
AI for Declarative Processes:
Representation, Mining, Synthesis

Marco Montali a,*

aFree University of Bozen-Bolzano, Italy
ORCID (Marco Montali): https://orcid.org/0000-0002-8021-3430

Abstract. The integration of business process management (BPM)
with artificial intelligence (AI) is driving unprecedented advance-
ments in the creation of trustworthy, intelligent information sys-
tems. On the one hand, BPM poses unconventional, relevant ques-
tions about processes and the event data produced during their exe-
cution. On the other hand, AI offers established techniques that must
be adapted and further enhanced to address these questions effec-
tively. This synergy is particularly impactful in the case of flexible
processes, which are best represented using a declarative approach
– emphasising the temporal constraints that must be respected by
the process, instead of explicitly detailing all the acceptable flows
of activities. In this article, we overview how automated reasoning
and learning techniques for temporal logics on finite traces provide
robust foundations for representing, mining, and synthesising declar-
ative processes. We cover established results as well as frontier re-
search in this area.

1 Introduction
Business process management (BPM) is a discipline at the intersec-
tion of operations management, computer science, and information
systems, whose grand goal is to support managers, analysts, and do-
main experts in the design, deployment, enactment, and continuous
improvement of operational, socio-technical processes within an or-
ganisation [25]. An (operational) process is a collection of related
events, activities and decisions that involve a number of actors and
objects, and that collectively lead to an outcome that is of value to
the organisation and its customers.

Once the identification of a relevant process within the organisa-
tion is conducted, the so-called business process lifecycle [25] pro-
vides a general framework for managing and continuously improving
the process, through the following iterative steps:
1. Discovery - the process is documented and modelled.
2. Analysis - the process model is qualitatively and quantitatively

verified and validated, to identify issues before execution.
3. (Re)design - the model is changed and adapted to best respond to

the issues identified during analysis.
4. Implementation - change management is applied within the or-

ganisation to enable the execution of the (re)designed process; in
parallel, the IT infrastructure of the organisation is configured to-
wards execution support and automation.

5. Monitoring - when the process is finally running, relevant data are
collected and analysed to determine how well the process is being

∗ Email: marco.montali@unibz.it.

performed, and whether the resulting, exhibited behaviour indeed
aligns to the desired one; this provides the basis for a new iteration
of the cycle.
Traditionally, these steps involve a large effort from process ana-

lysts, who apply conceptual modelling techniques to manually model
the processes during the discovery phase, and who conduct inter-
views and observe the organisation to extract relevant data during
monitoring. This is however radically changing. In fact, thanks to the
increasing digitalisation of contemporary organisations, virtually ev-
ery activity executed within a process is nowadays recorded in an in-
formation system. The availability of the resulting digital event data
enables a completely different interpretation of the BPM lifecycle, as
witnessed by the field of process mining [68], which is witnessing a
tremendous growth in academia and industry [45].

Process mining has the overarching goal to streamline and improve
operational processes based on the factual event data recorded within
the organisation. The starting point of a process mining project is an
event log containing the traces of events arising from the execution
of different process instances (or cases) of a process – such as the
execution of an order-to-delivery process on distinct orders, or the
application of a clinical guideline to different patients. Each event in
the trace refers to a specific transition (like start or completion) of
an activity in the process, indicating when it happened and, possibly,
who was responsible for it, in addition to other domain-specific data
attributes.

Given an event log, process mining answers key questions such as:
how does the process look like in reality? Where are bottlenecks and
points of friction located? Does the actual execution of the process
lead to compliance violations and deviations? This is done through
three major tasks:
• (automated) discovery – the synthesis of a process model from an

event log, with the aim of reconstructing what is actually happen-
ing inside the organisation;

• conformance checking – the comparison of the actual behaviour
contained in the event log and the expected behaviour described
in a reference process model, to detect whether deviations exist
and, if so, where do they manifest.

• enrichment – the augmentation of a process model with key infor-
mation extracted from the event log, such as information related
to performance and timing for unveiling bottlenecks and queues.

Notably, while an event log contains historical data on already com-
pleted process instances, process mining can also provide opera-
tional decision support [68] on running cases, answering questions
related to prediction and recommendation, such as: when is a running

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240461

17

case going to complete? Which are the most likely activities that will
be executed next? If one intends to steer the execution towards a de-
sired outcome, what are the recommended next steps?

The convergence of model-driven and data-driven techniques for
process analysis, as well as the integration of organisational and IT
practices in process management, is ultimately giving rise to process
science as the interdisciplinary study of socio-technical processes
[71]. From the IT point of view, process science calls for the realisa-
tion of trustworthy, intelligent information systems for process sup-
port, integrating the key aforementioned process mining tasks within
the BPM lifecycle. This is why Integrative AI is an essential enabler
for process science: we need solid techniques to reason on the dy-
namics of process models, learn knowledge from the data contained
inside event logs, and conduct different forms of inference relating
event data and process models.

On the one hand, process science poses unconventional, chal-
lenging questions to AI researchers interested in dynamic systems
and their temporal evolution, and calls for integrating AI techniques
covering the full spectrum of symbolic, connectionists, and neuro-
symbolic AI. On the other hand, AI methods, algorithms and tech-
nologies need to be adapted and further developed to address these
questions effectively. This is only the start: as recently outlined in a
research manifesto on AI-augmented BPM [26], integrative AI has
the potential of unleashing a new generation of process-aware infor-
mation systems capable to dynamically unfold and adapt processes
by exploring improvement opportunities, in autonomy and through
continuous conversation with their human principals.

In this paper, we overview how infusing AI techniques within pro-
cess science has driven unprecedented advancements in management
of processes that inherently flexibile [62]. Flexibility calls for a high
degree of freedom by the stakeholders responsible for executing the
process, in deciding how to execute each and every case, depending
on the current circumstances. It has been argued that flexible pro-
cesses can be effectively represented using a declarative approach,
which emphasises the temporal constraints that must be respected by
the process, instead of explicitly detailing all the acceptable flows of
activities [60, 57, 55, 43]. Considering that in a work process every
execution is expected to eventually reach a final outcome, this nat-
urally calls for adopting temporal logics on finite traces [19, 21] to
describe declarative processes and their executions. We then recall
how automated reasoning and learning techniques for such tempo-
ral logics provide robust foundations for representing, mining, and
synthesising declarative processes.

We cover established results as well as frontier research in this
area, showing a relevant setting where process science calls for gen-
uine advancements in the foundational and applied aspects of AI.

