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Abstract. Most complex problems of social relevance, such as cli-
mate change mitigation, traffic management, taxation policy design,
or infrastructure management, involve both multiple stakeholders and
multiple potentially conflicting objectives. In a nutshell, the majority
of real world problems are multi-agent and multi-objective in nature.
Artificial intelligence (AI) is a pivotal tool in designing solutions for
such critical domains that come with high impact and ramifications
across many dimensions, from societal and economic well-being, to
ethical, political, and legal levels. Given the current theoretical and
algorithmic developments in AI, it is an opportune moment to take
a holistic approach and design decision-support tools that: (i) tackle
all the prominent challenges of such problems and consider both the
multi-agent and multi-objective aspects; (ii) exhibit vital characteris-
tics, such as explainability and transparency, in order to enhance user
agency and alignment. These are the challenges that I will discuss
during the Frontiers in AI session at ECAI 2024, together with a
brief overview of my work and next steps for this field. This paper
summarises my contribution to the session.

1 Introduction
Our world is a highly complex environment that requires great ef-
fort to process and navigate. For example, humans are remarkably
capable at operating under uncertainty and incomplete information
in order to achieve a varied set of goals. We are also rarely isolated
from each other; every day we make decisions and work towards our
goals while interacting with others, either cooperating (e.g., a job
in the development team of a software company), competing (e.g.,
participating in a chess tournament) or some combination of the two
(e.g., driving home and participating in city traffic). Additionally, our
coexistence with artificial intelligence (AI)-powered systems [44] is
slowly transforming many aspects of both physical and online envi-
ronments, from our workplace [27], to education [46], to healthcare
[7], to our communication paradigms [13]. From an AI perspective,
every entity that is present and able to act in the world is considered to
be an agent, be it a human, a robot, or a piece of software [43]; we can
therefore say that most real-world decision problems are inherently
multi-agent.

In addition to this multi-agent aspect, when zooming in on real-
world decision making problems, we notice that usually more than
one objective should be taken into consideration. For example, travel-
ling from one point to another involves evaluating options in terms
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of cost, travel time, congestion levels, environmental impact, and
comfort [33]; in medical treatment we want to maximise effective-
ness, while minimising side effects [49]; when devising pandemic
mitigation strategies we need to balance between mortality, morbid-
ity, economic costs, and social wellness [37]. In other words, most
real-world decision problems are also inherently multi-objective.

The increased prevalence of artificial agents in our world makes
it crucial to explicitly consider objectives such as safety, fairness,
reliability, and transparency [18, 22], while ensuring satisfactory lev-
els of task performance. Figure 1 illustrates a high-level sketch of
hybrid human-AI collectives, where artificial agents and human exist,
observe, and act in the same environment. To ensure a seamless in-
teraction, artificial agents might need to possess capabilities such as
communication, theory of mind, and social intelligence. Furthermore,
artificial agents can represent different stakeholders through decision
delegation [2, 47]. In this case, transparency, together with the ability
to understand and continuously model the preferences of users [51],
becomes paramount to achieve trust in the system, enhance human
agency and facilitate oversight [8].

Figure 1. High-level sketch of hybrid collectives of humans and artificial
agents. Elements such as communication, decision delegation, preference
modelling, social intelligence, theory of mind, etc. are crucial ingredients for a
seamless interaction.

Multi-objective multi-agent systems (MOMAS) are thus more holis-
tic and realistic models that capture the complexity of interactions
among agents and the multiple dimensions of their objectives. Multi-
objective multi-agent decision making (MOMADM) can potentially
provide solutions that explore the possible trade-offs among the ob-
jectives, as well as the dependencies between the agents.
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Figure 2. Overview of directions of past and future developments in the field
of multi-objective multi-agent decision making

In the following sections I provide an overview of developments
in MOMADM and identify directions for future research in the field.
Figure 2 illustrates the organisation of this discussion around five
themes: (i) structuring the field, (ii) theoretical and (iii) algorithmic
contributions, (iv) benchmarks, and (v) broader applicability.

