that saturates for all states,
these data suggest that the perim* variant is not always necessary.
Disabling the h2 mutex computation (NO-h2) decreases coverage
for 11 domains, but increases it for 7 domains, contradicting earlier
findings that h2 mutexes are almost always beneficial [1]. Disabling
stubborn sets (NOPOR) leads to a minor drop in coverage, which is
probably the case since not many domains are amenable to partial
order reduction in the first place. Also, partial order reduction is most
useful for heuristics that are slow to compute, which is not the case
for SCP heuristics.

7 Conclusions
We have presented the Scorpion planner and dissected its components
in an ablation study. The results of the ablation study show that the
choice of abstractions and the use of saturated cost partitioning are the
most important components of Scorpion. The results also suggest that
it could be worthwhile to better understand when a certain technique
is beneficial and possibly enable or disable it on a per-task basis.
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