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Abstract. The concept of General-Purpose AI (GPAI) has recently
been permeating research papers, policy reports and legal regula-
tions, as a way of referring to current and future models with high
levels of capability and generality. Yet precisely characterising GPAI
models remains elusive. Current definitions often describe GPAI
models as those that ‘competently perform a wide range of distinct
tasks’. To properly characterise GPAI we need well-grounded defi-
nitions of capability and generality. In this paper, I will briefly intro-
duce –or revisit– the concept of capability, going well beyond aggre-
gate performance on benchmarks, and discuss practical procedures
to evaluate the capability profile of AI systems, and derive generality
metrics from them.

1 Introduction
The term General-Purpose AI (GPAI) has become increasingly pop-
ular as soon as large language models started to offer a wide-range
of functionalities, becoming the first systems in the history of AI to
be really general-purpose, doing many things for which they were
not programmed. As technology will evolve and may even replace
large language models or other foundation models as the dominant
paradigm, the broader term GPAI has been used by researchers and
regulators1, but no widely accepted definition has been given. There
is no consensus in what elements should be necessary for GPAI, such
as competency for a wide range of tasks, preferably out of the box,
and what elements should be excluded, such as metacognition (e.g.,
‘acknowledgment of its own limitations’) [41]. Also, there is confu-
sion between GPAI and human-level machine intelligence, AGI or
any other interpretation of very advanced artificial intelligence.

In this paper, we explore the range of interpretations and take a
pragmatic view of GPAI as combining the notions of capability and
generality. While capability and generality have many different in-
terpretations, there is some common ground to build on. Informally,
capability will be defined as a property of a system that allows it to
perform well on tasks that demand that capability. For instance, a
model has addition capability level 7 if it can add up numbers cor-
rectly up to 7 digits. Generality will be defined as regularity in the
capability levels for a range of domains. For instance, a model is
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general if it has similar capability levels in arithmetic, history, com-
monsense reasoning, social situations, etc. Our goal in this paper is
to give more precise definitions of these concepts, and set some op-
erational criteria so that we can locate current and future models in
the space of generality and capability, as illustrated by Figure 1.

Figure 1. As per 2024, our approximate intuition about models (and
systems) that are General-Purpose AI (GPAI) can be represented by having
some degree of generality and some degree of total capability. For instance,
many early AI systems were neither capable nor general, such as Q-learning

(a RL algorithm) or Roomba (a robotic cleaner). In the past few years we
have seen very capable systems for narrow tasks (e.g., DeepBlue for chess,

and AlphaGo for Go, with higher capability than the best players in the
world), and also some general systems but with limited capability (such as

GPT3). More recently, we are starting to see models of significant degrees of
capability and generality at the same time, such as GPT4, performing a wide
range of tasks reasonably well. In this paper we propose a way to map these

systems into different grades of GPAI.

The rest of the paper is organised as follows. The following sec-
tion 2 discusses why general-purpose AI is so relevant, followed by
different interpretations of capability and generality, historically and
from different disciplines in section 3. Section 4 identifies several
misconceptions and caveats. Finally, section 5 is ready to introduce
the operational mechanism to characterise GPAI. We close the paper
with a short discussion about they way the criteria outlined here can
be revised and kept up-to-date.
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2 The impact of generality

The impact of AI, both in transformative power and risks, is highly
dependent on how general a system is. GPAI systems have a faster
penetration rate (ChapGPT reached millions of users within days),
higher adaptability and interoperability with many other tools (plug-
ins, agents and RAG with language models), stronger effects on hu-
man cognition (dependency) and everyday activities (education and
jobs), and pose much more difficult challenges for safety and control
(e.g., deception, manipulation, etc.). For instance, while AlphaFold
may have important applications, its effect on society and its risks
are more limited than systems such as chatGPT or Gemini.

This relevance of GPAI is supported by the well-known effect of
generality in natural intelligence, starting with human intelligence.
The association of generality with intelligence appears as soon as
classical and medieval philosophy dealt with human faculties, and
especially reasoning. Ramon Llull sought the ideal of an ‘ars gener-
alis’, the power that could ‘solve all solvable tasks’ [31]. Yet our sci-
entific understanding of intelligence is more recent, developed within
the fields of (human) psychology and psychometrics, comparative
(animal) cognition and other social sciences [16]. All these fields
emphasise the importance of generality.

