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Abstract. Brain imaging techniques, particularly magnetic resonance imaging
(MRI), play a crucial role in understanding the neurocognitive phenotype and asso-
ciated challenges of many neurological disorders, providing detailed insights into
the structural alterations in the brain. Despite advancements, the links between cog-
nitive performance and brain anatomy remain unclear. The complexity of analyzing
brain MRI scans requires expertise and time, prompting the exploration of artificial
intelligence for automated assistance. In this context, unsupervised deep learning
techniques, particularly Transformers and Autoencoders, offer a solution by learn-
ing the distribution of healthy brain anatomy and detecting alterations in unseen
scans. In this work, we evaluate several unsupervised models to reconstruct healthy
brain scans and detect synthetic anomalies.
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1. Introduction

Brain magnetic resonance imaging (MRI) is crucial for diagnosing and understanding
various disorders. Expert neurologists and radiologists use their knowledge of brain
anatomy to identify anomalies in MRI scans, but visual analysis can miss relevant
pathologies in 5 to 10% of cases [1]. Recent machine learning advances have led to au-
tomated techniques that identify abnormalities, showing success in detecting tumors and
lesions related to neurodegenerative diseases like Alzheimer’s and multiple sclerosis [2].

While most techniques use supervised deep learning, the scarcity of annotated
datasets has prompted a shift to Unsupervised Anomaly Detection (UAD). UAD methods
mimic expert examination of MRI scans without needing annotated data, thus identifying
various brain anomalies.

Recent UAD approaches, employing autoencoders and generative models, not only
detect but also locate and delineate anomalies. These methods use deep representation
learning to define the healthy brain’s anatomical distribution, identifying anomalies as
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Figure 1. Unsupervised Anomaly Detection using an Autoencoder-based architecture

outliers. Autoencoders (AEs) are particularly popular, learning to compress and recon-
struct MRI data of healthy anatomy. Figure 1 illustrates how AEs are used for brain
UAD: trained on healthy scans, the AE learns the latent space distribution and recon-
structs input scans. When fed with an anomalous scan, the AE produces a pseudo-healthy
reconstruction, which is compared to the input to detect anomalies.

The goal of this paper is to implement and evaluate the performance of four unsuper-
vised deep learning models—Vector Quantization Variational AEs (VQ-VAE), Masked
AEs (Swin MAE), Reverse AEs (RAE), and VQ-VAE+Transformers—in detecting and
localizing brain anomalies using structural MRI scans. We intend to use these methods
to automatically detect altered regions and define diagnostic-potential biomarkers in psy-
chotic disorders, furthering our understanding of the neurodegenerative effects of these
disorders and improving diagnosis.

2. Experimental Setup

Four unsupervised deep learning models were implemented and evaluated: Vector Quan-
tization Variational AEs (VQ-VAE2) [3], Masked AEs (Swin MAE3) [4], Reverse AEs
(RAE4) [5], and VQ-VAE+Transformers5 [6]. Our implementations followed either
MONAI or the public official implementation, and was developed using Python 3.9 and
PyTorch. We ran the experiments on NVIDIA Tesla V100 GPUs. Table 1 summarizes
the main training hyperparameters of each method (in all cases, the ADAM optimizer
and data augmentation were used during training).

Models were trained using 1113 structural MRI scans of healthy brains obtained
from the Human Connectome Project (HCP)6. The dataset was split into 90% for training
(1002 scans) and 10% for evaluation (111 scans).

2https://github.com/Project-MONAI/GenerativeModels
3https://github.com/Zian-Xu/Swin-MAE
4https://github.com/ci-ber/RA
5https://github.com/Project-MONAI/GenerativeModels
6Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
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Method Batch size Epochs Loss function(s) Learning rate

VQ-VAE 32 1000 L1 5 ·10−4

Swin MAE 32 1000 L1 10−3 → 10−6

Reverse AE 8 1000 MSE + KL + Embedding loss 2 ·10−4 → 10−6

VQ-VAE+Tr 4 500 Cross-Entropy 10−4

Table 1. Training hyperparameters of the evaluated UAD methods.

