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Abstract. Electronic Health Records (EHRs) contain valuable historical
information for building clinical decision support systems. In this study,
we focus on exploring novel techniques for improving the prediction of
the severity degree of Diabetic Retinopathy (DR) in Diabetes Mellitus
patients. In a previous paper, we evaluated the behaviour of different
classifiers using the patients’ retrospective EHR data to assess their cur-
rent level of DR, achieving good results. Continuing that work, we now
focus on studying different methods for encoding numerical variables,
in order to improve the accuracy of these predictions. We propose three
normalization methods based on fuzzy sets for encoding numerical data.
Because of the inherent uncertainty of medical data, using fuzzy logic
to represent the numerical variables can enhance the accuracy of a clas-
sifier. The results of the experimental tests, conducted on a dataset of
2108 patients, show that for low-complexity classifiers (such as KNN or
CNN) a classical fuzzification technique works the best, while for more
complex architectures (like TapNet or ResNet) a fuzzy two-hot encoding
gives the best performance. The final aim of the research is to build a
clinical decision support system that can make an accurate and person-
alised prediction of DR evolution.

Keywords. Time series classification, Fuzzy logic, Variable encoding,
Diabetic retinopathy

1. Introduction

Diabetic retinopathy (DR) is a severe ocular complication resulting from uncon-
trolled sugar levels in blood that suffer some diabetes mellitus patients. This dis-
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ease can damage the retina of the eye. If left untreated at early stages, DR can
cause vision loss and even blindness [1]. According to the medical ETDRS stan-
dard classification [2], DR can be categorized into four stages: healthy (DR = 0),
mild (DR = 1), moderate (DR = 2), and severe (DR = 3).

The number of diabetic patients worldwide was estimated at 537 million
people in 2021. In Spain alone, it is expected that by 2030, approximately 11.1%
of the population will be diagnosed with diabetes, reaching 3.8 million inhabitants
[3]. Moreover, a recent study found that the DR prevalence of type-2 diabetic
patients in Spain was 15.28%, including 1.92% at the severe level (DR = 3) [1].

For this reason, computer-based methods to assist in DR diagnosis are being
developed. Many of them perform the risk assessment through the analysis of eye
fundus images. However, not all computer-based analysis of eye fundus images are
solely focused on DR classification. Lesion detection (such as microaneurysms,
exudates and hemorrhages) and segmentation (including blood vessels and the
optical disc) are also studied. Dubey et al. conducted an analysis of image-based
DR techniques from the state-of-the-art [4]. For binary classification, the accura-
cies ranged from 94% to 97%, and for multiclass classification from 94% to 98%.
Despite the promising results, given the cost associated with obtaining eye fun-
dus images, other clinical decision support systems (CDSS) based on clinical and
analytical data available in the Electronic Health Records (EHR) are on the focus
of research.

Several studies in the literature have analysed and compared various classi-
fiers on DR EHR datasets, including models such as random forests, XGBoost, lo-
gistic regression, support vector machines, and k-nearest neighbors [5,6,7,8,9,10].
However, the results of these studies vary, highlighting a lack of consensus on
the best classifier for predicting DR. Retiprogram was presented as a CDSS for
DR prediction that considers the patient’s current conditions and analytical data
from the last blood analysis [11,12]. It is based on a Fuzzy Random Forest classi-
fier, which achieved an accuracy of 81%, sensitivity of 80%, and specificity of over
84%. It was initially developed as a binary CDSS [12]. Later, it was extended to
handle ordinal multi-class classification, enabling the detection of different levels
of DR severity [13] with an accuracy of 73%.

When a patient is diagnosed with DR, he/she usually starts some treatments
in order to improve some clinical factors; therefore, for the patients under treat-
ment it is more challenging to distinguish their DR grade only by observing the
values of a unique visit. Our hypothesis was that a retrospective analysis could
be more adequate to have an overall view of the patient’s conditions evolution
and could improve the grading of DR, especially for those long-term patients for
which classical machine learning models have more difficulties. For this work, we
have a real dataset about Type-2 diabetic people, with data between 2010 and
2021. The dataset contains clinical and analytical variables of different types (nu-
merical and categorical), which were extracted from their EHRs. The purpose of
the work was to study the complexities of the available temporal data. In [14]
we designed a CDSS that includes a pre-processing stage to build homogeneous
data series and the use of a multi-variate series classifier to take advantage of
the historical information available. In this paper, we want to study the effects
of using approximate reasoning techniques in the input data codification step at
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the pre-processing stage. Instead of providing precise numerical values, the mod-
els will take advantage of the fuzzy linguistic model that represents the domain
knowledge of the medical specialists to encode numerical variables.