For instance, Spearman developed the notion of the g factor, a la-
tent factor that explained the variance of performance in a human
population for a wide range of cognitive tasks. In fact, generality is
incorporated in the very definition of (general) ‘intelligence’ as “the
capacity of getting along well in all sorts of situations” [30]. General
intelligence was assimilated with both breadth and depth of capa-
bilities, and good scores in IQ tests were correlated with ‘success
in life’ and even life expectancy. In animal cognition, generality is
usually seen as opposed to specialisation, and in the context of brain
‘modularity’ (some functions can only be developed in some spe-
cialised parts of the brain) vs ‘plasticity’ (many parts of the brain
can do different functions) [35]. A similar sociotechnical perspective
is framed under the concept of ‘general-purpose technology’, and in
economics, around specialisation and division of labour. Overall, the
relation between generality and intelligence in all sciences dealing
with it is as important as complex, and so is the concept of ‘general
intelligence’ (natural or artificial) [16, 19].

The history of artificial intelligence absorbs all these perspectives.
The early ambition of AI was precisely to build a general-problem
solver [28]. However, early failures shifted the focus to what was
known as ‘narrow’ artificial intelligence, highly specialised systems,
only solving one or few tasks. Under this perspective, generality was
expected to be achieved as a bunch of tricks, to the extreme of sys-
tems becoming a ‘big switch’: determining which module to use for
each particular problem. Such was the challenge in the early days
of AI that McCarthy’s Turing award lecture in 1971 had the name
‘Generality in AI’ [27]. For many decades the dream of having AI
that could “adapt its behavior to meet goals in a range of environ-
ments” [9] looked unattainable. Concepts such as artificial general
intelligence (AGI), human-level machine intelligence (HLMI) and
strong AI were considered synonyms, even if some of them were,
and still are, poorly defined. What was clear is that given the impact
that natural general intelligence has had on our planet, represented by
the homo sapiens, general AI could also have a transformative effect
on every aspect of human life, from jobs to existential risks.

It is in this context when large language models (LLMs) took the
world by surprise, and showed, for the first time in AI, effective gen-
erality. No-one can deny that some LLMs, better or worse, yet off-
the-shelf, can do many tasks.

3 Perspectives of capability and generality

Most AI systems, influenced by the traditional narrow approach, are
evaluated with benchmarks that measure performance on one or more
tasks, such as object classification, task scheduling or language trans-
lation. Benchmarking is problematic because the results that are ob-
tained for these benchmarks lead to overestimates (yet sometimes
underestimates) of what models can really do [3]. For instance, look-
ing at Figure 5, we may get the idea that most models today are su-
perhuman, but then we realise they do not perform close to human in
the real world or for variations of the tasks. Also, when models really
become superhuman in some areas, it is hard to extrapolate beyond
that, as most benchmarks saturate on a scale topped by 100% accu-
racy or human-level performance. Finally, in situations where tasks
change, or we want to extrapolate for new tasks, the aggregate per-
formance on a benchmark is mostly useless to extrapolate for new
tasks, even in the same domain, since they can contain instances of
different difficulty. While all these problems in the current evalua-
tion paradigm are recognised, the main cause is an elephant in the
room: performance measures some metric of success on a distribu-
tion of tasks, and the measurement will not apply when the distribu-
tion changes. This paradigm leads to poor test reliability and validity,
and ultimately to the bad reputation of AI evaluation.

Instead of the dominant paradigm focused on ‘performance’, we
need a different one based on the notion of ‘capability’, which char-
acterises the system independently of the distribution, and may have
predictability across different tasks. Because capability is what we
really need, many AI labs, but also some academics, use the term ‘ca-
pability’ when they are still measuring aggregate performance [36].
This confusion between performance and capability is easy to make
because performance can be a good proxy for capability in narrow
benchmarks and applications. However, performance is usually a bad
proxy for capability for general-purpose systems, and it can be espe-
cially problematic for estimating generality, as performance is usu-
ally incommensurate across different tasks and benchmarks.

To make the distinction clear, performance is a function of both the
system and a distribution of tasks, whereas capability is a property of
a system that informs about whether that system is able to succeed on
a task that demands that capability. For instance, an AI system can be
85% successful in separating recyclable materials out of a tray, but
if the tray distribution changes, that probability will likely change.
On the other hand, if the capability of the system is estimated to
be high for trays up to ‘4 materials’, but unreliable when more than
four materials are presented, then we can anticipate how the system
will behave for a new batch of trays if we know how many elements
each tray contains. The capability is still ‘4 materials’, and does not
change if we change the distribution. Given this intuition, we can
give the following definition of capability:

Definition 1. A capability is a property of a system such that once
estimated at a certain level, success is likely for tasks that have de-
mands below that level (i.e., easy tasks) and unlikely for tasks that
have demands above that level (i.e., hard tasks). See Figure 2.