2 Structuring the Field

A general framework for modelling multi-objective multi-agent
decision-making settings is the multi-objective partially observable
stochastic game (MOPOSG). MOPOSGs extend Markov decision
processes [29] to both multiple agents and multiple objectives. No-
table extensions introduced by MOPOSGs are: (i) a vectorial reward
function Ri, for every agent i, taking values in Rd, with d the num-
ber of considered objectives; (ii) the agents are in general unable to
observe the full state of the environment, and receive instead partial
information in the form of observations.

By making additional assumptions on the MOPOSG model, re-
garding observability, the structure of the reward function, or whether
the problem is sequential or not, we can derive a subset of models
such as the multi-objective stochastic game (MOSG), multi-objective
decentralised partially observable Markov decision process (MODec-
POMDP), multi-objective Bayesian game (MOBG), multi-objective
cooperative Bayesian game (MOCBG), multi-objective multi-agent
Markov decision process (MOMMDP), multi-objective normal form
game (MONFG), or multi-objective multi-agent multi-armed bandit
(MOMAMAB), as illustrated in Figure 3 [30].

Agents usually aim to optimise their individual expected discounted
return, under a joint policy π. Since an agent only directly controls its
own policy πi, we arrive at the same challenges present in multi-agent
learning settings, such as credit assignment (i.e., disentangling the
individual agents’ contributions to the resulting reward signal), and
non-stationarity (i.e, agents simultaneously learning in the environ-
ment creates a moving target problem [50]).

Moreover, as a consequence of the fact that the reward and hence
the value function is a vector, vπ

i ∈ Rd, only a partial ordering over
the policy space is available. Determining a single optimal policy
for the execution phase [14] requires additional information on how
agents, or their corresponding users, prioritise the objectives or what

Figure 3. Multi-objective multi-agent decision-making models characterised
along three dimensions: (i) observability; (ii) cooperativeness; (iii) stateful-
ness [30].

their preferences over the objectives are. We can capture such a trade-
off choice using a utility function, ui : Rd → R, that maps the vector
to a scalar value.

In order to offer a structured view of the field, we introduced the
taxonomy illustrated in Figure 4, along the reward and utility axes
[30], differentiating between individual and team rewards, as well as
individual, team and social choice utility. By characterising problems
along both these dimensions, we can obtain a better understanding of
the appropriate methods and solution concepts.

Figure 4. Multi-objective multi-agent decision-making taxonomy, in terms
of the reward and utility functions [30].

The multi-objective decision-making literature [14, 38] discusses
two distinct perspectives for defining solutions in multi-objective
settings: the axiomatic and the utility-based paradigms. We briefly
discuss each perspective below, tailored to the multi-objective multi-
agent setting.
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Axiomatic approach

The axiomatic approach assumes Pareto dominance as the optimality
criterion and designates the Pareto set (PS)1 as the optimal solution set,
under the minimal assumption that the utility function is a monotoni-
cally increasing function. Informally, Pareto dominance introduces
a partial ordering over vectors, where one vector is preferred over
another if it is at least equal on all objectives and strictly better on at
least one.

Team reward setting When agents cooperate, they often share a
team reward and value, i.e. vπ

1 = vπ
2 = . . . = vπ

n , denoted as vπ .
Given this shared value, Pareto dominance can be straightforwardly
applied and we can subsequently define the set of all joint policies
which are not Pareto dominated as the Pareto set.

Individual reward setting While the Pareto set and Pareto front
are natural solutions in cooperative settings, extending this to settings
where each agent receives a different reward vector is non-trivial. We
note that there is little work so far on the individual reward setting
with unknown utility functions, so this more general setting remains
an important open challenge in MOMARL.