The paper is structured as follows. In Section 2 we introduce flexi-
ble, declarative processes, with particular reference to the DECLARE

approach [60, 55]. In Section 3 we recall temporal logics on finite
traces and their automata-theoretic characterisation. In Section 4, we
then overview how AI techniques related to such temporal logics
have been effectively adopted and enhanced to represent, mine, and
synthesise declarative processes. Finally, in Section 5 we describe
advanced, cutting-edge topics that extend this declarative setting in
several directions.

2 Declarative Process Specifications

The execution of a work process consists of a possibly unbounded,
yet finite sequence of activities focussed on a specific instance, or
case. The case is evolved starting from an initial state and leading to

one among different possible final states. For example, in an order-
to-pay process every execution refers to a specific order, starts from
its creation and finally leads to its correct payment or cancellation.

The activities contained in a work process may be executed in
many possible different ways. Different activity orderings, called
flows, may reflect variability in the process (e.g., the way an order
is managed depends on the customer type), as well as the need of
tailoring the evolution of the case depending on the circumstances
(e.g., the acceptance or rejection of an order changes the way it is
consequently evolved).

If one just focusses on the process control-flow (stripping off other
relevant perspectives such as that of data and resources), specifying
a work process then calls for identifying which activities/tasks are
relevant for the process, and how such building blocks can/must be
ordered over time to obtain an acceptable execution. By assuming
that executing an activity is atomic (i.e., instantaneous), a process is
nothing else than a (usually infinite) set of finite traces over a fixed,
finite set of Σ of activities. Infinity typically comes from the presence
of loops in the process, where the number of iterations is determined
at execution time and hence cannot be bounded a-priori.

In this respect, flexibility refers to the ability of the process to sup-
port dynamic adaptations [62], delegating to the stakeholders respon-
sible for the process execution to decide how to best streamline the
evolution of each case. A maximally flexible process hence coin-
cides with the set of all possible finite traces over Σ, usually denoted
by Σ∗. However, not all such sequences represent valid, conform-
ing executions. In fact, every process comes with temporal/dynamic
constraints on its constituent activities, reflecting different forms of
domain knowledge, such as hard/physical constraints (e.g., an empty
order cannot be paid), legal/normative requirements (e.g., a shipment
can only occur after the customer has signed consent for sharing
their address), and best practices (e.g., an order is shipped only upon
a prior, successful payment, as well as a priori confirmation of the
warehouse). As shown in Figure 1(a), a process then singles out the
subset of Σ∗ representing which flows belong to the process. Mod-
elling a process amounts to provide a compact, finite description of
such a subset.

2.1 Modelling by Constraining

Standard process modelling approaches adopt flowchart-based nota-
tions (formalised via transition systems or Petri nets) that require to
explicitly enumerate the flows of activities accepted by the process.
They consequently struggle in covering the whole execution space
when the process of interest is inherently flexible, and thus supports
many distinct flows (see Figure 1(b)).

This motivated a the introduction of a different, declarative mod-
elling style, providing a better balance between flexibility and control
[15]. Specifically, declarative approaches support the direct elicita-
tion of what are the relevant constraints on the temporal evolution
of the process, without explicitly indicating how process instances
should be routed to satisfy those constraints. This, in turn, calls for
specifying as first-class citizens constraints dealing with what is ex-
pected to occur, as well as what should not happen. Every constraint
separates traces from Σ∗ into those that satisfy the constraint and
those that violate it, and the entire specification then singles out those
traces from Σ∗ that satisfy all specified constraints. As highlighted
in Figure 1(c), when the process is flexible, this approach promises
to yield a better approximation of the boundaries of the real process,
containing (and extending) those captured via procedural notations.

The idea of adopting a constraint-based, declarative approach to

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis18

Σ∗
(a) A process

Σ∗
(b) Procedural specification

Σ∗
(c) Declarative specification

Figure 1. Intuitive representation of the difference between procedural and declarative process modelling (inspired from [15]).

capture dynamic systems has been around for a long time in differ-
ent communities. Seminal works include cascaded transactional up-
dates in data management [18], declarative temporal specifications
for agents [6] and their interaction protocols [66] in AI, and pockets
of flexibility in BPM [65]. The idea of pockets of flexibility was fur-
ther developed within BPM in consequent years, leading to a series of
declarative, constraint-based approaches for the specification of pro-
cesses, with DECLARE [59] and DCR Graphs [42] as main exponents.
This led to a conceptual breakthrough in process science: while tem-
poral constraints were before used to specify good/bad properties of
a process, they were then employed to specify the process itself.

2.2 DECLARE

DECLARE [59, 57, 55] is a language and notation for the declarative
specification of processes based on temporal constraints. An in-depth
overview of DECLARE can be found in [15]; we provide here a brief
account of its main features.

Every temporal constraint separates conforming traces that satisfy
the constraint, from non-conforming traces that violate it. Instead of
providing a full-fledged, logical language for specifying constraints
of interest, DECLARE originally came with a catalog of pre-defined
constraint templates, derived from a previously defined catalog of re-
curring temporal patterns used to specify properties of dynamic sys-
tems within software engineering [27]. While such properties were
meant for dynamic systems generating traces of infinite length, in the
context of DECLARE such patterns are interpreted over finite traces
[15]. Further templates may be added depending on the modeller’s
needs (we come back to this point in Section 4.1).

Given a catalog of templates, a DECLARE specification S is a pair
〈Σ, C〉, where Σ is a finite set of activities, and C is a finite set of
temporal constraints, each grounding one of the templates in the cat-
alog on concrete activities from Σ. In the original catalog, templates
are either unary, to constrain the number of occurrences of a sin-
gle activity, or binary, to express temporal relations between the co-
occurrence (or the absence thereof) of two activities. Constraints inC
are interpreted conjunctively: a trace conforms to a DECLARE speci-
fication if and only if it satisfies all constraints in the specification.

A DECLARE specification can be rendered graphically, depicting
each activity as a rectangle, each unary constraint as a decoration on
the rectangle, and each binary constraint as an edge between pairs of
activities, enriched with icons depending on its meaning [57].

Example 1. Figure 2 graphically depicts a simple DECLARE spec-
ification tackling a (portion of) an order-to-pay process. The spec-
ification consists of four activities: pick, close, pay, and cancel –
to respectively insert an item in the order, and complete/pay/cancel
the order. The specification contains three constraints, instantiat-
ing the precedence, response, and neg-succession binary tem-
plates. Specifically, precedence(pick,close) indicates that the or-
der can only be closed if at least one item has been picked before.

Response(close,pay) dictates that every time the order is closed, it
must be paid afterwards. Neg-succession(cancel,close) expresses
a negative constraint: if the order is cancelled, it cannot be paid af-
terwards.1

Notably, the resulting specification provides a wide degree of flex-
ibility. For example, a completed order can be implicitly re-opened
by adding further items; each payment, in turn, can cover one or
multiple batches of items.

