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Abstract. Cardiac digital twins represent the required functional mechanisms of 

patient hearts to evaluate therapies and inform clinical decision-making virtually. A 
scalable generation of cardiac digital twins can enable virtual clinical trials on virtual 

cohorts to fast-track therapy development. Here, we present an open-source digital 

twinning framework for personalising electrophysiological function based on 
routinely acquired magnetic resonance imaging (MRI) data and the standard 12-lead 

electrocardiogram (ECG). We extended a Bayesian-based inference framework to 
infer electrical repolarisation characteristics. Fast simulations are conducted with a 

decoupled reaction-Eikonal model, including the Purkinje network and 

biophysically-detailed subcellular ionic current dynamics. Parameter uncertainty is 
represented by inferring a population of ventricular models rather than a single one, 

which means that parameter uncertainty can be propagated to virtual therapy 

evaluations. The framework is demonstrated in a healthy female subject, where our 
inferred reaction-Eikonal models reproduced the patient’s ECG with a Pearson’s 

correlation coefficient of 0.93. The methodologies for cardiac digital twinning 

presented here are a step towards personalised virtual therapy testing. The tools 
developed for this study are open-source, ensuring accessibility, inclusivity, and 

reproducibility, this is available on GitHub. 

Keywords. Digital twin; Eikonal model; Magnetic resonance imaging; 

Electrocardiogram; Uncertainty quantification; Bayesian inference; Open source 

1. Introduction 

A cardiac digital twin is a suite of tools that continuously and coherently integrate patient 

data to produce virtual hearts to help realise the vision of precision medicine in 
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cardiology (1). For such cardiac digital twin technologies to be useful for therapy 

development, computational modelling choices should ensure that the critical therapy 

targets are represented sufficiently, that only non-invasive data is required for building 

the digital twins (2), and that their parameter uncertainty is propagated when informing 

clinical decision-making. Here, we present a cardiac digital twin generation framework 

developed with these goals, using routinely acquired magnetic resonance imaging (MRI) 

data and 12-lead electrocardiograms (ECG).   

The ECG encodes information about activation and repolarisation properties: the 

QRS complex of the ECG reflects the activation pattern. At the same time, the ECG ST 

segment and T wave comprise information on spatial heterogeneities in repolarisation 

and action potential duration (APD) (3,4). Repolarisation heterogeneities are 

underpinned by a complex interplay of subcellular ionic current dynamics (3,4), which 

are altered by antiarrhythmic drugs, such as Dofetilide. Therefore, phenomenological 

models that do not explicitly describe these ionic currents are of limited relevance in the 

context of virtual drug evaluations (5). However, the high computational cost of 

simulating electrotonic coupling with human-based ionic current dynamics using either 

the gold standard reaction-diffusion equations (6) limits the scalability of the digital twin 

generation framework. Therefore, this paper presents a strategy that leverages the 

benefits of both phenomenological and biophysically detailed models to enable scalable 

and relevant cardiac digital twins towards large-scale therapy evaluation. 

2. Methods 

As an overview (Figure 1), this study extends our previous framework (1,7,8) to 

automatically infer the activation and repolarisation properties of a biophysically detailed 

cardiac electrophysiological model from MRI and 12-lead ECG (Figure 1). The 

framework is demonstrated in a healthy female subject whose biventricular cardiac 

geometry was extracted from MRI (9). The tetrahedral mesh had a resolution of 1.5 mm 

edge length. The subject’s clinical 12-lead ECG recordings were preprocessed as in (1). 

The fibre, sheet, and sheet-normal vector fields were obtained as in (10).  

Fast inference was enabled by developing a decoupled reaction-Eikonal model that 

incorporated biophysically detailed electrophysiology (11) stimulated with a realistic 

diffusion-like current (12). While the activation properties were previously inferred 

using the QRS complex in (1), we focus on inferring smooth spatial variations in APDs 

from the ECG ST segment and T wave signals (Figure 1).  
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Figure 1. Overview of our cardiac digital twin personalisation framework. The

framework infers the conduction speeds and the Purkinje-informed locations of earliest 

endocardial activations from matching QRS simulations to the clinical ECG. Then, the 

framework infers the APD spatial heterogeneity with the slow delayed rectifier 

potassium current (IKs) by matching simulations to the clinical ECG ST segment and T 

wave signals. 