Different formulations of capability have been introduced in many
disciplines, especially in psychometrics and cognitive psychology.
For instance, the previous definition is strongly inspired by the def-
inition of ability in item response theory in psychometrics [8]. The
notion of demand (or difficulty) of a task instance (or item) is crucial
to predict whether a system is going to succeed for a particular prob-
lem. For instance, if a student has a capability for addition up to 10
digits (their capability), as in Figure 2, this is more predictive than
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Figure 2. Figurative subject characteristic curve: expected success
probability (y-axis) of a given subject (e.g., a human or an AI model)
depending on the difficulty of items (x-axis). We see that for items of

difficulty lower than 10 the probability of success is high. With items with
difficulty greater than 10 the probability is low. Because of this we could say

that the capability of the subject is approximately 10, around the steepest
part of the curve where the probability of success plummets.

if we say that the student has achieved 85% success in a particular
combination of sums (their performance). This high percentage may
simply be caused by only having easy additions in the dataset.

Accurately estimating capability is not always an easy problem for
non-human animals, humans and AI systems [16, 4]. But distinguish-
ing capability from performance is crucial to address our following
question: a concept of generality.

First, it is important that all stakeholders are aware of the differ-
ent interpretations of generality, including technical developers and
evaluators, but also policy-makers and regulators. It is also impor-
tant that all understand whether the definitions and assessments are
capturing the different intuitive notions about generality. Let us enu-
merate some of the most common perceptions of generality, again
from different disciplines:

1. All-tasks: Success in all situations. This is a very simple defini-
tion, but without any qualification on ‘all’, it leads to all sort prob-
lems such as incomputability, no-free-lunch results, etc., even if a
universal distribution [24] is chosen. Caveat: no system can suc-
ceed in all situations.

2. Many-tasks: Success in a wide range of situations. This is a qual-
ification of the above that makes the definition subjective on the
definition of that range, or distribution, of situations. Also, are we
expecting infallible success in all situations in that range or an ag-
gregate of that success weighted by the distribution? Caveat: who
chooses the task usage distribution that matters, and the aggrega-
tion or threshold function?

3. Human-tasks: Able to do everything a human can do. This is a
refinement from the above by defining the distribution of situa-
tions in an anthropocentric way, but sets a very high threshold; we
already have general systems that are far from doing everything
a human can do. Caveat: who identifies what humans can do? Is
this of an average human or the best human?

4. Capabilities: Having an elemental range of capabilities. This is
more abstract than ‘a wide range of situations’. As a capability
can serve for many tasks, and many tasks involve many capabil-
ities, this is another way to define the breadth that is expected in
generality. Also, some capabilities, such as the ability of learning,
are potential rather than actual. Caveat: how can we determine the
number and structure of capabilities that define a general system?
Are these capabilities actual or potential?

5. Out-of-distribution: Success out of distribution the system has
been trained or habituated to. In principle, if the system does not
require any adaptation during deployment then this is associated

with the concept of ‘generalisation power’ in learning. If some
adaptation is needed then we are in the following item, ‘trans-
fer’. Caveat: how can we define out-of-distribution and what is
the level of decreased performance that is acceptable?

6. Transfer: Flexibility to adapt to new tasks. This introduces a dy-
namic aspect or potentiality; the system may not able to solve
everything, or even a wide range of tasks, at the actual moment,
but can adapt easily to new tasks in an autonomous way. Caveat:
this requires notions of task similarity (very different tasks are ex-
pected to be harder), effort (time taken or number of examples
needed) and external scaffolding (help from humans through hints
or teaching).

7. Compositionality: Integration of different skills for complex
tasks. A system can solve tasks involving specific skills (e.g.,
arithmetic and medicine) but may be incapable of combining these
two skills for tasks that require both. There has been disagreement
on whether language models, for instance, are simply stochas-
tic parrots [2] or can really compose skills [46] to some extent.
Caveat: how to identify skills and modes of composition?

8. Multimodality: Integration of different input and output modali-
ties, such as text, audio, video, etc. This is a less common under-
standing of generality in its own, but it is true that the more percep-
tual capabilities and kinds of interaction the model supports, the
more general we consider it to be. When actuators are complex
this can also be applied to psychomotor skills as well. Caveat: We
have examples of reduced modality in humans (e.g., deafness) and
machines (text-only GPT) that are still considered very general.

Some definitions of generality or general-purpose AI focus on one or
more of these perspectives. For instance, [12] combine item 2 (many-
tasks) and an integration of items 5 and 6 into the following defini-
tion of GPAI: “an AI system that can accomplish or be adapted to
accomplish a range of distinct tasks, including some for which it was
not intentionally and specifically trained”. In general, the perspec-
tives overlap significantly, and many definitions tend to make two
major clusters: items 2 (many-tasks) and 4 (capabilities) represent-
ing the dimension of breadth, and items 5 (out-of-distribution) and 6
(transfer) representing the dimension of adaptability or re-purposing.
Figure 3 illustrates the breadth conception.

Figure 3. The profiles of three AI systems performing differently for a
range of domains A, B, ..., . The system on the left has high capability levels

for two domains (A and C) and intermediate capability level for I. The
system in the middle does not excel in any domain but has some capability in

all domains. The system on the right has good capability levels for all
domains. Depending of the identification of domains (the usage distribution),
the scales for each of them, and the metrics of capability and generality, we

can determine which of these systems are general-purpose AI systems.