3 LTL on Finite and Process Traces

Linear Temporal Logic (LTL) [61] is a cornerstone modal logic for
time. It augments propositional logic with modal operators referring
to a discrete, linear flow of time. Specifically, the logic is interpreted
over infinite sequences of states (called traces), where every state
comes with a propositional valuation.

In a variety of application domains, including BPM (as discussed
in Section 2), the system dynamics are more naturally captured using
unbounded, yet finite, traces [21]. This consideration led to a logic
called LTL on finite traces (LTLf [19]), which adopts the syntax of
LTL but interprets formulae on finite traces. Interestingly, moving
from infinite to finite traces substantially impacts the semantics of
the logic [21]. For example, while in LTL the two formulae ¬Xa and
X¬a and are interchangeable, this is not the case in LTLf . The first
formula (which can be re-expressed as Xw¬a) in fact indicates that if
a next instant exists, the activity occurring therein is not a. The sec-
ond formula instead forces the existence of a next instant, in which a
does not occur.

This radical semantical difference impacts also the automata-
theoretic characterisation of the logic [19, 22]. In particular, every
LTLf formula ϕ can be encoded into a conventional nondetermin-
istic finite-state automaton on finite words (NFA) that recognises all
and only the traces that satisfy ϕ. Differently from the infinite-trace
setting, every NFA can in turn be encoded into a corresponding de-
terministic finite-state automaton on finite words (DFA).

When dealing with declarative processes, we are specifically inter-
ested in a variant of LTLf where propositions denote atomic activities
constituting the basic building blocks of a process, and where each
state indicates which atomic activity has been executed therein. As
surveyed in [21, 15], this variant has been extensively used in AI and
BPM. It has been then termed LTL on process traces (LTLp) in [31],
which contains a comprehensive investigation of the computational
properties of the logic and its relationship with LTLf . We adopt LTLp

throughout the paper, and recall it next.
Fix a finite set Σ of activities. A (process) trace τ over Σ is a

finite sequence a0, . . . , an−1 ∈ Σ∗, indicating which activity from
Σ occurs in every instant i ∈ {0, . . . , n− 1} of the trace. The length

1 This is equivalent to say that an order can be closed only if no cancellation
has occurred before [55].

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis 19

pick
item

close
order pay cancel

orderprecedence response neg-succession

(¬close) W pick G(close→ F pay) G(cancel→¬F pay)

Figure 2. Fragment of an order-to-pay process in DECLARE, also reporting the LTLp encoding of its constraints.

n of τ is denoted len(τ), and τ(i) gets the i-th executed activity ai
in τ . As customary, Σ∗ denotes the infinite set of all traces over Σ.

An LTLp formula ϕ is defined according to the grammar

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2, where a ∈ Σ.

The semantics of LTLp is defined by the satisfaction relation |=.2

Specifically, given an LTLp formula ϕ, a process trace τ , and an in-
stance i ∈ {0, . . . , len(τ)− 1}, we inductively define that ϕ is true
in instant i of τ , written τ, i |= ϕ, as:

τ, i |= a if τ(i) = a

τ, i |= ¬ϕ if τ, i 6|= ϕ

τ, i |= ϕ1 ∨ ϕ2 if τ, i |= ϕ1 or τ, i |= ϕ2

τ, i |= Xϕ if i+ 1 < len(τ) and τ, i+ 1 |= ϕ

τ, i |= ϕ1 U ϕ2 if τ, j |= ϕ2 for some j s.t. i ≤ j < len(τ)

and τ, k |= ϕ1 for every k s.t. i ≤ k < j

We say that τ satisfies ϕ, written τ |= ϕ, if τ, 0 |= ϕ. We say that ϕ
is satisfiable if τ |= ϕ for some trace τ ∈ Σ∗, and valid if τ |= ϕ for
every trace τ ∈ Σ∗.

Intuitively, X is the (strong) next operator: Xϕ indicates that the
next instant must be within the trace, and ϕ is true therein. U is the
until operator: ϕ1 U ϕ2 indicates that ϕ2 is true now or in a later
instant j of the trace, and in every instant between the current one
and j excluded, ϕ1 is true.

The other boolean connectives are derived as follows: (i) true =∨
ai∈Σ ai; (ii) false = ¬true; (iii) ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2);

(iv) ϕ1→ϕ2 = ¬ϕ1 ∨ϕ2. In addition, other temporal operators are
derived as follows: (i) Xwϕ = ¬X¬ϕ – weak next, stating that if the
next instant is within the trace, ϕ is true therein; (ii) Fϕ = true U ϕ
– eventually, stating that ϕ is true in the future; (iii) Gϕ = ¬F¬ϕ
– globally, stating that ϕ is true in every future instant of the trace;
(iv) ϕ1 W ϕ2 = (ϕ1 U ϕ2) ∨ Gϕ1 – weak until, weakening until
by allowing for the possibility that ϕ2 does not become true in the
future, and stating that in that case ϕ1 will be true until the end of
the trace. (v) last = Xwfalse – which holds true exactly in the last
instant of the trace.

Example 2. The top part of Figure 2 shows how the three DECLARE

constraints from Example 1 can be encoded into LTLp.

Every LTLp formula can be encoded into a corresponding DFA over
process traces - a standard DFA with the only difference that, due to
how process traces are defined, it employs Σ instead of 2Σ in la-
belling its transitions. A DFA over process traces from Σ is a tuple
A = 〈Σ, Q, q0, δ, F 〉, where: (i)Q is a finite set of states; (ii) q0 ∈ Q
is the initial state; (iii) δ : Q × Σ → Q is the (Σ-labelled) transi-
tion function; (iv) F ⊆ Q is the set of final states. A process trace
τ = a0, . . . , an is accepted by A if there is a sequence of n + 1
states q0, . . . , qn+1 such that: (i) the sequence starts from the ini-
tial state q0 of A; (ii) the sequence culminates in a last state, that is,

2 For simplicity, we do not address next the corner case where the trace is
empty. This case is tackled in detail in [22].

qn+1 ∈ F ; (iii) for every i ∈ {0, . . . , n}, we have δ(qi, ai) = qi+1.
The language L(A) of A is the set of process traces accepted by A.

From well-known automata-theoretic constructions for LTLf [19,
22], which carry over LTLp with the notion of DFA defined above, we
get that every LTLp formula ϕ can be encoded into a corresponding
DFA Aϕ, such that τ ∈ L(Aϕ) if and only if τ |= ϕ for every process
trace τ ∈ Σ∗.