2.1. Action potential duration gradients model

Spatial heterogeneity in APD, defined at 90% of repolarisation (APD90 or just APD for 

this study), was represented by a weighted linear sum of four ventricular coordinates (5)

calculated using the position of a mesh node in three-dimensional space, � . These 

coordinates are the apex-to-base coordinate ����� as in (13), the transmural coordinate ����� as in (14), and the transventricular coordinate (left-to-right ventricle) �	���, and 

the posterior-to-anterior 
���� coordinate as in (15). These coordinates are used to 

define a spatially varying APD field (Figure 2) that ranges between a specified minimum 

(�����) and maximum (�����) value, as follows    

A���� � � ������������
���������������� ������ � ������ � ����� � (1)

 ��� � !�"����� � !#������ � !$�
���� � !#%�	��� � (2)

The weighting parameters !�" , !#� , !$� , and !#% in Eq. (2) control the relative 

magnitude of the APD gradient in their respective coordinate directions. 
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Figure 2. Biventricular coordinates were used to produce a representative APD map,

which is generated using a linear combination of gradient weights (!�" , !#�, !$�, and 

!#%) along these coordinates with a specified APD range &������ �����'.
2.2. Decoupled Reaction-Eikonal model of human cardiac electrophysiology

One of the main hurdles for generating cardiac digital twins is the high computational 

cost of simulating mechanistic models of cardiac electrophysiology, such as 

monodomain simulations, that enable virtual therapy evaluation. To overcome this 

challenge, we implement a decoupled dictionary-based reaction-Eikonal model

( )��� �� � )*+,# � -.� � �����/01�2� � &��'� 3 � 456�&� � �����'� ����� � (3)

where )��� �� is the membrane potential transient field, which varies spatially over mesh 

nodes � and temporally over �, )*+,# is the resting membrane potential before the action 

potential’s upstroke, - is the Heaviside function, and square brackets indicate rounding 

to integer values. The time of electrical activation, �����, is given by the Eikonal model

( 78��9���:8����� � ; <= >������ � �� ?@A � � B�� CDEAE < � ;F F = � (4)

where : is the conduction velocity tensor (prescribing orthotropic conduction in the fibre, 

sheet, and normal directions), and �� is the activation times of the = earliest activation 

root nodes located at B�. In Eq. (3), 0 is a precomputed dictionary (i.e., lookup table)

that uniquely maps integer values of APD (� � &��') and time within the course of 

the action potential (3) to a corresponding membrane potential ):

0 G �� 3 H ) � (5)
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The action potentials )�3� were computed by solving the ordinary differential equation 

IJ
I2 � K,#�� � K�L� � (6) 

where K�L�  is the sum of ionic currents in a human-based model of ventricular 

cardiomyocyte electrophysiology (ToR-ORd) (11), which we get using dictionary 0,  

and K,#�� is a stimulus current derived to mimic a diffusion current as in (12).  

The dictionary 0 was precomputed by simulating a population of cell models (16) 

by uniformly sampling IKs conductance (GKs) varying between 1/50 to 50-fold its 

baseline value (17,18). 

2.3. Electrocardiogram simulation 

Standard 12-lead ECGs were simulated from the decoupled reaction-Eikonal membrane 

potential simulations )��� ��   using the pseudo-ECG method (19,8). The simulated 

ECGs are normalised to the R-progression of the clinical data (1). Body surface 

potentials, M, were calculated at the electrode locations ��N� using: 

M��N� � O �PQ�R)�Q SR "T
*TUVWXYQZ[  � (7) 

where �R)�Q is the spatial gradient of the membrane potential over the \]th tetrahedral 

element, PQ  is the diffusivity tensor at the \ th element, �Q  is the normalised volume 

scaling factor for the \]th element,  AQ is the Euclidean distance from the centroid of the 

\-th element to the electrode location��N�, and ^,*_ is the total number of tetrahedral 

source elements.   

2.4. Inference of repolarisation gradients to match ST and T wave ECG signals 

After inferring the biventricular electrical activation pattern is inferred from the 12-lead 

QRS ECG segment using (1), the SMC-ABC algorithm (8) was adapted to infer the APD 

ranges and spatial gradients: !�" , !#�, !$�, !#%, ����� , �����, in Eqs. (1) and (2).  