Many other definitions of general AI conflate generality with high
capability. Of course, we would like to have both capability and gen-
erality, but they are not the same thing [19]. We know of humans
that can master a small set of things compared to others that can do
many different things but not very well. While the former seemed to
correspond to narrow AI systems (such as AlphaGo), the latter had
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not been possible in AI until large language models, such as GPT-3,
showed that they could do many things (even if not to an advanced
degree yet). Figure 1 showed a schematic representation of models
and systems in this space.

However, when these definitions and conceptions are turned into
evaluation instruments, what we usually find is the many-benchmarks
approach, which is half-way between the many-tasks and human-
tasks perspectives. To approach the diversity angle of generality or to
assimilate a group of benchmarks with a ‘capability’, benchmarks are
grouped by domains, such as ‘language understanding’ [14], ‘math-
ematics’ [15], ‘common-sense reasoning’, etc. Identifying these do-
mains, as used in Figure 3, will be fundamental for determining a
system profile, as the set of domains has to be a good clustering of
tasks, so that generality really captures diversity. On many other oc-
casions, benchmarks are just created by agglutination, such as BIG-
Bench [36] or with the intention, yet no proof, of being diverse, such
as HELM [25]. Averages are calculated on the whole benchmark or
on selected ablations, such as HELM-light, trying to be more repre-
sentative of the tasks that matter. Even if the selection is performed
with care, the aggregation of results can give misleadingly good ag-
gregate results even if the system is performing very well on only
some domains, and very poorly on the rest, as in Figure 3 (left). In
other words, performance aggregation hinders the analysis of gen-
erality. But, more importantly, an apparently irregular set of results
may be caused by benchmarks with different difficulty distributions,
even if they are of the same domain. For instance, Figure 4 shows that
even if MMLU includes questions whose domains overlap with those
of GPQA and MATH, when we look at GPQA, it may give the im-
pression that these models are weak on the “domain of GPQA”. This
is simply wrong, since models score worse on GPQA just because
this benchmark contains a distribution of more difficult questions.
This example shows that the notion of generality needs a calibration
of the results for different domains so that they are commensurate,
i.e., the magnitude estimated for one domain is on the same scale
than the other domains, avoiding aggregating apples and pears.

Figure 4. Results for several foundation models on common benchmarks
as reported by OpenAI (May 2024). We see that two benchmarks that are

about a similar domain (MMLU and GPQA) show different levels of
performance, because one (GPQA) has instances of higher difficulty. Does
this look more like the middle or the right plot in Figure 3? (Image from

https://openai.com/index/hello-gpt-4o/).

The question of the magnitude of the scale is also very impor-
tant for another reason: benchmarks saturate, approaching the max-
imum of the performance metric or the human standard that is used
for ground truth [18]. For instance, Figure 5 (red curve) shows how
MMLU is saturating, as well as some other benchmarks. This sug-
gests that more difficult instances in the test set are needed to track

the progress of these systems. Even if the training set has limited dif-
ficulty, the test results could well go beyond the difficulty levels in
the training set; it has been shown that big models extrapolate well
from easy to difficult examples [13, 38]. For all this to make sense,
we need to calibrate old and new results. However, these extended
or harder examples typically deviate from the distribution, so the re-
sults are affected by more factors than just an increase of difficulty.
As a result, there is no calibration of results when benchmarks are
evaluated with performance rather than capability.

Figure 5. Saturation behaviours for some other benchmarks, also
compared with human average. Plot from:

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard.

.
Seen all the problems of the aggregation of benchmark perfor-

mance, we need an alternative paradigm for defining general-purpose
AI, working on some of the dimensions seen in this section.

4 Caveats in measuring generality

Any metric of generality has to make some assumptions about what
we call the task usage distribution T , i.e., a probability distribution
over tasks depending on what we consider relevant or meaningful
in this world. We can use P(t|u) to exemplify that this distribution
of tasks t is different for each user u. This may also be different in
different times and contexts. A fine-grained view of this distribution
does not preclude us to make coarser aggregations, such as consider-
ing the population of users, or even all humans, to get a common task
usage distribution PT (t) = P(t|u)P(u), assuming independence be-
tween users.