While a few tools for reasoning on temporal logics on finite
traces directly target LTLp [32, 14], the majority handles full LTLf

(see, e.g., [73, 49, 70, 38, 36]). Two special LTLf formulae can
be then used to force the reasoner to consider only process traces:
(i) G

∨
ai∈Σ ai (to indicate that in each instant, some activity oc-

curs), and (ii) G
∧

ai,aj∈Σ,ai 6=aj
¬(ai ∧ aj) (to indicate that no two

activities can occur in the same instant).

4 LTLf -based Processes: Representation, Mining,
Synthesis

The vision of process modelling by constraining (cf. Section 2.1),
grounded in the DECLARE approach (cf. Section { sec:declare }),
calls for: (i) a formal basis to unambiguously characterise which
traces belong to a process, (ii) algorithmic techniques to tackle rea-
soning and analysis tasks from the BPM lifecycle. As we show in this
section, LTLf and LTLp provide a very natural basis to tackle these
two challenges.

4.1 Representing DECLARE in LTLp/LTLf

In the original catalog of temporal patterns from which DECLARE

was initially derived [27], every pattern comes with a corresponding
LTL representation. This has been indeed exploited, since the very
inception of DECLARE [59, 57], to define the semantics of DECLARE

itself. Notably, some formulae from the original catalog must be re-
formulated, to reflect the change from infinite to finite traces [21].

More specifically, every DECLARE template comes with a
corresponding LTLp template formula. For example, template
response(a, b) is represented as G(a → Fb), where a and b are
activity placeholders. The application of a template to concrete ac-
tivities is then represented as a corresponding constraint formula,
obtained by taking the template formula and replacing the place-
holders with the corresponding activities (see, e.g., the case of re-
sponse(close,pay) in Figure 2). An entire DECLARE specification
S = 〈Σ, C〉 is then represented by the LTLp specification formula
ΦS =

∧
ci∈C ϕci , where ϕci denotes the constraint formula of ci.

Formula ΦS formally characterises the set of traces that belong
(or conform) to S (that is, the blue-dotted polygon in Figure 1(c)): a
trace τ belongs to S if and only if τ |= ΦS .

Example 3. Consider the DECLARE specification in Figure 2, and
the following four traces:
• τ1 = pick
• τ2 = pick, pick, close
• τ3 = pick, pick, close, pick, pay
• τ4 = pick, pick, close, cancel, pick, pay

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis20

Traces τ1 and τ3 belong to the specification, while τ2 and τ4 do not.

Having an LTLp-based representation of DECLARE also allows
the modeller to introduce further LTLp/LTLf constraints, going be-
yond what supported in the core template catalog. More in gen-
eral, the idea at the basis of DECLARE can be lifted to full-fledged
LTLp/LTLf -based processes, specified using arbitrarily big conjunc-
tions of “small” formulae, each capturing a temporal constraint.

4.2 Verification and Reactive Synthesis

While the semantics of a single, DECLARE constraint in isolation is
quite intuitive to understand, the situation changes when focussing on
an entire specification. On the one hand, temporal logics are notori-
ously hard to interpret for domain experts, even more in a finite-trace
setting [21, 40]. On the other hand, conjoining temporal constraints
has the effect of introducing so-called hidden dependencies, that is,
further implicit constraints [57]. This makes it tricky to understand
which traces indeed belong to the specification, and which not [41].

Example 4. Consider the DECLARE specification in Figure 2. The
interplay between the response and neg-succession contained
therein introduces a hidden dependency between the two activities
cancel and close: whenever the order is cancelled, it cannot be
closed afterwards. In fact, if one would later close the order, the two
constraints would conflict: neg-succession would forbid a later
payment, while response would require one.

The LTLp characterisation of DECLARE recalled in Section 4.1
is instrumental to mitigate such issues. In particular, tools for
LTLp/LTLf satisfiability can be employed to verify a DECLARE spec-
ification S [57, 72, 31, 46], checking key properties such as: does S
admit at least one trace? Does S contain “dead” activities that cannot
be executed at all? Is a given temporal constraint implied by S? Does
a trace of interest belong to S? Verification is essential in the analy-
sis phase of the BPM lifecycle. In the case where the specification is
unsatisfiable, that is, no trace conforms to it, identifying and dealing
with (possibly minimal) subsets of constraints witnessing unsatisfia-
bility is key towards root cause analysis and redesign [63, 17].

A further leap is needed in the very relevant setting where the pro-
cess is enacted by multiple, independent agents, responsible for dis-
tinct activities and constraints in the process. This setting naturally
connects to the LTLf reactive synthesis problem [20]. In the simplest
case where one agent can be controlled, while all the others homo-
geneously play together the role of an uncontrollable external envi-
ronment, this problem amounts to build (if possible) an execution
strategy for controller, ensuring the satisfaction of an LTLf specifi-
cation regardless of what environment does. This problem has been
extensively investigated in AI and formal methods, as witnessed by
the highly performing tools for LTLf synthesis regularly participat-
ing to the SyntCOMP competition (https://www.syntcomp.org).

In [37], the reactive synthesis problem has been for the first time
casted for LTLf -based processes, using an assume-guarantee formu-
lation that very well fits information systems and BPM. Notably,
while the synthesis problem is in general 2EXPTIME-complete for
LTLf and LTLp [20], it is shown in [37] that if one focusses only on
the core catalog of DECLARE templates, it can be solved via a singly
exponential-time algorithm.

4.3 Automated Discovery

As discussed in Section 1, automated discovery tackles a different
form of synthesis: that of a process model from an event log. In the

context of LTLf -based processes, this problem has been studied in
two distinct settings. The first, discriminative discovery, is reminis-
cent of a machine learning classification task. Here, the input event
log is partitioned in two subsets, respectively containing “positive”
and “negative” traces. The goal is to learn a declarative process spec-
ification accepting all the positive traces and rejecting all negative
ones. Traditionally, this problem has been investigated in AI tackling
general LTLf formulae (or extensions thereof) and using criteria on
the syntactic structure of the formulae to determine the “best” dis-
criminating formula (see, e.g., [9, 64]). A parallel line has instead
focussed on LTLf -based processes, in particular DECLARE, primar-
ily exploiting inductive logic programming [12, 44] and SAT-based
techniques [13].

Discriminative discovery is hard to apply in process science, as the
event log recording executions of the process does not readily come
with a criterion for splitting its traces. This is why process mining
traditionally tackles a very different discovery problem, known un-
der the term of specification mining in the software engineering liter-
ature. In this setting, all traces in the log are considered as possible,
“positive” executions, and the goal is to synthesise a process model
that “well-describes” the traces contained therein. The intuitive of
“describing well” is substantiated through metrics tackling key pro-
cess dimensions such as fitness, simplicity, and generalisation [68].