A starting population of size 256 was created using Latin Hypercube Sampling of the 

parameters, and the objective function (`) was evaluated per sample in the population as 

` � ;aa b [
c O �; � �dd��ec�Zf � g b h

iO jklm�i�
nop]�qmrsYt���Y�tq� � (8) 

where �dd� and uvwx� are the Pearson’s correlation coefficient (PCC), and root mean 

squared error (RMSE) for the ECG lead <  between the simulated and clinical ECG 

signals, and 4yz�qxd{_|���_�|q�  is the maximum amplitude across all leads of the 

normalised clinical ECG data. All ECGs were normalised, so these errors have no units. 
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Figure 3. Inference iterations effectively explore T wave biomarker space. The evolution 

of the inferred population throughout the inference process is shown in greyscale with 

increased saturation, indicating the iteration number from 1 to 50. The final inferred 

results (iteration 50) are shown in black. A) ECG simulation evolution throughout the 

inference process. B) Simulated QT interval, T-peak to T-end interval (Tpe), average T 

wave amplitude, dispersion of T peak timing between V3 and V5 evolution (greyscale), 

and clinical values (lime horizontal line). C) Evolution of the parameter space. 
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3. Results 

The inferred population was able to match both QRS and T wave morphologies in the 

clinical data (Figure 3B), achieving a Pearson’s correlation coefficient (PCC) of 0.93 ± 

0.0003 and a discrepancy Eq. (8) of 0.74. The inference process was terminated by the 

uniqueness threshold rather than the discrepancy cut-off, which had been set to 0.5, 

meaning that the final population had less than 50% uniqueness in the parameter sets (8).  

The inference process explored a wide range of T wave biomarker values over 50 

iterations (grayscale gradients in Figure 3) before arriving at the final population. The 

mean and standard deviation of the inferred parameters in the final population were ����� � g;} ~ a��� , ����� � g�� ~ �F���� , !�" � aF�} ~ aF;g , !$� �
�aF�� ~ aF;�, !#% � aFgg ~ aFa�, !#� � aFg; ~ aF;�. Interestingly, the T-peak to T-

end (Tpe) biomarker converged into two cluster values. In contrast, all other biomarkers 

seemed to have a single cluster of values in the final population. 

We compared the performance of our decoupled reaction-Eikonal model to other 

electrophysiology propagation models in the literature (Table 1). We demonstrated a 

similar computational cost to the reaction-Eikonal without diffusion (20). 

 

Table 1. Computation times for different electrophysiology propagation models in the 

literature using non-high-performance-computing resources on biventricular meshes at 

different discretisation (edge length) resolutions. Our decoupled reaction-Eikonal’s 

computation time (last row) was computed by averaging the cost of 128 simulations. 

Model Anatomy setup Computer 

specifications 

Simulation cost 

of 450 ms 

Monodomain (21) with 

ECG calculation 

Mesh at 0.5 mm  Eight cores and 1 

GPU (NVIDIA 

A100) 

12 min  

Reaction-diffusion-

Eikonal (RE+) (20) 

without ECG  

Mesh at 1 mm  16 cores 197 sec (5) 

Reaction-Eikonal (RE-) 

(20) without the ECG  

Mesh at 1 mm  16 cores 8 sec (5) 

Our decoupled reaction-

Eikonal with ECG  

Mesh at 1.5 mm  32 cores 4 sec  

4. Discussion 

We extend our previous open-source cardiac digital twin generation framework (8,1) to 

calibrate the human ventricular repolarisation parameters from clinical 12-lead ECG and 

MRI. We demonstrate its application to augment clinical data from one control subject, 

where we matched the clinical data with a PCC of 0.93 ± 0.0003 between the simulated 

and clinical ECG recordings. The key novelty is the personalisation of repolarisation 

heterogeneities using a fast (Table 1) dictionary-based decoupled reaction-Eikonal 

model.  

While calibration of repolarisation characteristics using the 12-lead ECG has been 

achieved in a previous study (5), their ventricular model relied on phenomenological 

models of cellular electrophysiology. The lack of biophysical ionic detail and human 

J. Camps et al. / Open Source Cardiac Digital Twinning of Human Ventricular Repolarisation132



relevance presents a significant hurdle for such methods for drug therapy testing and 

disease mechanism explorations (22). In this study, we provide a novel strategy 

incorporating a state-of-the-art human-based ventricular electrophysiological model.  

Our inference method matched the final inferred population's ECG ST segment and 

T wave. Rather than selecting a single best match, the SMC-ABC method allows us to 

recover a population with similarly suitable clinical data matches (Figure 3). Propagating 

this uncertainty is critical for realising virtual clinical trials (23) using cardiac digital 

twins (8,1,18). 

While we demonstrated the digital twinning results on a female subject, additional 

use cases in different subjects have been previously reported (8,1,18), suggesting that 

these methods can robustly generalise to new subjects (male and female). 

The Cardiac Digital Twinning framework is open-source and can be downloaded 

with examples from https://github.com/juliacamps/Cardiac-Digital-Twin. 
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