Given a ‘subject’ system s to be evaluated and a user u, we can
randomly sample from this distribution T and calculate for each t the
utility or validity v(s, t, u). With this we can estimate the expected
value Et∼T [v(s, t, u)], an aggregate performance metric for task dis-
tribution T . However, imagine we are only interested in the domains
of arithmetic and diplomacy, and assume that arithmetic has 50% of
the mass of the distribution in T and diplomacy has the remaining
50%. A perfect system on arithmetic, failing on all diplomacy tasks
would score the same as another system succeeding on half of each
domain. We tend to think the second system is more general. This
illustrates that what matters is the distribution of success across do-
mains, not aggregation over all individual tasks. In order to accom-
modate for this, it is usual to group tasks into more abstract domains
D1, D2, ..., Dk, and apply this distributional analysis on the domains
and not on the possibly infinite number of tasks. For clarity, since the
term ‘task’ can represent a specific task example (e.g., “What’s the
sum or 593 + 256?") or a broad set of examples (e.g., the addition
task), from now on we will use the term ‘instance’ for the former and
‘domain’ for the latter.
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If we now have two levels, instances and domains, what do we
do with the results of the instances of each domain? In the previ-
ous example, what does it mean to succeed in 50% of examples
in the arithmetic domain? The number of arithmetic operations we
might conceive is infinite, so we again need a distribution or sample
of common arithmetic operations. In other words, we need P(i|D),
the probability of instance i happening in domain D. This is what
a usual benchmark is, a collection of likely or common examples.
For instance, a simple addition involving numbers of 10e500 digits
cannot be solved in this universe, and we do not expect this one to
appear in the sample. However, while this commonplace sampling is
the traditional approach in AI benchmarks, this has the problem that
this P(i|D) is usually hard to estimate and it may change drastically
from one benchmark to another of the same domain, intentionally or
unintentionally. For instance, two image classification benchmarks
can contain similar images, but one can contain more difficult ones.
The same system can score 20% on one benchmark and 90% on the
other. Which of these percentages should we use as the capability for
that domain? The answer is clear: none of these, or any aggregate of
performance, should be used as an estimate for capability2.

As introduced in definition 1, performance is the aggregate ob-
served quality of a pair system and distribution, while capability is
a property of the system, independent from the distribution. Only
with this interpretation can we have a capability that does not change
when we change the distribution in the benchmark (but should nat-
urally lead to changes in performance out of the distribution). Con-
sider again the very simple example of addition. If we define the
difficulty of addition to be the average number of digits of the two
addends, and we have the data represented in Figure 2, then we could
say that the capability of a system is estimated at 10, because this is
the inflection point where errors become more systematic.

Under this view, for each domain D, we need to introduce a dif-
ficulty function h(i) for each task instance in the domain (i ∈ D).
These functions can be derived from intrinsic characteristics of the
task or can be derived empirically from a human population, such as
done in item response theory (IRT) [8, 43]. Given this function we
can then sample instances in a sufficiently wide range of difficulties,
so that we can estimate a subject characteristic curve, showing the
evolution of the response of the system on the y-axis for increas-
ing difficulty on the x-axis. See Figures 2 and 6. From this (ideally
decreasing) curve, there are different ways to estimate the capabil-
ity of the system, such as the point of maximum slope, the point
where response goes below a threshold, or, if there is proper scaling
of the difficulties on the x-axis, the area under the curve. The latter
interpretation is actually assuming a uniform distribution of difficul-
ties, so P(i|D) = P(i|h,D)P(h|D) where P(h|D) is uniform and
P(i|h,D) should not affect the result in expectation, as a good diffi-
culty function should be defined such that ∀i, j ∈ D,h(i) = h(j) :
E[v(s, i)] = E[v(s, j)], i.e., there is the same expectation of success
for instances of the same difficulty.

Reached this point, the estimation of generality would rely on:

1. Domain partition: A partition of task domains D1, D2, ..., Dk,
with a domain distribution D. If the partition is balanced (all do-
mains are equally important in the task usage distribution), then D
can be assumed uniform: PD(Di) = 1/k.

2. Capabilities for each domain: A metric of capability for
each domain, ideally based on subject characteristic curves

2 A large majority of references in AI (with notable exceptions, e.g., [32]) use
the term ‘capability’ in a very vague way or as a synonym of performance.
This is simply inaccurate and at odds with the traditional use of capability in
psychology as a construct, a latent trait rather than an observable variable.

Figure 6. Actual subject characteristic curve (blue). Results of GPT-NeoX
for 100,000 instances i of the addition of two decimal numbers, all of them

with the same prompt “What is a + b?”, where a and b refer to numbers up to
100 digits (plot only showing until 50 digits). Results are shown by the

number of digits of the sum (up to 100 digits), which works as a proxy for
difficulty h(i), and the scale for demand and capability. The blue ‘curve’

shows the ratio of correct answers, while the rest (in orange) is errors. If we
were aiming for a probability of success of 0.5, we would say that the

capability is 5 digits. If we were aiming to secure a probability of success of
0.9 we would say that the capability is 3 digits. The area of the blue curve is
approximately 6.4, which given the sigmoid shape of the curve we could also
take as a proxy for capability. Note that the accuracy on the whole dataset is

so much distribution-dependent that for this distribution in particular
accuracy is only 0.0065 (a totally uninformative number). Plot from [10].