In the context of DECLARE mining, this problem has been ef-
fectively tackled using the following schema (see the survey in
[15]), implemented in the most efficient existing algorithms and tools
[52, 23, 2]. First, suitable metrics to relate traces and temporal con-
straints are defined, capturing if, and how interestingly a trace satis-
fies a temporal constraint. For example, even though traces τ1 and
τ3 from Example 3 both conform to the specification in Figure 2, τ3
is more interesting than τ1 for constraint response(close,pay), as
it explicitly triggers the expectation to pay.3 Second, efficient, brute-
force approaches are employed, instantiating the core DECLARE tem-
plates on the activities in the log, and computing the corresponding
metrics. Finally, the best-scoring constraints are retained, using LTLp

reasoning to handle incompatibilities and redundancies [16].

4.4 Conformance Checking and Monitoring

In the context of LTLf -based processes, conformance checking
amounts to check whether a trace satisfies all constraints contained in
a reference specification, indicating which are violated [11]. This can
be efficiently solved by simply verifying, in parallel and in isolation,
each temporal constrained contained in the specification [15].

Two, more interesting, settings emerge from this simple formula-
tion. The first is about obtaining more informative feedbacks on the
reasons underlying non-conformance. In particular, alignment-based
conformance checking [10] amounts to determine, in the case where
an observed trace does not conform to the specification, how close
the trace is to a conforming trace – typically using variants of Lev-
enshtein distance to relate traces. Notably, automated planning tech-
niques have been proven extremely effective in tackling alignment-
based conformance checking for LTLf -based processes [39].

A second setting deals with running, evolving traces, towards op-
erational decision support. This is key to detect non-conforming sit-
uations as early as possible, allowing process stakeholders to react
and intervene at runtime. In this respect, anticipatory monitoring [47]
appears particularly appealing, as it aims at returning a fine-grained
feedback on the satisfaction status of a temporal constraint in a run-
ning trace, and detect violations at the earliest moment possible.
3 This relates to the notion of vacuity in model checking.

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis 21

Example 5. Consider trace τ4 in Example 3. The earliest instant
where a violation of the order-to-cash specification can be detected
is 4, that is, the instant where the order is cancelled. In that instant,
none of the constraints of the specification is permanently violated,
but due to the conflict discussed in Example 4, from instant 4 onwards
it is impossible to conclude the execution by satisfying all constraints
at once. Equivalently, it is certain that at least one constraint will be
permanently violated in the future.

This form of anticipatory monitoring has been first introduced for
LTLf -based processes in [51, 50], and then extensively studied in
[22], with two particularly interesting results. From the foundational
point of view, it has been shown that every LTLf formula can be sub-
ject to anticipatory monitoring (which is not the case in the infinite-
trace case). From the practical point of view, minor adjustments to
standard DFA-construction algorithms are enough to effectively con-
struct monitors that are informative at two levels: that of each single
temporal constraint, and that of the entire specification (the latter be-
ing essential to detect situations such as that in Example 5).

5 Frontier Topics

In Section 4, we have overviewed AI techniques for representing,
synthesising, and mining LTLf -based processes. We now briefly
tackle some key frontier topics in this area.

5.1 Dealing with Uncertainty

In the paper, we have so far implicitly assumed that both the process
specification and the event log are certain. However, this assumption
is too strict in a number of application domains.

At the specification level, it may not be necessary to force that ev-
ery execution trace must satisfy all constraints contained in the spec-
ification. Some tolerance may instead apply, making the boundaries
of the specification less crisp. When uncertainty related to the satis-
faction of a constraint can be quantitatively estimated (for example,
relaxing the order-to-cash specification in Figure 2 by indicating that
closed orders are paid in 90% of the cases), the specification should
be interpreted in a probabilistic sense: every constraint has a cer-
tain probability to be satisfied or violated by some randomly selected
trace. This setting has been tackled by first introducing a probabilistic
variant of LTLf [53], and then by exploiting a fragment of this logic
to define a probabilistic version of DECLARE [54, 1]. In the result-
ing setting, combined reasoning on probabilities and time must be
conducted, towards singling out the different possible scenarios de-
pending on which constraints are satisfied and which not. Scenarios
and their probabilities are in turn related to traces as well as whole
event logs, yielding a full spectrum of probabilistic, declarative pro-
cess mining techniques [1].

Uncertainty is also essential when dealing with event data. On the
one hand, event logs are often not explicitly present inside the infor-
mation systems of an organisation, but are obtained through labori-
ous socio-technical procedures for event data extraction and integra-
tion. On the other hand, event data may be inherently incomplete and
noisy, or derived from complex activity/event recognition pipelines.
This calls for handling different types of uncertainty, covering prob-
abilistic [58, 29, 33] as well as fuzzy [24] event data. Interestingly,
dealing with fuzzy data provides a natural basis for neuro-symbolic
conformance checking pipelines [24].

5.2 Data-Aware Constraints

Until now, we have considered only activities and their flows. While
this control-flow perspective defines the backbone of the process,
other equally important perspectives exist, such as, most promi-
nently, that of data.

A first step towards data-aware LTLf -based process specifications
is to enrich events with data attributes (for example, recording the
amount of money involved in a payment, or the destination address
of a shipment). Such data attributes come with different data types,
and thus call for lifting LTLf to first-order variants dealing with mul-
tiple theories at once, i.e., so-called LTLf modulo theories [34]. Con-
straints are in this way enriched with the ability of expressing con-
ditions over data attributes (such as to indicate that credit card pay-
ments are only eligible for gold customers), or to relate data attributes
over time (such as to describe that the quantity assigned to a data at-
tribute can never decrease over time).

In this data-enriched setting, even basic forms of reasoning be-
come immediately undecidable. In fact, undecidability already holds:
• with numerical data attributes with local conditions (i.e., condi-

tions applied on time instants) expressing increment, decrement,
and equality [30];

• with abstract data attributes compared for (in)equality by taking
arbitrarily distant instants in the trace [8].

Substantial progress has been obtained in finding decidable frag-
ments and reconstruct corresponding automata-based techniques to
tackle key tasks within the BPM lifecycle, in particular conformance
checking and monitoring. Some of these well-behaved fragments ad-
mit explicit, faithful finite-state abstractions [7, 3, 4], while dealing
with richer fragments requires a delicate combination of automata-
and model-theoretic results [30, 35].

