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Abstract. LHCb is one of the four largest high-energy physics experiments at
CERN focused in high precision measurements of particle physics. The LHCb de-
tector has undergone a recent upgrade [1] implying changes at subdetectors, data
taking conditions and data processing model. Information from subdetectors is pro-
cessed at 30MHz at a first trigger phase builded entirely with GPUs to reduce this
rate down to 1MHz. Afterwards, the same information is processed in a second
trigger phase that runs in CPUs, performing a complete reconstruction and iden-
tification of particles. This upgrade implies an evolution of the algorithms used at
trigger level. In order to keep performance and speed up processing time, some of
them have been replaced by machine learning algorithms. To perform particle iden-
tification, one of the LHCb approaches uses a neural network using the information
from all subdetectors. In this paper we explain the advantages of this method and
the capabilities that machine learning brings to LHCb focused in the global particle
identification and throughput improvement achieved with it.
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1. Introduction

LHCb at CERN is one of the four main experiments, being the only focused in high
precision measurements. To achieve this task, the data is processed in real time at first
level trigger called HLT1 where a partial reconstruction is conducted to select poten-
tial information. Then, the second level trigger named HLT2 conducts the precise recon-
struction using filtered information. This information is stored in files called events that
contains tracks information (particles path) used to reconstruct particles. To do this task,
LHCD relies in particle identification (PID) algorithms that combine information from
subdetectors specialized in identification such as RICH, calorimeter and muon systems.
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Due to recent update, algorithms focused on this task need an update to maintain
PID performance. At the same time, data taking conditions have also evolved with a
larger number of collisions forcing an adaptation of some algorithms. To conduct this
task, LHCD utilizes 2 approaches to identify charged particles, the traditional one that
relies in likelihood comparison and a neural network approach called probNN.

Taking each track information from the events, probNN combines this information
and performs a classification into one of the 6 particles considered: electron, pion, kaon,
muon, proton and ghost, being this last one the result of combinatorial effect that looks
like a real particle.

This probNNs perform a one-vs-all approach for each particle, implemented in a
machine learning inference engine developed for LHCb that uses PyTorch training to-
gether with ONNX inference. This inference engine is focused on mimicking the existing
machine learning algorithms in special multilayer perceptrons (MLP). On this specific
problem, the outcome will be the probability of the given track characteristics correspond
to a particle type.

2. Current solutions

LHCDb has two procedures for charged particle identification, a traditional one based on
a likelihood [2] and probNN implemented using TMVA [3] package. This solution uses
almost 50 variables as input with 2 hidden layers that contain between 55 and 70 neurons
each one and a single neuron output for binary classification. All together gives place to
specialized networks with architectures over 7.5k parameters.

3. Data

Data used comes from LHCb simulation framework [4]. To ensure the data is as realistic
as possible, latest conditions to emulate real data taking for this year have been used,
getting between 50k and 100k samples for each particle type looking for a balance to
improve networks convergence. Then, a first sample process to homogenize distribution
coverage and avoid biases is applied to ensure networks generalize during training. All
variables are described by quantitative values such as the energy stored in the calorimeter
system associated to a track, but some others are described by discrete or binary values.

3.1. Variable Selection

In order to properly select variables, a first filter has been applied to some of the variables
to avoid biases with the sample used. This is the case for the ones related to energy or
geometry.

After this reduction, an analysis mixing different methods is performed. First, mu-
tual information is used to determine which variables describe better each particle type.
Kolmogorov-Smirnov test is applied to determine if variable distributions between the
particle type and the rest are separable. Finally, a feature extraction from fundamental
machine learning algorithms such as decision trees and random forest has also been used.

Each method provided different variables to be used, but after carefully cross-
validate them, none of the individual methods has proven a significant improvement
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amongst the rest. Finally, a ranking method that combines all the different selections has
been implemented. This method is prepared to reward those variables that have been sta-
ble on top of each method, bringing a slight improvement in PID performance around
1.5% against individual selection methods.

4. Solution

TMVA has been the default machine learning framework to inference models in LHCb,
requiring the training be performed independently and introduced afterwards. The new
inference engine avoids this procedure allowing both train and inference in LHCb frame-
work and reduces 10% the time inference with same sized networks.

We take advantage from the update and perform a proper exploratory analysis, re-
duce the needed variables to the minimal expression and a genetic approach to reduce
architectures while maintaining the PID performance.

To do so, a genetic algorithm is implemented to find a reasonable architecture. Tak-
ing care of population’s genotype that describes the architecture of the networks we can
control the maximum size of the networks. This is done for networks with 1, 2 and 3
hidden layers and then, based on the metric defined (AUC in this case) we select the
architecture providing best best performance with least parameters.

5. Results

Results are consistent for all particle types as seen in table 1. PID has been maintained
compared with original probNN while architecture sizes have been drastically reduced.
The least reduced architectures have been for electrons, muons and kaons with a factor
4. At the same time, the greatest reduction is achieved for kaons with a factor 14. Finally,
for protons and ghosts the reduction factor has been a factor 10, all disposed in table 2.
This reduction is derived from the huge reduction in input variables that allowed the ex-
ploration of several architecture combinations upon 3 layers, improving LHCb through-
put almost a 2%. A final comparison between proton efficiencies can be seen in figure
1.

probNN | Electron  Pion Muon Kaon Proton Ghost

AUC | 0.996 0994 0998 0.993 0.994  0.945
Table 1. ProbNNs AUC results on validation data
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probNN | Electron Pion Muon Kaon Proton  Ghost
Original inputs 48 48 47 49 49 48
Original layers 57,57 76 56, 65 78,78 58,68 76,57
Original size (params) 6000 3700 3800 10000 6800 8000
Optimized inputs 16 15 14 14 14 15
Optimized layers | 32,21,7 34,20,6 32,13,3 21,16,5 25,10 26,10
Optimized size (params) 1300 1300 900 700 600 700

Table 2. ProbNNs architectures and size comparison
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Figure 1. probNNp efficiency comparison
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6. Outcome

This study has demonstrated that proper data exploration to perform dimensionality re-
duction together with an architectural optimization by using genetic algorithms is the key
to improve real time applications using neural networks in the LHCb experiment.
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