The rest of this paper is structured as follows. In Section 2 we summarise the
DR classifier that incorporates temporal risk factors for DR grading. Next, Sec-
tion 3 introduces the fuzzy logic based techniques we propose to encode numerical
variables. Section 4 presents the experimental results of our proposed encoding
methods. Finally, Section 5 summarises the conclusions and future work.

2. DR classifier based on temporal risk factors

In this section, we describe the DR classification model using multivariate tempo-
ral data. At each visit to the ophthalmologist, some clinical and analytical data
about the diabetic patient are collected. The data are stored in his/her EHR.
Nine relevant risk factors for DR were selected by the experts. They consist of six
numerical and three categorical variables [11]. Those variables and the number of
labels defined by the ophthalmologists for each of them are shown in Table 1.

Table 1. Diabetic Retinopathy risk factors

Variable Description Type Range # Labels

Age Current age in years Numerical 0 - 100 7

EVOL Duration in years of Type-2 diabetes Numerical 0 - 30 5

HbA1c
Concentration of glycated hemoglobin present

in the bloodstream
Numerical 4 - 12 5

CKDEPI
Measure for the glomerular filtration rate of

the kidney
Numerical 10 - 100 5

MA Level of albumin in the urine Numerical 29 - 32 2

BMI Body Mass Index Numerical 18 - 40 7

Gender The sex of the patient Categorical - 2

TTM Prescribed treatment for DM Categorical - 3

HTAR Control of arterial hypertension Categorical - 2

DR Degree of Diabetic Retinopathy Categorical - 4

After some years, each patient has a sequence of values for those variables,
which are stored in his/her EHR, together with the DR diagnosis value assigned by
the ophthalmologist in each visit (DR = {0, 1, 2, 3}). As it was studied in [15], this
kind of data presents several challenges that must be solved by applying several
pre-processing techniques on the raw EHR data to obtain an appropriate time
series. These pre-processing steps are depicted in Figure 1. In this paper, we have
focused on the encoding step. The DR diagnosis is also included as a categorical
variable in the training dataset, except for the last entry of the sequence, since
this is the value the system must predict. In this way, we can use the previous
DR evolution to train the time series classifier. Moreover, we can use the last DR
value as ground truth to validate the output value.

The periodicity of control visits of diabetic people ranges from 6 to 24 months.
In each visit, a new value is obtained for each of the presented variables (Ta-
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Figure 1. Pre-processing steps for temporal EHR series

ble 1). In this framework, several challenges have been identified: the short data
sequences, as EHR sequences are much shorter than usual time series; irregular
visits frequency, as the data points are not spaced at regular time intervals; dif-
ferent data alignment, because the visit frequency of each patient is highly vari-
able; missing data on the EHR; labelling mistakes due to human error and data
imbalance, as 82.1% of the data belong to the negative (DR = 0) class, 9.9% to
mild (DR = 1), 6.3% to moderate (DR = 2), and just 1.7% to severe (DR = 3).

To overcome the existing challenges, in [14] we proposed tailored pre-
processing solutions that take into account the medical knowledge related to the
DR disease. After observing the collected data and considering the medical ex-
pertise, the desired length of the sequences was fixed to 10 years. In order to
obtain a sequence with data of 10 consecutive years for each patient, for each of
the variables the following 4 pre-processing steps were defined:

1. Binning: if the patient has more than one value for a given variable in the
same year, the most severe outcome is selected.

2. Interpolation: if the patient has no visit on a certain year, the value is ob-
tained by a double interpolation procedure taking into account the values
of the rest of the years of the sequence.

3. Balancing: a new fuzzy-based sample generation method was also proposed
to generate new fictive but feasible data values for the minority classes
(i.e., the positive ones). Those new examples were used to balance the
training dataset.

4. Encoding: to have the same scale in all variables, one-hot encoding is used
for categorical values, and standard normalization for numerical ones.

This pre-processing method is able to transform the EHR data into fixed
frequency and equal length series. The resulting dataset can then be used to train
any time series classifier with multivariate data capabilities. In the next section,
we will explain some alternative techniques for encoding the data using domain
knowledge about the semantics of the medical numerical variables.

3. Fuzzy logic-based variable encoding

Numerical variables in medical datasets can have large differences between their
scales, which can affect the performance of AI models. To address this issue,
numerical variable normalization is used to transform all numerical variables into
a common scale. In this way, each feature contributes equally to the modeling
process.