There is a second, more complex level where data prominently
come into play: that where distinct process instances are mutually
related. In fact, the typical assumption that every instance is evolved
in isolation is often too restrictive: it is common for processes to co-
evolve multiple objects at once, objects connected to each other via
one-to-many and many-to-many relations. This is, for example, what
happens in complex order-to-delivery processes where the content of
an order may be shipped through multiple packages, each containing
items belonging to the same or different orders.

These so-called object-centric processes are gaining momentum
in process science [69, 28], but pose a wide range of open questions
related to their representation, mining, and synthesis. In a declara-
tive setting, shifting from a single-case to an object-centric perspec-
tive essentially amounts to move from a setting where constraints
are global, to one where constraints are scoped by objects and their
relationships. An example of relationship-scoped constraint is: an or-
der can only be paid if the customer owning that order has signed a
GDPR consent before. An initial attempt to equip DECLARE with
the ability of expressing this type of constraint has been proposed
in [5], employing temporal description logics to combine the struc-
tural dimension of data objects and their relations, with the temporal
dimension dealing with their evolution. Research on this fascinating
setting is still at its infancy, with only a few preliminary results on
discovery [48] and reasoning [5].

5.3 Process Framing in AI-Augmented BPM

The vision of AI-augmented BPM [26] comes with a wide spectrum
of unexplored questions in the space of LTLf -based processes. An
AI-augmented BPM system (ABPMS) is defined in [26] as a process-

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis22

aware information system that relies on trustworthy AI technology to
reason and act upon data, within a set of restrictions, with the aim
to continuously adapt and improve a set of business processes with
respect to one or more performance indicators.

The lifecycle of an ABPMS expands the classical one (recalled in
Section 1) along two directions. First, the traditional lifecycle phases
are continuously iterated, and infused with AI capabilities. Second,
the lifecycle includes additional tasks that can only be realised with
AI support, namely those of adaptation, explanation, and automatic
continuous improvement.

One particularly relevant aspect when moving from BPM to AI-
augmented BPM, is that process modelling is lifted to a more flexi-
ble notion of process framing. Framing aims at capturing the bound-
aries within which the executions of one or more processes of interest
should be confined, in turn leading to key feature of framed auton-
omy: an ABPMS can autonomously decide how to progress the exe-
cution, as long as the boundaries imposed by the frame are respected.

This idea naturally matches the declarative approach described in
this paper, making LTLf -based processes a natural candidate for pro-
cess framing [56]. However, a number of challenges have to be tack-
led. We mention three, which touch on timely topics in AI:
1. the need of moving from verification and synthesis as described in

this paper, to more sophisticated forms of synthesis dealing with
quantitative objectives and maximally permissive strategies;

2. the need of infusing conversational systems (such as in particular
those based on large language models) with the ability to conduct
the different reasoning and analysis tasks described here;

3. the need of constraining predictive and prescriptive process ana-
lytics techniques, currently tackled mainly using neural networks
and simulation, to ensure that predictions and recommendations
conform to the temporal constraints of the process.

6 Conclusions
We have discussed how the synergic interplay of business process
management and integrative AI has led to a series of key advance-
ments in the management of flexible processes. We have in particular
overviewed:
1. how such processes can be captures using a declarative approach

based on temporal constraints;
2. how linear temporal logics on finite trace provide a solid, under-

lying formal basis for such processes;
3. how corresponding integrative AI techniques have been effec-

tively used to represent, mine, and synthesise these processes.
We have then discussed a number of frontier topics, mentioning
progress and open questions.

All in all, we hope to have convinced the reader that process sci-
ence is a relevant and interesting field of application for AI, and also
triggers genuinely novel research relevant for AI as such.

References
[1] A. Alman, F. M. Maggi, M. Montali, and R. Peñaloza. Probabilistic

declarative process mining. Inf. Syst., 2012. To appear.
[2] A. Alman, C. Di Ciccio, F. M. Maggi, M. Montali, and H. van der

Aa. Rum: Declarative process mining, distilled. In Business Process
Management - 19th International Conference, BPM 2021, Rome, Italy,
September 06-10, 2021, Proceedings, volume 12875 of LNCS, pages
23–29. Springer, 2021.

[3] A. Alman, F. M. Maggi, M. Montali, F. Patrizi, and A. Rivkin. Mon-
itoring hybrid process specifications with conflict management: An
automata-theoretic approach. Artif. Intell. Medicine, 139:102512, 2023.

[4] A. Alman, F. M. Maggi, M. Montali, F. Patrizi, and A. Rivkin. A frame-
work for modeling, executing, and monitoring hybrid multi-process

specifications with bounded global-local memory. Inf. Syst., 119:
102271, 2023.

[5] A. Artale, A. Kovtunova, M. Montali, and W. M. P. van der Aalst. Mod-
eling and reasoning over declarative data-aware processes with object-
centric behavioral constraints. In T. T. Hildebrandt, B. F. van Don-
gen, M. Röglinger, and J. Mendling, editors, Proc. of the 17th Inter-
national Conference on Business Process Management (BPM 2019),
volume 11675 of Lecture Notes in Computer Science, pages 139–156.
Springer, 2019.

[6] H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens.
METATEM: an introduction. Formal Asp. Comput., 7(5):533–549,
1995.

[7] G. Bergami, F. M. Maggi, A. Marrella, and M. Montali. Aligning data-
aware declarative process models and event logs. In A. Polyvyanyy,
M. T. Wynn, A. V. Looy, and M. Reichert, editors, Proc. of the 19th In-
ternational Conference on Business Process Management (BPM 2021),
volume 12875 of Lecture Notes in Computer Science, pages 235–251.
Springer, 2021.

[8] D. Calvanese, G. De Giacomo, M. Montali, and F. Patrizi. Verification
and monitoring for first-order LTL with persistence-preserving quan-
tification over finite and infinite traces. In Proc. of IJCAI, pages 2553–
2560, 2022.

[9] A. Camacho and S. A. McIlraith. Learning interpretable models ex-
pressed in linear temporal logic. In Proc. of ICAPS, pages = 621–630,
publisher = AAAI Press, year = 2019,.

[10] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich. Conformance
Checking - Relating Processes and Models. Springer, 2018.

[11] J. Carmona, B. F. van Dongen, and M. Weidlich. Conformance check-
ing: Foundations, milestones and challenges. In van der Aalst and Car-
mona [67], pages 155–190. ISBN 978-3-031-08847-6.

[12] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari.
Exploiting inductive logic programming techniques for declarative pro-
cess mining. Trans. Petri Nets Other Model. Concurr., 2:278–295, 2009.