.
using difficulty. For instance, the capability of system s for
domain D could be derived by sampling instances from a
range of difficulties for that domain to estimate Ψ(s,D) =∑

i∈D P(i|D) · v(s, i) =
∑

i∈D,h∈1..k P(i|h,D) · P(h|D) ·
v(s, i) = 1/k

∑
i∈D,h∈1..k P(i|h,D) · v(s, i) by assuming

P(h|D) uniform (capability as area under the curve).
3. Regularity across domains: A metric of generality based on the

regularity of capabilities. If the difficulties for different domains
are commensurate (capabilities in the same scale) and D is uni-
form, this could be based on the standard deviation of Ψ(s,D)
for all domains (for a justification of this choice, see proposition
1 in [19]), or a unit-less coefficient of variation for higher profile
monotonicity. Alternatively, we could use the number of domains
above a capability threshold, such as 25% of humans.

The items above are not straightforward and require scientific exper-
tise on evaluation and significant consensus. For instance, the domain
distribution might contain a few domains, or might contain hundreds.
It must be broad, as the list of capabilities in psychometrics, the set of
disciplines used in education or the collection of work tasks identified
from human occupations. For instance, these could be elicited from
sources such as the second level of the Cattell-Horn-Carroll hierar-
chy [34], the list of abilities, knowledge areas or skills in the occupa-
tional database O*Net (https://www.onetonline.org/), the frequency
of computer tasks (https://os-world.github.io/), etc. The choice of
domains is as important as tricky, but at least these examples from
different disciplines are based on some criteria of balance and rep-
resentativeness, and supported by some intuition of what task us-
age distribution represents. In contrast, many other compendiums of
tasks used in AI are created by the availability of benchmarks, such as
BIG-Bench [36], rather than a clear selection criteria. Also, the iden-
tification of a good validity metric, v(s, i), even if generalised for all
users, requires a thorough analysis of all the elements discussed in
the previous subsection. Finally, the difficulties or demands for each
domain require expert effort and careful analysis of key tasks in the
domain, using proxies of observable features (e.g., number of digits)
or a rubric that is used to annotate each example. Deriving scales that
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are commensurate (e.g., comparing level 3 in arithmetic with level 2
in diplomacy) must currently rely on human standardisation, until
more theoretical or computational underpinnings exist [17].

Even if these questions are resolved, there are some extra caveats.
First, we have the problem of evaluation contamination, where items
in the test dataset, or very similar questions, have been used in the
training dataset for these systems. This can happen in more subtle
ways than one might expect, as simply querying a large language
model through an API could lead to the developers of the language
model to use that query to improve the model for subsequent builds
[1]. The problem of contamination usually leads to overestimation
of capabilities, and indirectly to overestimation or underestimation
of generality: models tend to be better on those common domains
for which there is a lot of data and tests (e.g., educational tests for
mathematics, geography, physics, etc.), and worse on those domains
for which fewer tests are available (e.g., spatial reasoning).

A second problem that is yet to be properly recognised is dissimu-
lation [23, 16, 11], now recently referred to as ‘sandbagging’ [42], by
which capabilities and generality can be underestimated. A system,
its developers or providers can pretend the system is less intelligent
than it really is during testing, in order to be below some thresholds of
capability or generality. Making their systems look worse than they
really are seems to be against the logic of most organisations behind
big models. However, they can still underperform during (private)
testing while publicising good results publicly. For instance, they can
fail on purpose in an particular subset of tasks to game the generality
metric, thus getting the conformance to operate. Detecting dissim-
ulation in a purely behavioural way is extremely complicated and
probably impossible in the long term, despite the current approach
of discovering capabilities that appear for many tasks [39] but suspi-
ciously not for others. White-box approaches for mechanistic inter-
pretability may be unfeasible for this, especially if dissimulation is
conceived on purpose by the developers, and hence hidden in intri-
cate ways [11]. The most effective option is to take punitive actions
(fees) in case intentional dissimulation happens. But the fines must
be considerable taking into account how much is at stake to get a
product release and how difficult it is to detect dissimulation.

Table 1 summarises major caveats and solutions.

5 Characterising GPAI

We now outline a basic protocol for evaluating whether an AI com-
ponent, model, system or product should be considered GPAI.

1. Subject contour: Determine the AI ‘subject’ s to be assessed, as a
component, model, system or product, its boundaries, dependen-
cies and interactions, especially on human computation or other
intelligent systems. If s is accessed through API, determine that
the system is not updated or modified to game the evaluation or
use the evaluation test for updating its weights or filters [1]. Ex-
ample: The subject system is set to be the March 2024 ‘build’ of
GPT4-Turbo, with no Internet access or plug-ins, known system
prompt and no compute limitations during deployment. For cer-
tification, there is previous agreement with Microsoft/OpenAI to
evaluate a version on an inspectable or owned server not to be
updated during the testing.