One common way of normalizing numerical variables is to standardize them
by removing the mean (i.e., the mean value will be 0) and scaling to unit variance,
Eq. 1 (SE).
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where μ is the mean and σ is the standard deviation of a given variable.
Medical data has an inherent uncertainty that can be attributed to incomplete

or missing values, and to imprecise measurements or diagnoses. Moreover, in the
diagnosis process, medical doctors reason qualitatively on attribute values when
assessing patients’ conditions. For instance, instead of considering the precise
numerical age or body mass index values, they consider more general levels such
as child/young/old or underweight/normal/overweight. A difference of one year
in age or of one kilogram makes no difference on the health diagnosis.

Fuzzy logic is a well-known paradigm to reason qualitatively [16]. Therefore,
in this work, we take advantage of the fuzzy linguistic model that represents
the domain knowledge of the medical specialists to encode numerical variables.
Instead of providing the precise numerical values, the models will use a set of
labels provided by the doctors.

In the context of fuzzy logic, a fuzzy partition divides a universe of discourse
into overlapping regions or subsets based on their membership values. In contrast
to binary or crisp partitions, fuzzy partitions allow for gradual transitions between
partitions. A standardized fuzzy partition Ai = {Ai

1, . . . , A
i
n} on a numerical

continuous variable Xi, is defined by a group of fuzzy sets Ai
j with a membership

degree 0 ≤ μAi
j
(x) ≤ 1, and satisfies the following property: ∀x ∈ Xi,

∑
j μAi

j
(x) =

1. Then, a linguistic variable is defined by a fuzzy partition Ai and a set of p
linguistic labels Li = {L1, . . . , Lp}.

Figure 2 depicts the fuzzy sets that were defined by experts for the numerical
variable CKDEPI. Five sets were defined, with the linguistic variables Normal,
LowNormal, ModeratelyLow, VeryLow and ExtremelyLow.

Taking advantage of fuzzy linguistic variables, we will study three methods to
encode the numerical data using the fuzzy sets provided by the medical specialists.
Each numerical variable will be transformed into p dummy variables, one for each
value in Li.

In all the methods, the first step is obtaining the fuzzy sets where the nu-
merical value has any membership. Their corresponding labels will determine the
values that will be set in each dummy variable. The proposed methods are the
following ones, which for an input x will determine the value v(Li

j).

• Fuzzy One-Hot Encoding (FOH):

v(Li
j) =

{
1 if μAi

j
(x) ≥ μAi

k
(x)∀k �= j

0 otherwise
(2)

• Fuzzy Two-Hot Encoding (FTH):

v(Li
j) =

{
1 if μAi

j
(x) > 0

0 otherwise
(3)
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Figure 2. Definition of linguistic labels for CKDEPI

• Fuzzy Membership (FM):

v(Li
j) = μAi

j
(x) (4)

FOH and FTH generate binary dummy variables, while FM generates a vari-
able with Real values in the range [0, 1]. In the next section, these three methods
will be tested and compared to the standard scaling.

4. Experimental results

This section presents the experimental results obtained using the data presented
in Section 2. The DR dataset has 2108 sequences of 10 entries, after conducting the
2 first stages of the pre-process (binning and interpolation) [14]. The dataset was
divided into two: training and testing, with 70% and 30% of the data, respectively
(Table 2). It can be clearly seen that there is a high imbalance towards the
negative class (DR = 0), making it more challenging to predict the classes with
higher DR risk. To obtain classes of equal size, we apply a balancing method based
on generating new realistic fictitious examples, obtained from short sequences of
real data [14]. This third pre-processing step introduces additional examples to
the three minority classes in the training dataset, until there are a total of 1212
examples for each class.
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Table 2. Distribution of the Diabetic Retinopathy time series data in training/testing

Class/Dataset Training (70%) Testing (30%) Total

DR = 0 1212 (82.2%) 518 (81.8%) 1730 (82.1%)

DR = 1 148 (10%) 61 (9.64%) 209 (9.9%)

DR = 2 92 (6.2%) 41 (6.5%) 133 (6.3%)

DR = 3 23 (1.6%) 13 (2.1%) 36 (1.7%)

Total 1475 633 2108

In the fourth step, we applied data standardization or encoding, before train-
ing the classifiers. Categorical variables have been encoded using one-hot encod-
ing (OHE), while numerical ones were either standardized (SE) or encoded with
one of the three fuzzy-based methods proposed in Section 3.

Next, we introduce the five multivariate multiclass time series classifiers we
have tested. They are the best performing classifiers according to the review
of Pasos et al. [17] with the addition of ResNet. They are representatives of
different kinds of approaches to classification. The hyperparameter selection for
the classifiers was tuned in [14] and validated with a 10-fold cross validation. The
classifiers are the following:

• KNN: a well-known, simple, yet good performing, distance-based classifier.
In time series, it is usually paired with the Dynamic TimeWarping distance.