Utility-based approach

The utility-based approach advocates for exploiting any additional
domain knowledge that might be available for deriving the optimality
criterion. This involves knowledge regarding the user’s utility func-
tion and preferences with respect to the solution characteristics (i.e.,
stochastic or deterministic policy, single- or multi- policy output) [38].
Such additional knowledge can lead to smaller coverage sets (e.g., if
the utility function is known to be linear the convex coverage set can
be used, instead of the PS), or less time spent on exploring regions
of the objective space that are not of interest to the user (e.g., when
the user requires some minimum value for a certain objective). When
no additional knowledge is available, the utility-based approach falls
back on the axiomatic approach.

Roijers et al. [38] define two optimisation criteria in multi-objective
decision-making when applying the utility function to the vector-
valued outcomes. One can compute the expected value of the payoffs
of a policy first and then apply the utility function, leading to the
scalarised expected returns (SER) optimisation criterion:

vπui
= ui

(
E

[
∞∑
t=0

γtRi(st,at, st+1) | π

])
(1)

where Ri(st,at, st+1) is agent i’s reward at timestep t, state st,
joint action at and next state st+1, γ is the discount factor and ui

is agent i’s utility function. vπui
is the scalarised return derived by

agent i. Alternatively, under the expected scalarised returns (ESR)
optimisation criterion [15, 36], the utility function is applied before
computing the expectation:

vπui
= E

[
ui

(
∞∑
t=0

γtRi(st,at, st+1)

)
| π

]
(2)

Semantically, the two optimisation criteria distinguish between set-
tings in which users are interested in optimising the utility over multi-
ple policy executions (SER), or over each policy application (ESR).
SER and ESR coincide under linear utility functions.

1 The Pareto front (PF) contains the value vectors corresponding to all policies
in the PS.

Taking a utility-based perspective, in Rădulescu et al. [30] we also
introduce a mapping of potential solution concepts to each of the
identified categories of the MOMADM taxonomy (Figure 5).

Figure 5. Mapping of solution concepts for the multi-objective multi-agent
decision-making taxonomy [30].

Coverage sets Coverage sets (CS) are the appropriate solution con-
cept in cooperative settings, when all agents share the same reward
and utility function. In team reward individual utility settings, cover-
age sets can still be used, with the added step of agents agreeing on
the joint policy selection procedure from the CS. In fully individual
settings, agents could construct (approximate) coverage set as possible
best responses to the behaviours of the others.

Mechanism design The goal here is to guide the system towards
solutions that are (approximately) optimal under a social welfare func-
tion. This is achieved by designing additional payment mechanisms
that incentivise agents to truthfully reveal their utilities.

Equilibria and stability concepts Other suitable solution concepts
for fully individual settings are game theoretic equilibria or, if binding
agreements are possible, concepts such as coalition formation from
cooperative game theory can also apply. These elements need to
however be extended to the multi-objective case.

3 Theoretical Contributions
The interplay between the multi-agent and multi-objective dimensions
in MOMADM instils additional complexity in comparison to each
composing field. As a consequence, the majority of our initial theoret-
ical contributions adopt a utility-based perspective, where we assume
each agent possesses a known, non-linear utility function that dictates
their preferred trade-offs among objectives.

Equilibria Analysis Using the framework of multi-objective
normal-form games, in Rădulescu et al. [31] we explored the impact
of SER and ESR on two game theoretic solution concepts, namely
Nash equilibria [23] and correlated equilibria [4]. We re-iterate below
the extension of the Nash equilibrium (NE) to MOMADM. We define
π−i = (π1, . . . , πi−1, πi+1, . . . , πn) to be a joint policy without
agent’s i policy. We can thus write π = (πi,π−i).

