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Elisabeth SOLANA , Elisabet LOPEZ-SOLEY b, Salut ALBA-ARBALAT b,

Marcos DIAZ-HURTADO a, Baris KANBER c, Jordi CASAS-ROMA a,
Sara LLUFRIU b, Ferran PRADOS a,c,d,e,2 and Eloy MARTÍNEZ-HERAS b,1,2.
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Abstract. Accurate detection of white matter (WM) lesions is essential for di-
agnosing and monitoring Multiple Sclerosis (MS), but manual lesion identifica-
tion is challenging and time-consuming. This study employs the “no new U-Net”
(nnU-Net) version 2 architecture to enhance the lesion segmentation process. We
trained our model with a fine-tuned version of the default nnU-Net configuration
incorporating extreme oversampling and a smaller learning rate to improve new or
evolving lesion detection. Results showed that our nnU-Net v2 achieved a F1 score
of 0.73 for baseline lesions and 0.75 for new or evolving lesions, demonstrating
notable performance in identifying both types of lesions, and that the model gen-
eralized well to the MSSEG-2 dataset. This study highlights the capabilities of the
nnU-Net v2 architecture for robust WM lesion detection in longitudinal cohorts.
The final phase involved packaging our top-performing ensemble of models into a
Docker container for easy usage, enabling the automatic distinction between base-
line and new or evolving lesions.
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1. Introduction

Accurate identification and monitoring of white matter (WM) lesions is crucial for di-
agnosing and tracking People with Multiple Sclerosis (PwMS), as they serve as indi-
cators of disease progression and evaluate treatment efficacy. Historically, the emphasis
was on cross-sectional images, which capture data at individual timepoints. However,
the updated McDonald criteria [1] transformed the diagnostic approach for PwMS. This
criterion emphasized the importance of spatially and temporally assessing disease pro-
gression, highlighting the significance of techniques focused on longitudinal imaging.
Recent advances have significantly evolved the applicability of the diagnostic criteria in
clinical settings, with a palpable shift from traditional machine learning approaches to-
wards more advanced deep learning techniques, including the automation of these tools
to improve diagnostic accuracy [2].

In the MS research field, harmonizing data for consistent longitudinal analysis re-
mains a significant challenge. Recently, the Open MS Data dataset [3] and the MSSEG-2
challenge [4] dataset have aimed to address this limitation. The MSSEG-2 dataset in-
cludes MRI data from 100 individuals with PwMS, featuring initial and follow-up 3D
FLAIR scans taken one to three years apart, sourced from multiple centers using 15
distinct MRI scanners. In this challenge, 28 of 30 proposed methods employed Con-
volutional Neural Networks (CNNs), with U-net and its variants being popular choices
[5,6,7,8,9,10]. However, variability among labelers, highlighted by discrepancies in Dice
and F1 scores, raises concerns about the reliability of MRI interpretations and under-
scores the need for standardized protocols and consistent labeling methodologies. This
inconsistency can impact the efficacy of models, as they might inadvertently learn from
the discrepancies rather than authentic features. Furthermore, this variability complicates
the benchmarking of segmentation algorithms, potentially increases costs and timelines
due to the need for re-evaluations, and might even influence clinical decisions in real-
world settings. This underlines the pressing need for more standardized protocols and
consistent labeling methodologies.

The “no new U-Net” (nnU-Net) architecture is a deep learning-based framework
specifically oriented for imaging segmentation tasks. Its primary goal is to standardize
and automate the majority of the design choices related to parameter configurations [11].
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The nnU-Net version 2 introduces significant enhancements, particularly in its support
for medical imaging, improved preprocessing steps, and more robust model training
procedures for efficient segmentation. This feature allows for a nuanced approach to
training, letting focus on specific target regions in the images. Instead of training on
broader, generalized labels, it can now fine-tune its models to identify and differentiate
between intricate structures and regions within datasets. In this article, we aim to apply
the nnU-Net v2 architecture to enhance results in the MSSEG-2 challenge, with a spe-
cific focus on different label segmentation. Our primary objectives are to explore the ex-
isting limitations of the challenge concerning the segmentation of baseline and follow-up
lesions and to demonstrate how the inherent capability of nnU-Net for multiclass label
segmentation offers a promising solution to recognize baseline as well as new or evolving
lesions.

2. Methods

Our dataset consists of 117 collections from PwMS, each containing two 3D-FLAIR
images (initial and subsequent assessment). These images were sourced from the
ImaginEM research team from Hospital Clı́nic with the gold standard annotations pro-
vided by specialists from our center. The Ethics Committee at the Hospital Clinic of
Barcelona approved the study, and all participants gave informed written consent for
research and publication.