[13] F. Chesani, C. D. Francescomarino, C. Ghidini, D. Loreti, F. M. Maggi,
P. Mello, M. Montali, and S. Tessaris. Process discovery on deviant
traces and other stranger things. CoRR, abs/2109.14883, 2021. URL
https://arxiv.org/abs/2109.14883.

[14] F. Chiariello, V. Fionda, A. Ielo, and F. Ricca. A direct ASP encoding
for declare. In Proc. of PADL, volume 14512 of LNCS, pages 116–133.
Springer, 2024.

[15] C. D. Ciccio and M. Montali. Declarative process specifications: Rea-
soning, discovery, monitoring. In W. M. P. van der Aalst and J. Car-
mona, editors, Process Mining Handbook, volume 448 of Lecture Notes
in Business Information Processing, pages 108–152. Springer, 2022.

[16] C. D. Ciccio, F. M. Maggi, M. Montali, and J. Mendling. Resolving
inconsistencies and redundancies in declarative process models. Inf.
Syst., 64:425–446, 2017.

[17] C. Corea, I. Kuhlmann, M. Thimm, and J. Grant. Paraconsistent reason-
ing for inconsistency measurement in declarative process specifications.
Inf. Syst., 122:102347, 2024.

[18] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Logic based modeling and analysis of workflows. In PODS, pages 25–
33. ACM, 1998.

[19] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dy-
namic logic on finite traces. In F. Rossi, editor, Proc. of IJCAI, pages
854–860. IJCAI/AAAI, 2013.

[20] G. De Giacomo and M. Y. Vardi. Synthesis for LTL and LDL on finite
traces. In Q. Yang and M. Wooldridge, editors, IJCAI, pages 1558–
1564. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL http://ijcai.
org/Abstract/15/223.

[21] G. De Giacomo, R. De Masellis, and M. Montali. Reasoning on LTL
on Finite Traces: Insensitivity to Infiniteness. In Proc. of AAAI, pages
1027–1033. AAAI Press, 2014.

[22] G. De Giacomo, R. De Masellis, F. M. Maggi, and M. Montali. Mon-
itoring constraints and metaconstraints with temporal logics on finite
traces. ACM Trans. Softw. Eng. Methodol., 2022.

[23] C. Di Ciccio and M. Mecella. On the discovery of declarative control
flows for artful processes. ACM Trans. Manage. Inf. Syst., 5(4):24:1–
24:37, 2015.

[24] I. Donadello, P. Felli, F. M. Maggi, M. Montali, and C. Innes. Con-
formance checking of fuzzy logs against declarative temporal specifica-
tions. In Proc. of BPM, LNCS. Springer, 2024.

[25] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals
of Business Process Management. Springer, 2013. ISBN 978-3-642-
33143-5.

[26] M. Dumas, F. Fournier, L. Limonad, A. Marrella, M. Montali, J. Rehse,
R. Accorsi, D. Calvanese, G. D. Giacomo, D. Fahland, A. Gal, M. L.
Rosa, H. Völzer, and I. Weber. Ai-augmented business process man-

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis 23

agement systems: A research manifesto. ACM Trans. Manag. Inf. Syst.,
14(1):11:1–11:19, 2023.

[27] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In B. W. Boehm, D. Garlan,
and J. Kramer, editors, ICSE, pages 411–420. ACM, 1999. ISBN 1-
58113-074-0.

[28] D. Fahland. Process mining over multiple behavioral dimensions with
event knowledge graphs. In van der Aalst and Carmona [67], pages
274–319. ISBN 978-3-031-08847-6.

[29] P. Felli, A. Gianola, M. Montali, A. Rivkin, and S. Winkler. Multi-
perspective conformance checking of uncertain process traces: An smt-
based approach. Eng. Appl. Artif. Intell., 126:106895, 2023.

[30] P. Felli, M. Montali, F. Patrizi, and S. Winkler. Monitoring arithmetic
temporal properties on finite traces. In Proc. of AAAI, pages 6346–6354,
2023.

[31] V. Fionda and G. Greco. LTL on finite and process traces: Complexity
results and a practical reasoner. J. Artif. Intell. Res., 63:557–623, 2018.

[32] V. Fionda and G. Greco. LTL on finite and process traces: Complexity
results and a practical reasoner. J. Artif. Intell. Res., 63:557–623, 2018.

[33] A. Gal. Everything there is to know about stochastically known logs. In
Proc. of ICPM, pages xvii–xxiii. IEEE, 2023.

[34] L. Geatti, A. Gianola, and N. Gigante. Linear temporal logic modulo
theories over finite traces. In Proc. of IJCAI, pages 2641–2647. ijcai.org,
2022.

[35] L. Geatti, A. Gianola, N. Gigante, and S. Winkler. Decidable fragments
of ltlf modulo theories. In Proc. of ECAI, volume 372 of Frontiers
in Artificial Intelligence and Applications, pages 811–818. IOS Press,
2023.

[36] L. Geatti, N. Gigante, A. Montanari, and G. Venturato. SAT meets
tableaux for linear temporal logic satisfiability. J. Autom. Reason., 68
(2):6, 2024.

[37] L. Geatti, M. Montali, and A. Rivkin. Foundations of reactive synthesis
for declarative process specifications. In Proc. of AAAI. AAAI Press,
2024.

[38] G. D. Giacomo and M. Favorito. Compositional approach to translate
ltlf/ldlf into deterministic finite automata. In Proc. of ICAPS, pages
122–130. AAAI Press, 2021.

[39] G. D. Giacomo, F. M. Maggi, A. Marrella, and F. Patrizi. On the disrup-
tive effectiveness of automated planning for ltlf -based trace alignment.
In S. Singh and S. Markovitch, editors, Proc. of AAAI, pages 3555–
3561. AAAI Press, 2017.

[40] B. Greenman, S. Prasad, S. Zhu, G. De Giacomo, S. Krishnamurthi,
M. Montali, T. Nelson, M. Zizyte, and A. Di Stasio. Misconcep-
tions in finite-trace and infinite-trace linear temporal logic. In Proc.
of FM’24), noeditor = André Platzer and Kristin-Yvonne Rozier, pub-
lisher = Springer, year = 2024, series = LNCS, note = To appear,.

[41] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Ping-
gera, and B. Weber. Understanding declare models: strategies, pitfalls,
empirical results. Softw. Syst. Model., 15(2):325–352, 2016.

[42] T. T. Hildebrandt and R. R. Mukkamala. Declarative event-based work-
flow as distributed dynamic condition response graphs. In PLACES,
volume 69 of EPTCS, pages 59–73, 2010.