Definition 1 (Nash equilibrium). A joint policy πNE is a Nash equi-
librium if, for each agent i ∈ {1, ..., n} and for any alternative policy
πi, no agent can improve its scalarised return by unilaterally changing
its policy:

v
(πNE

i ,πNE
−i )

ui ≥ v
(πi,π

NE
−i )

ui . (3)
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Note that vπui
can be derived under either SER (Equation 1) or

ESR (Equation 2). This initial study showed that the choice of op-
timisation criterion can radically alter the set of equilibria, under
non-linear utility functions. In the ESR case, any MONFG can be
reduced to a corresponding single-objective NFG. This guarantees,
for example, the existence of at least one NE [24]. In the SER case,
on the other hand, Nash equilibria need not exist. This is an important
result in MOMADM, signalling that there are cases in which a strong
disagreement in preferences among users impedes reaching stable out-
comes without additional mechanisms (e.g., negotiation, contractual
agreements).

In Röpke et al. [40] we continued this line of work, and investigated
the sufficient conditions under which Nash equilibria are guaranteed
to exist, under SER with non-linear utilities. Looking at relations
between SER and ESR, we also showed that no equilibrium needs
to be shared between the two criteria, when NE do exist. This result
highlights the importance of choosing the appropriate criterion for
the planning or learning phase, since each setting can output different
solutions.

Pareto versus utility-based solutions In Mannion and Rădulescu
[21] we contrasted the utility-based and axiomatic approaches and
investigated the relationship between their corresponding solution
sets in multi-objective normal form games (MONFGs), for the setting
with team rewards and individual utility. We demonstrated that there
are cases in which the set of NE and the PS are disjoint, implying
that in these situations Pareto-based approaches will not find stable
solutions in the joint strategy space.

Connections to other models Discovering connections or equiv-
alences between seemingly unrelated models can bridge research
communities and fill gaps in each field. In Röpke et al. [42] we in-
troduced a novel equivalence class between continuous games and
multi-objective normal-form games, and we showed that a pure strat-
egy Nash equilibrium in a continuous game is a mixed strategy Nash
equilibrium in an equivalent MONFG. We demonstrated potential al-
gorithmic transfers by learning NE in two continuous games utilising
a multi-objective fictitious play algorithm.

From a theoretical perspective, MONFGs stand to benefit from the
extensive knowledge on continuous games. For example, this equiva-
lence implies that some MONFGs fall in the category of continuous
game without pure strategy NE [12] and thus have no mixed-strategy
NE themselves, strengthening the result of [31]. In the context of
Stackelberg games, it was showed that commitment can be worse in
infinite (single-objective) NFGs than the utility from any NE [52].
Relying on the equivalence relationship, we transferred this results to
MONFGs [39].

Next steps The results so far for the known utility case emphasise
the importance of studying the alignment between the preferences
of the users in multi-objective settings, as this strongly impacts the
number and even the existence of stable solutions, as well as the ca-
pacity of learning approaches to converge to Pareto optimal outcomes.
This will play a critical role in the advancement of decision-support
systems across a variety of sectors, such as smart grids, logistics,
epidemiology or resource management.

So far we have adopted the stateless MONFG framework for the
analyses. Studies should be extended to sequential settings, e.g., multi-
objective stochastic games (MOSGs), to better reflect and translate to
real-world problem domains. Extending methods such as empirical
game theoretic analysis [53] to multi-objective settings will enable
insights into more complex interactions.

4 Algorithmic Contributions
Multi-objective multi-agent reinforcement learning (MOMARL) tar-
gets complex decision-making tasks that must balance multiple con-
flicting objectives and coordinate the actions of various (independent)
decision-makers. Figure 6 illustrates the MOMARL interaction loop,
where a set of agents observe (part of) the environment’s state, take
a joint action and receive their corresponding vectorial reward func-
tions, under one of the frameworks described in Figure 3 (e.g., in the
most general case, the MOPOSG; in team reward and fully observ-
able settings, the MOMMDP). Each component of the reward vector
represents the feedback signal for a different objective. In our work,
MOMARL represents a core framework for enabling autonomous
agents to learn policies in multi-objective multi-agent decision making
settings.

Figure 6. Illustration of the multi-objective multi-agent reinforcement learn-
ing interaction loop.