2.1. Preprocessing

We initially performed skull stripping from FLAIR images. This procedure, conducted
using the HD-BET algorithm [12], ensures that subsequent modeling focuses solely on
the brain’s white and gray matter tissue, eliminating potential distractions from non-brain
tissues. Following this, the images were aligned with the Montreal Neurological Insti-
tute (MNI) coordinate system through a 6-degree-of-freedom (6 DOF) rigid registration
transformation. This step is critical for ensuring consistency and optimizing the train-
ing process. Finally, we addressed the intensity inhomogeneities in the FLAIR images,
which can arise from factors such as coil uniformities or field strength variations, using
the N4 algorithm [13].

2.2. Training and Validation Sets

Between subjects, both baseline and new or evolving lesions demonstrate notable differ-
ences in their count and respective volumes, see Table 1. The most noticeable thing is
that 75 of the cases in our dataset do not have new or evolving lesions, which consti-
tutes almost 65% of the total cases. Although having cases without new or evolving le-
sions is common and indeed part of the challenge of the task at hand, having such a high
percentage of cases without lesions increases the difficulty of detecting these lesions.

Table 1. Summary statistics of the dataset.

Baseline lesions New or evolving lesions

Number of lesions [n] 64±41 2±4

Total Volume [mm3] 12478±12518 154±589

Cases without lesions [n] 0 75
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In light of these variations, we adopted a stratified division method for forming the
train-test division and the five-fold cross-validation splits. Additionally, another fold was
reserved for testing. This stratification was crafted to consistently incorporate a certain
number of both baseline and new or evolving lesions, see Table 2. This challenge is even
greater considering the low number of new lesions in general, with just 2 lesions per case
on average.

Table 2. Summary statistics of different splits.

Fold Number of baseline lesions Number of new lesions

0 58.6 2.2

1 59.4 1.2

2 62.1 1.4

3 83.4 3.2

4 49.6 1.9

Test 66.2 1.3

2.3. Implementation Details and System Configuration of nnU-Net

For our analysis, we specifically employed the 3D full-resolution configuration of
nnU-Net in line with the three-dimensional attributes of our dataset. The entirety of the
model training and evaluation was executed on a computing system equipped with a
Linux operating system, 32GB of RAM, and powered by a 12GB NVIDIA GeForce
RTX 4070 Ti GPU. Prior to using the nnU-Net architecture, intensity normalization was
achieved in the FLAIR images using Z-normalization. Specifically, each image was in-
dividually normalized by deducting its mean and subsequently dividing it by its standard
deviation.

2.4. Training Details

The networks are trained for 1000 epochs, where each epoch consists of 250 randomly
selected mini-batches instead of iterating over the full dataset. The optimizer used is
Stochastic Gradient Descent (SGD) with Nesterov momentum (μ = 0.99) and an initial
learning rate of 0.01. The learning rate decays following the polyLR learning policy,
which decreases almost linearly to zero. The loss function combines cross-entropy and
smooth Dice loss to handle class imbalance and improve model confidence. For vali-
dation, 50 randomly selected mini-batches are used to compute the Exponential Mov-
ing Average (EMA) of the Dice score. Data augmentation techniques such as rotations,
scaling, Gaussian noise, and others are applied stochastically. To handle class imbal-
ance, oversampling ensures each mini-batch includes at least one patch with a foreground
class. This approach ensures robust detection of lesions, particularly baseline and new
or evolving lesions, by choosing the class uniformly if multiple foreground classes are
present.

2.5. Test

The final models were tested in the test split, first, and in the MSSEG-2 dataset and the
Open MS Longitudinal Data dataset, comprising MRI data from 60 PwMS, second. For
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the evaluation, we used the same metrics as in the MSSEG-2 challenge: (1) The number
of wrongly detected lesion voxels in cases without lesions (2) The number of wrongly
detected lesions in cases without lesions (3) The voxel-level Dice score in cases with
lesions (4) The lesion-level F1 score in cases with lesions.

3. Results

3.1. Multiclass Lesion Detection with Early Stopping

We initially ran the pipeline using the default configuration of nnU-Net with a slight
modification: the inclusion of early stopping. This was necessary for two main reasons.
First, each epoch (training and validation) takes at least 225 seconds with our GPU, so
training for 1000 epochs would require over two and a half days, making iterative im-
provements impractical. Second, the performance of baseline models drops significantly
after fewer than 100 epochs, as shown in Figure 1, due to the models ceasing to predict
new or evolving lesions, resulting in a Dice score of zero for this class. Using the models
from the best epoch of each fold as an ensemble, the test results were decent, with a Dice
score of 0.72 for baseline lesions and 0.47 for new or evolving lesions on the valida-
tion split. However, the high average number of false negatives (21 per case, compared
to 32 true positives and 11 false positives) when detecting new or evolving lesions was
considered too high.

Figure 1. Training progress of fold 1 for the multiclass lesion detection model.