2. Task incentives and elicitation: Identify incentives or assurance
that the system will not dissimulate, i.e., pretending being less ca-
pable it really is. This may be intentional (companies seeking not
to be catalogued as GPAI) or unintentional (alignment for toxi-
city, bias, risks, etc., ends up with a less capable or less general

system). Example: A specific red-teaming effort to elicit dormant
or cancelled capabilities shows that there is an underestimate of
capability or generality in our assessment. For instance, we can-
not discard alignment through RLHF may have introduced some
possibility of dissimulation in GPT4 that can be elicited back by
some clever contextual information.

3. Usage distribution, domains and difficulties: Elicit a parti-
tion and distribution of task domains P(D) given the context
or the population of potential users, a difficulty function h(i)
for each instance in each task domain i ∈ D. Identify a dif-
ficulty probability P(h|D) and conditional instance probability
P(i|h,D) per task domain. Sampling can be done by P(i) =
P(i|h,D)P(h|D)P(D). Example: for a context of generalist
mathematics assistants we determine that the addition of nat-
ural numbers appears in 5% of the queries of primary-school
students according to some real-world usage database of lan-
guage models (e.g., some specialised versions of [21, 45]). So
P(Addition) = 0.05. The difficulty function h(i) is the sum of
the number of digits, the difficulty probability P(h|D) is uniform
from h = 0 to h = 20 digits and zero elsewhere, and P(i|h,D)
is also uniform. Basically, this means that we will calculate the
capability for the task by looking at additions of up to 20 digits
in total. The same procedure is performed for each of the other
considered mathematics domains.

4. Battery construction: Construct a battery of tests using a sample
of instances using P(i) (or stratified according to P(D) and the
other conditional probabilities). Determine the degree of contami-
nation by preliminary testing of the system, introducing variations
(new instances) on some of the tasks controlling per (human) diffi-
culty. Explore instructional variations (e.g., prompts) to determine
factors or biases that may affect the performance for each task.
Example: For each task explore prompt sensitivity and possible
dissimulation, and other variations for each instance, to see what
changes affect performance. For addition, this could be ways in
which the query and the numbers can be represented, or included
in other problems (context).

5. Main Testing: Actually test the system. The whole sample of in-
stances and variations can be used. Alternatively, the evaluation
can be adaptive to maximise information about tasks and diffi-
culty thresholds. Capture as much information as possible, in-
cluding time as a function of difficulty. Collect data and keep it
at the instance level for reanalysis [5]. Example: For addition we
could sample instances of a sufficient range of difficulties, or in
an adaptive way, we could start measuring additions of medium
difficulty and adapt according to the observed performance, so
that we would end up calibrating the right level of capability for
that task. Testing should log some other information, such as the
times for each instance, and controlling whether the length of the
queries (because of larger numbers) has some other effects. For
internal consistency, the test (or part of it) should be repeated to
ensure results are the same for the same queries after some time,
checking for memorisation, contamination or cache effects.

6. Metrics and Results. Interpret and plot results (subject character-
istic curves). Calculate capability metrics for each D by aggregat-
ing v(s, i) per difficulty. Then aggregate by area or derive capa-
bility by a threshold. Once done this for all domains, we will try
to put each capability in a commensurate scale (e.g., human refer-
encing), to get a capability profile. From here, we can calculate a
generality metric from the dispersion of this profile. Example: Re-
sults show GPT-4 is very good for addition up to 20 digits (95%
accuracy), less good at spatial navigation in a map represented by
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Caveat Proposed Pragmatic Solution
Benchmark saturation We use capability levels instead of benchmark performance (saturating near 100%), based on a sufficiently

wide range of difficulties, shown as a subject characteristic curve, with no capability limit.
Poor reliability and validity when us-
ing benchmark performance

We use capability instead of performance, to extrapolate for different distributions and problems. This
frames evaluation as a prediction problem, which can, in turn, be evaluated.

Performance aggregates for different
benchmarks are incommensurate

We use capability levels that are anchored on human percentiles and normalised into z-scores, so notions
of variation or regularity on a range of domains become meaningful and comparable with humans.

Many interpretations of generality We choose the most common and actionable interpretation, as the regularity in the capability levels for a
range of domains.

Repurposing effort and ‘capability
elicitation’ is hard to quantify

We first consider off-the-shelf models (with state-of-the-art generic elicitation techniques), instructable by
non-expert human users. But we can then incorporate cost, effort, safety, etc., in the score function v.

Identifying domains and usage distri-
bution

We initially consider the 14 capabilities in [40] as domains, with a uniform distribution. Subsequently we
can use an expert committee and/or perform human studies (daily tasks) to refine this set.