Our initial algorithmic approaches for MOMARL were designed to
empirically validate the theoretical contributions. For example, Röpke
et al. [39] uses independent multi-objective actor-critic learners, where
all agents have non-linear utilities and optimise for the SER criterion.
We also incorporate mechanisms such as communication, either by
receiving action recommendations to allow agents to coordinate their
strategies and reach correlated equilibria [31], or by allowing players
to communicate preferences over their actions [41].

In Rădulescu et al. [32] we investigate the impact of opponent
modelling in MONFGs, under SER, with non-linear utilities. We build
on advances from the multi-agent learning literature, more specifically,
on the idea of learning with opponent learning awareness [11] (i.e.,
anticipate one’s impact on the opponent’s learning step). Modelling
the opponents’ learning step is not straightforward in multi-objective
settings, since the learning direction is defined by the opponents’
utility, which is private information. The key idea behind our opponent
learning awareness method is to train a Gaussian process [34] as an
estimator for the opponents’ learning step, removing the need to have
access to the opponent’s policy or utility.

Finally, in Felten et al. [10] we introduce MOMAPPO, an extension
of the multi-agent proximal policy optimisation algorithm [54] to
return a Pareto set of multi-agent policies in team reward settings.

Next steps From an algorithmic standpoint, few solving methods
address both dimensions of MOMARL in complex settings (e.g., high
dimensional action or state spaces, sequential settings). Using devel-
opments from multi-objective and multi-agent reinforcement learning
will offer strong foundations for creating novel approaches. Research
on the axiomatic approach to MOMADM (i.e., in cases in which the
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utility function is not available) is also in early stages, with work
mainly considering the team reward case (e.g., [10, 16]). Defining
solution concepts for the individual reward setting and designing
methods to identify them remains an open challenge.

As mentioned in Section 1, and sketched in Figure 1, MOMAS
is a holistic model for capturing interactions in hybrid human-AI
collectives. I believe MOMARL methods will become an important
component for tackling decision making tasks in these settings, when
focusing on interactions among autonomous agents. Nevertheless,
additional inter- and transdisciplinary efforts are necessary to fill in
gaps, especially in terms of human - AI interaction [6]. For exam-
ple, in the case of decision delegation, we can outline at least two
important phases: preference elicitation, and, in situations in which de-
cision oversight is necessary, solution selection. Each of these phases
will require many components ranging from interface design and bi-
directional communication protocols [5], efficiently capturing user
preferences, rapid adjustment in the case of dynamic preferences,
ability to identify missing or overlooked dimensions, clear visual and
verbal expositions of identified solutions. Each component should
be crafted according to responsible AI principles [3], such as trans-
parency, explainability, fairness, and privacy, in order to augment
the user’s knowledge and agency [19], and allow for better informed
decisions.

5 Benchmarks
Benchmarks are crucial for sustaining progress, enabling evaluation,
and ensuring reproducibility of reinforcement learning methods. To
support the advancement of the MOMARL field, in Felten et al. [10]
we introduce MOMALAND2, the first collection of standardised envi-
ronments for multi-objective multi-agent reinforcement learning, with
problems varying in the number of agents, state and action spaces,
reward structures, and utility considerations.

MOMALAND is developed within the library ecosystem of the
Farama Foundation (Figure 7). Through its scalarisation wrappers,
MOMALAND enables the conversion of multi-objective environments
into single-objective ones under the standard PettingZoo API [48].
This adaptation allows the usage of multi-agent RL algorithms to
learn policies for a designated trade-off. The centralisation wrapper
provides a direct conversion to the MO-Gymnasium API [1]. This
adaptation enables learning using multi-objective single-agent algo-
rithms, such as those featured in MORL-Baselines [9]. MOMALAND

currently provides over a dozen environments, covering the majority
of frameworks presented in Figure 3.

Figure 7. MOMAland within the Farama Foundation library ecosystem [10].