[43] T. T. Hildebrandt and R. R. Mukkamala. Declarative event-based work-
flow as distributed dynamic condition response graphs. In K. Honda
and A. Mycroft, editors, Proceedings Third Workshop on Programming
Language Approaches to Concurrency and communication-cEntric
Software (PLACES 2010), volume 69 of EPTCS, pages 59–73, 2010.

[44] A. Ielo, M. Law, V. Fionda, F. Ricca, G. D. Giacomo, and A. Russo.
Towards ilp-based LTL f passive learning. In Proc. of ILP, volume
14363, pages 30–45. Springer, 2023.

[45] M. Kerremans, D. Sugden, and N. Duffy. Gartner magic quadrant for
process mining platforms. Technical report, Gartner, 2024.

[46] M. Laghmouch, B. Depaire, N. Gigante, M. Jans, and M. Montali. De-
clare moges: Model generator and specializer. In Demo Track of ICPM,
volume 3648 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[47] M. Leucker and C. Schallhart. A brief account of runtime verification.
J. Log. Algebraic Methods Program., 78(5):293–303, 2009. URL https:
//nodoi.org/10.1016/j.jlap.2008.08.004.

[48] G. Li, R. Medeiros de Carvalho, and W. M. P. van der Aalst. Au-
tomatic discovery of object-centric behavioral constraint models. In
W. Abramowicz, editor, Proc. of the 20th International Conference on
Business Information Systems (BIS 201), volume 288 of Lecture Notes
in Business Information Processing, pages 43–58. Springer, 2017.

[49] J. Li, S. Zhu, G. Pu, L. Zhang, and M. Y. Vardi. Sat-based explicit LTL
reasoning and its application to satisfiability checking. Formal Methods
Syst. Des., 54(2):164–190, 2019.

[50] F. M. Maggi, M. Westergaard, M. Montali, and W. M. van der Aalst.
Runtime verification of LTL-based declarative process models. In

S. Khurshid and K. Sen, editors, RV, volume 7186 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2011. ISBN 978-3-642-
29859-2. URL http://dx.nodoi.org/10.1007/978-3-642-29860-8.

[51] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der Aalst.
Runtime verification of ltl-based declarative process models. In Proc.
of the 2nd International Conference on Runtime (RV), volume 7186 of
LNCS, pages 131–146. Springer, 2011.

[52] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst. Ef-
ficient discovery of understandable declarative process models from
event logs. In J. Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza,
editors, CAiSE, volume 7328 of Lecture Notes in Computer Science,
pages 270–285. Springer, 2012. ISBN 978-3-642-31094-2. URL
http://dx.nodoi.org/10.1007/978-3-642-31095-9.

[53] F. M. Maggi, M. Montali, and R. Peñaloza. Temporal logics over finite
traces with uncertainty. In Proc. of the 34 AAAI Conference on Artificial
Intelligence (AAAI 2020), pages 10218–10225. AAAI Press, 2020.

[54] F. M. Maggi, M. Montali, R. Peñaloza, and A. Alman. Extending tem-
poral business constraints with uncertainty. In D. Fahland, C. Ghidini,
J. Becker, and M. Dumas, editors, Proc. of the 18th International Con-
ference on Business Process Management (BPM 2020), volume 12168
of Lecture Notes in Computer Science, pages 35–54. Springer, 2020.

[55] M. Montali. Specification and Verification of Declarative Open Inter-
action Models: a Logic-Based Approach, volume 56 of Lecture Notes
in Business Information Processing. Springer, 2010. ISBN 978-3-642-
14537-7.

[56] M. Montali. Constraints for process framing in ai-augmented BPM. In
Proc. of BPM Workshops, volume 460 of LNBIP, pages 5–12. Springer,
2022.

[57] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari. Declarative specification and verification of service
choreographies. TWEB, 4(1), 2010. URL http://nodoi.acm.org/10.1145/
1658373.1658376.

[58] M. Pegoraro, M. S. Uysal, and W. M. P. van der Aalst. Conformance
checking over uncertain event data. Inf. Syst., 102:101810, 2021.

[59] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DECLARE:
Full support for loosely-structured processes. In EDOC, pages 287–
300, 2007.

[60] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DECLARE:
Full support for loosely-structured processes. In EDOC, pages 287–
300. IEEE Computer Society, 2007.

[61] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE, 1977.

[62] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Infor-
mation Systems - Challenges, Methods, Technologies. Springer, 2012.

[63] M. Roveri, C. D. Ciccio, C. Di Francescomarino, and C. Ghidini. Com-
puting unsatisfiable cores for ltlf specifications. J. Artif. Intell. Res., 80:
517–558, 2024.

[64] R. Roy, D. Fisman, and D. Neider. Learning interpretable models in the
property specification language. In Proc. of IJCAI, pages 2213–2219.
ijcai.org, 2020.

[65] S. W. Sadiq, W. Sadiq, and M. E. Orlowska. Pockets of flexibility in
workflow specification. In ER, volume 2224 of LNCS, pages 513–526.
Springer, 2001.

[66] M. P. Singh. Distributed enactment of multiagent workflows: Temporal
logic for web service composition. In AAMAS, pages 907–914. ACM,
2003.

[67] W. M. van der Aalst and J. Carmona, editors. Process Mining Hand-
book, volume 448 of Lecture Notes in Business Information Processing.
Springer, 2022. ISBN 978-3-031-08847-6.

[68] W. M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016. ISBN 978-3-662-49850-7.

[69] W. M. P. van der Aalst. Object-centric process mining: Dealing with
divergence and convergence in event data. In Proc. of SEFM, volume
11724 of LNCS, pages 3–25. Springer, 2019.

[70] B. F. van Dongen, J. De Smedt, C. Di Ciccio, and J. Mendling. Con-
formance checking of mixed-paradigm process models. Inf. Syst., 102:
101685, 2021.

[71] J. vom Brocke, W. M. P. van der Aalst, N. Berente, B. van Dongen,
T. Grisold, W. Kremser, J. Mendling, B. T. Pentland, M. Roeglinger,
M. Rosemann, and B. Weber. Process science: the interdisciplinary
study of socio-technical change. Process Sci, 2(1), 2024.

[72] M. Westergaard. Better algorithms for analyzing and enacting declara-
tive workflow languages using ltl. In S. Rinderle-Ma, F. Toumani, and
K. Wolf, editors, BPM, volume 6896 of Lecture Notes in Computer Sci-
ence, pages 83–98. Springer, 2011. ISBN 978-3-642-23058-5. URL
http://dx.nodoi.org/10.1007/978-3-642-23059-2_10.

[73] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi. Symbolic ltlf
synthesis. In IJCAI, pages 1362–1369, 2017.

M. Montali / AI for Declarative Processes: Representation, Mining, Synthesis24