Establishing GPAI models thresholds We propose several grades (GPAI grade I, II, III, etc.) that depend on the metrics of generality and overall
capability, as shown in Figure 1.

Contamination We can create variations of instances (controlling by difficulty) and keep them private. They can be re-
newed periodically to counteract testing leaks.

Sandbagging We should monitor systems in real environments after conformance is given. Increase fines in case com-
panies try to do sandbagging when tested by regulators (higher than in the Volkswagen emission case).

Higher complexity over compute es-
timation or benchmark performance

Estimating generality and capability gives us profiles and metrics that do not suffer a moving target phe-
nomenon, and can be compared with human profiles to estimate impacts on jobs, education, safety, etc.

Table 1. Caveats for evaluating GPAI and the pragmatic choices and solutions we propose.

a graph, with only more than 95% accuracy up to 3 nodes and ex-
cellent causal reasoning of level 7 on a rubric between 0 and 10.
If these three tasks were the only ones in P(D), and had the same
weight (probability in D), then after putting them in a commensu-
rate scale with humans, we could have 96.2 percentile for addi-
tion, 30.3 percentile for spatial navigation and 65.1 percentile for
causal reasoning. Given this capability profile (96.2, 30.3, 65.1),
the generality is relatively low, since there is high standard devia-
tion in the profile (33.97). The aggregate capability is 63.87.

7. Final assessment. Taking into account all the steps above, apply
the established criteria to determine whether a system is GPAI.
These could be set as a minimum of aggregate capability and a
minimum of generality, or quadratic curves resembling the grades
on Figure 1. Another option to define the grades or threshold for
GPAI could be to set a minimum for a percentage of a domain.
For instance, an integrated metric of 40 would mean that for 95%
of the domains we expect at least 40 capability (which in our scale
means better than 40% of humans). Example: Following the pre-
vious case of addition, spatial navigation and causal reasoning,
while the aggregate capability is quite high, 63.87 (higher than
average humans), the generality is not enough to consider this
system GPAI with the actual thresholds (30.3 is below 40%).

The above stages are preliminary. We require a detailed protocol and
a technical committee to apply it to any new system to be charac-
terised as GPAI. Ideally, we should be able to determine grades of
GPAI as shown in Figure 1. The contours of these grades would need
further discussion, but a quadratic combination of generality and to-
tal capability makes more sense than a linear combination (e.g., a
much more capable AlphaGo will never be considered GPAI).

Finally, each evaluation must come with validation. If the eval-
uation is based on capabilities, as they have predictive power, we
can evaluate them as we do with any predictive model at the meta-
level, using hold-out data not used in the training or testing of the
base models [47]. Also, comparison with (informal) human experts
is necessary, using more systematic procedures than leader boards of
human preferences3.

3 Such as ChatBot Arena (https://chat.lmsys.org/?leaderboard) [6], which is

6 Conclusions

In the same way the measurements for a subject (system, model or
component) need to be updated regularly, the protocol may need re-
vision from time to time. In particular, since the application of the
protocol incorporates many choices, these should be monitored such
that the mechanism says something is a GPAI when it really agrees
with our intuition. In general, it is better to think of metrics of gen-
erality and capability with which we can regulate several ‘grades of
GPAI’, rather than a binary condition of what a GPAI is. Our proposal
is to derive the metrics that can place AI systems in a plot like Fig-
ure 1, on either side of several grades or frontiers of GPAI. Things to
revise periodically include the task usage distribution leading to the
domain partition, the commensuration of capabilities (using human
reference, by capitalising on tests administered for both humans and
AI [37, 44], using equating, scaling or linking [22] or some other
approaches) and the thresholds used for the several GPAI grades.

Finally, we have not explored the relation between generality and
compute. There can be natural laws for the maximum level of capa-
bility per compute that can be achieved. It is no surprise that brain
size (at least relative to body mass) correlates with capabilities in an-
imals [26], and even in human populations. The theoretical relation
between compute and intelligence is beyond the scope of this docu-
ment (see, e.g., [17]), but there is empirical evidence in the scaling
laws of deep learning [20, 33, 32, 7], showing improvement in all do-
mains, increasing total capability but maintaining or even increasing
the generality of the models. There are also theoretical results (com-
pactness property in [19]): given the same compute, if we want to
maximise the total capacity of a system, then the best way of doing
this is to distribute this capacity by maximising generality, instead
of maximising specific niches, because different domains are related
in representations and reusability between them. In other words, it is
better to have the effort distributed as in Figure 3 (c) than having sev-
eral spikes of ultracapability. Or, under the perspective of Figure 1,
the top-left quadrant of the figure is more efficient than the bottom-
right quadrant. Generality in AI is here to stay.

a very informative source, but should not be taken as gold standard [29].
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