2 Documentation: https://momaland.farama.org/

Next steps MOMALAND represents an important milestone for
establishing community-wide standards in terms of evaluation and
progress tracking for MOMARL. But it is also an invitation for ad-
ditional problem proposals, especially from real-world or industrial-
inspired settings.

MOMALAND is currently restricted to problems involving interac-
tions among autonomous agents. We note that some of the environ-
ments would lend themselves well to hybrid or human-in-the-loop
settings [35], so extensions and studies in this directions are another
avenue for future work. Coupled with the research agenda outlined in
Section 4, we hope that MOMALAND will provide prolific support
for MOMADM, as well as for the development of hybrid human-AI
interactions within the MOMADM framework.

6 Broader Applicability
Significant opportunities exist to re-examine problems that were ini-
tially modelled as single-objective multi-agent decision problems
using a multi-objective perspective. This could for example provide
richer solution sets for cooperative multi-agent system, provide more
insight into the collective versus individual tensions in social dilem-
mas, or improve performance by considering additional objectives to
represent sub-tasks explicitly, for example, using concepts such as
curiosity or intrinsic rewards in MARL [45].

For example, in Orzan et al. [25] we take a multi-objective per-
spective on a specific class of social dilemmas, namely Public Goods
Games under uncertainty [26]. In this setting, the payoffs of the play-
ers can naturally be separated in two components: the payoff obtained
by equally splitting the total resulting common good (denoted as the
collective payoff – this component is characterised by uncertainty
due to noisy observations and dependence on the behaviour of other
agents), and the payoff resulting from the remaining personal endow-
ment after the player contributes or not to the common good (denoted
as the individual payoff). Traditionally, these components are simply
summed up to form the final payoff. We refined the decision-making
process by explicitly considering the collective and the individual pay-
offs as separate objectives for each agent. This allows us to model the
valuation of the riskier component – the collective payoff – at an indi-
vidual level, creating risk-seeking, risk-averse or risk-neutral agents.
We model these attitudes using a parametric non-linear utility func-
tion. We show that the presence of risk-seeking agents can increase
cooperation, while a population with heterogeneous risk attitudes can
fail to reach cooperation even in cooperative settings.

Another potential direction is to use multi-objectivisation to im-
prove team behaviour through social welfare. Additionally, multi-
objective RL techniques can be used to develop agents capable of
adopting a range of different behaviours during deployment (e.g. co-
operative, competitive) [17], or to create populations of agents that de-
velop effective behaviours against a large range of opponents [20, 28].

7 Conclusions
I started by advocating for multi-objective multi-agent systems as
more realistic and encompassing models for decision-making settings
that need to explore trade-offs among multiple objectives, and involve
the interaction among multiple stakeholders. I gave a brief overview
of the field, discussed our theoretical and algorithmic contributions,
and outlined potential next steps.

The field of multi-objective multi-agent decision making presents
numerous open challenges across many disciplines. This offers the
unique opportunity to create a multidimensional research agenda, that
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balances between efficient methods for highly-performing systems
and responsible design, with a careful consideration toward positive
societal impact.
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under uncertain incentive alignment. In Proceedings of the 2024 Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), 2024.

[27] V. Pereira, E. Hadjielias, M. Christofi, and D. Vrontis. A systematic
literature review on the impact of artificial intelligence on workplace
outcomes: A multi-process perspective. Human Resource Management
Review, 33(1):100857, 2023.

[28] N. Perez-Nieves, Y. Yang, O. Slumbers, D. H. Mguni, Y. Wen, and
J. Wang. Modelling behavioural diversity for learning in open-ended
games. In International conference on machine learning, pages 8514–
8524. PMLR, 2021.

[29] M. L. Puterman. Markov decision processes. Handbooks in operations
research and management science, 2:331–434, 1990.
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R. Rădulescu / The World is a Multi-Objective Multi-Agent System: Now What?38


	Introduction
	Structuring the Field
	Theoretical Contributions
	Algorithmic Contributions
	Benchmarks
	Broader Applicability
	Conclusions