3.2. New or Evolving Lesion Detection with Extreme Oversampling and Lower
Learning Rate

We focused on an extreme oversampling strategy to better handle the class imbalance
between baseline and new or evolving lesions. Specifically, we ensured all training cases
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had a baseline lesion class and always selected new or evolving lesions when present.
This aimed to enhance the model’s ability to learn the minority class while maintaining
performance on baseline lesions. However, the model’s performance was similar to the
previous model (3.1) using the default configuration in nnU-Net. It was identified that
this issue stemmed from a saddle point of the loss function used. The logical solution
was to avoid this saddle point. After considering several options, we tested a simple
one: decreasing the learning rate. Specifically, we reduced the learning rate to 0.001,
which significantly and consistently improved the convergence issue, as exemplified by
Figure 2. This, combined with the extreme oversampling strategy, considerably improved
validation results (Dice score of 0.72 for baseline lesions and 0.55 for new or evolving
lesions).

Figure 2. Training progress of fold 1 for the multiclass lesion detection model with the smaller learning rate.

3.3. Test Cohorts

Table 3 shows the evaluation metrics on the test split. As we can see, the results are very
good for both baseline and new or evolving lesions detection, demonstrating a very high
capacity to identify and delineate lesions while generating few false positives.

Table 3. Results on the test split.

Cases without lesions Cases with lesions
Lesion volume [mm3] Lesion number [n] DICE F1-score

Baseline lesions - - 0.72 0.73

New or evolving lesions 0.48 0.04 0.64 0.75

Table 4 shows the evaluation metrics on the MSSEG-2 and Open MS Longitudinal
Data datasets for new or evolving lesions (which are the only labeled lesions). As we can
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see, our model generalizes very well to the MSSEG-2 dataset, ranking among the best in
all four metrics3, but not as well to the Open MS Longitudinal Data dataset.

Table 4. New or evolving lesion detection results on the external test datasets.

Cases without lesions Cases with lesions
Lesion volume [mm3] Lesion number [n] DICE F1-score

MSSEG-2 0.00 - 1st 0.00 - 1st 0.46 - 6th 0.58 - 1st

Open MS Longitudinal Data - - 0.27 0.24

Figure 3 shows examples of correct predictions and errors made by the model when
predicting baseline lesions. The model rarely misses a lesion, and when it does, it is
usually in the most difficult cases—where the lesion is not clearly visible or lies very
close to the border of the brain, making it difficult to distinguish the border from lesions.
Regarding segmentation, as expected, the model is generally able to detect and correctly
label the central voxels of lesions, but as it moves toward the borders, accuracy decreases
and mistakes (both false positives and false negatives) occur.

Figure 3. Example of baseline lesion detection where green indicates correct predictions, blue indicates false
negatives, and red indicates false positives.

When predicting new or evolving lesions, clear lesions are usually detected, but the
model struggles with diminishing, unclear, or border cases. As shown in Figure 4 the
model detects almost all new lesions, but the segmentation is not as accurate. In this
specific example, the model does not delineate the borders well, which reduces the Dice
score, as shown in Table 3.

3We use the challenge’s train set as test set, since its test set is not publicly available.
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Figure 4. New or evolving lesion detection on the MSSEG-2.

3.4. Deployment

The final phase is the deployment process, which involves packaging our top-performing
ensemble of models into a Docker container. To leverage the model’s predictions on
a dataset, users simply need to rename the images in a specific pattern following the
nnU-Net format, ensuring the model can distinguish between baseline and follow-up
images. Then, a single terminal command initiates the process. The generated model can
be accessed upon a justified request.

4. Discussion

In this study, we aimed to generalize the previous work on detecting new or evolv-
ing Multiple Sclerosis lesions on longitudinal MRI images [14] to the multiclass de-
tection of both baseline and new or evolving lesions. We relied on the nnU-Net seg-
mentation pipeline as a baseline, incorporating preprocessing, data augmentation, and
oversampling strategies. By fine-tuning the oversampling strategy and training pro-
cess, we achieved excellent results in detecting both lesion types. The new or evolv-
ing lesion detection generalized well to different datasets, particularly the MSSEG-2
dataset, where our model ranked among the best in all four metrics. However, per-
formance dropped when tested on the MS Longitudinal Data dataset, likely due to its
lower image resolution. The performance of the model is quite sensitive to prepro-
cessing steps such as skull stripping, alignment, and intensity correction. Any inac-
curacies or inconsistencies in these steps, along with the presence of anisotropic res-
olution (where the slice thickness is larger than the in-plane resolution), can impact
the model’s ability to accurately detect lesion types, suggesting an area for further im-
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provement. To improve the research, future work should focus on expanding the dataset
to a broader population of MS patients. This expansion would help ensure that the
model’s performance is robust and generalizable across diverse patient demographics
and imaging conditions. Additionally, incorporating super-resolution imaging techniques
into clinical image settings could significantly enhance detection accuracy by improv-
ing image quality and resolution. Finally, we containerized our pipeline and model
using Docker, providing a user-friendly way to generate baseline and new or evolv-
ing lesion masks. Comprehensive instructions can be found in the GitHub repository:
https://github.com/ander-elkoroaristizabal/nnunet-ms-segmentation.
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