To evaluate the ability of the trained models to generalize across various sources of
data, we tested the methods using three different datasets of healthy brain structural T1
MRI scans: i) 160 scans provided by Hospital Sant Pau Memory Unit (Barcelona, Spain),
ii) 260 scans from the OASIS-3 dataset [7], and iii) 580 scans from the IXI dataset [8].

In our study, we introduce synthetic anomalies into MRI images to test unsupervised
anomaly detection methods. We add rectangular and elliptical anomalies by copying the
original image and inserting regions of specified dimensions (width and height between
20 and 30 pixels) and intensity at random center points within the image. Half of the
anomalies are rectangles, and the other half are ellipses. These synthetic anomalies sim-
ulate irregularities in MRI scans, allowing us to evaluate the performance of anomaly
detection algorithms effectively.

Two aspects of each model were evaluated. First, their fidelity in reconstructing
healthy MRI scans, which was measured in terms of the structural similarity index metric
(SSIM). And second, their ability to detect synthetically added anomalies and produce
anomaly maps by combining residual (L1 loss) and perceptual differences. To evaluate
the accuracy of the anomaly segmentations, we reported the area under the precision-
recall curve (AUPRC) and the area under the receiver operating characteristic (AUROC).

3. Results, Conclusions and Further Work

Table 2 presents the evaluation of the four UAD methods for both healthy MRI scan re-
construction (in terms of SSIM on the three test datasets) and synthetic anomaly detec-
tion accuracy. Moreover, Figure 2 illustrates qualitative examples of the results obtained
by each method.

Figure 2 provides a qualitative example of our anomaly detection method, evaluating
four models. Two different tests are shown: a healthy brain (first row) and a brain with a
randomly introduced synthetic anomaly (second row). For each input image and model,
the reconstruction and computed anomaly map are displayed. Our preliminary results
indicate that the VQ-VAE + Transformers approach achieves the best balance, produc-
ing superior pseudo-healthy reconstructions and generalizing well across heterogeneous
datasets. In contrast, while VQ-VAE delivers good results for healthy inputs, it fails to
detect anomalies accurately. Swin-MAE can capture anomalies, as demonstrated, but it
relies heavily on pixel intensities. Finally, the Reverse Autoencoder (RAE) is effective at
detecting anomalies but alters the brain anatomy in its healthy reconstructions.

To enhance performance, research should investigate new loss functions such as per-
ceptual or adversarial losses, and incorporate 3D architectures for volumetric data. Ad-
ditionally, models should be trained on data from various datasets to enhance robustness
and generalization ability. Additionally, these models should be tested using real anoma-
lies, ranging from severe conditions like tumors to minor changes caused by disorders
such as Down Syndrome or Alzheimer’s disease to help identify potential biomarkers.
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Table 2. Quantitative evaluation of Unsupervised Anomaly Detection architectures.

Method
OASIS IXI St. Pau HCP Synthetic Anomalies
SSIM ↑ SSIM ↑ SSIM ↑ SSIM ↑ AUROC ↑ AUPRC ↑

VQ-VAE [3] 0.96 0.96 0.96 0.96 0.80 0.28

Swin-MAE [4] 0.80 0.78 0.81 0.84 0.88 0.38

Reverse AE [5] 0.55 0.58 0.58 0.63 0.95 0.67

VQ-VAE + Transformers [6] 0.93 0.93 0.93 0.93 0.94 0.74

Figure 2. Qualitative results of the brain reconstruction methods (top row, healthy brains, bottom row: brains
with synthetic anomaly): (a) Input image, (b) VQ-VAE (c) Swin-MAE, (d) RAE, (e) VQ-VAE + Tr.
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