• ROCKET: combines convolutional kernel transforms with a linear classifier.
The randomly chosen kernels are used to create feature maps, which are
used to train the classifier [18].

• TapNet: an architecture that combines three components: dimension per-
mutation, embedding learning, and attentional prototype learning to gen-
erate class prototypes [19].

• CNN: an adaptation of convolutional neural networks for time series [20].
• ResNet: a type of CNN that uses residual connections to ease the training
process by allowing gradients to flow more easily through the network [21].

We repeated the experiments five times for each classifier and encoding
method. The obtained results for each test have been aggregated using the mean.
Table 3a displays the overall performance metrics of accuracy and quadratic
weighted kappa. Quadratic weighted kappa is particularly relevant for this ordi-
nal multiclass problem, because it penalizes mistakes according to the distance
between the ground truth and the predicted class. In medical decision support, a
short difference between the correct class and the predicted one is crucial in order
to not affect the health of the patient. Hence, we aim to minimise it as much as
possible. In contrast, Table 3b presents precision and recall metrics. Both of them
focus on the positive examples, which are the most relevant to be detected on
medical diagnosis problems. Precision measures how often examples are correctly
identified as belonging to the positive classes. A high precision indicates a low
rate of false positives, which is essential to minimise unnecessary treatments. On
the other hand, recall measures the proportion of actual positive examples being
correctly identified. A high recall means a low number of false negatives, reducing
the likelihood of missed diagnoses.
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Table 3. DR temporal classification results

(a) Accuracy and Kappa

Classifier Metric SE FOH FTH FM

KNN Acc. 0.866 0.874 0.821 0.896

Kappa 0.654 0.678 0.413 0.737

CNN Acc. 0.929 0.937 0.934 0.942

Kappa 0.868 0.871 0.867 0.888

TapNet Acc. 0.924 0.924 0.942 0.902

Kappa 0.858 0.859 0.877 0.845

ROCKET Acc. 0.909 0.911 0.911 0.911

Kappa 0.736 0.741 0.737 0.740

ResNet Acc. 0.929 0.898 0.934 0.891

Kappa 0.860 0.745 0.863 0.788

(b) Precision and Recall

Classifier Metric SE FOH FTH FM

KNN Prec. 0.654 0.687 0.510 0.764

Recall 0.703 0.753 0.473 0.761

CNN Prec. 0.873 0.885 0.861 0.905

Recall 0.809 0.839 0.796 0.819

TapNet Prec. 0.866 0.867 0.886 0.853

Recall 0.813 0.810 0.812 0.811

ROCKET Prec. 0.916 0.914 0.916 0.913

Recall 0.667 0.673 0.665 0.671

ResNet Prec. 0.847 0.759 0.867 0.795

Recall 0.802 0.813 0.804 0.804

From the obtained results, several conclusions can be drawn by comparing

the standard encoding (SE, Eq. 1) with the three fuzzy-based methods proposed

in this paper. Firstly, we observe that the choice of the encoding approach has

a limited impact on the performance of the ROCKET classifier. Although all

proposed methods outperform SE in accuracy and kappa, their improvements

are marginally better in this classifier. The Kappa and accuracy of the fuzzy

encoding outperform the standard normalization in the rest of the classifiers. The

improvement of Fuzzy One-Hot Encoding is generally small in comparison with

SE. FTH improves the performance on the classifiers using complex architectures

(TapNet and ResNet), but it is surpassed by FM (Fuzzy Membership) for simpler

classifiers (CNN and KNN). All those observations are supported by the precision

measure, as well. In the case of recall, there is more variation in the obtained

results. The recall is higher with FOH for CNN, ROCKET and ResNet.

In general, the best classification performance is obtained by CNN+FM with

accuracy of 0.942 and kappa of 0.888. It also has a precision of 0.905 and a recall

of 0.819. ROCKET is slightly better in precision, but it is much worse in recall

(below 0.7). The second-best classifier is TapNet+FTH, with similar accuracy

and kappa, but with lower precision and recall.

The highest improvements in the use of fuzzy encoding are observed in KNN

for all metrics, which is an expected result given its lower baseline performance.

The other classifiers had much better performance from the beginning, resulting

in smaller improvements.

In summary, no single encoding method consistently outperforms the others

across all classifiers. However, as a general guideline, Fuzzy Membership seems to

work better for architecturally simple classifiers, and Fuzzy Two-Hot for archi-

tecturally complex ones.
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5. Conclusions and future work

In this paper, we investigated the impact of different encoding methods on the per-
formance of various multiclass time series classifiers in assessing diabetic retinopa-
thy risk from EHR data. Our results demonstrate that while standard encod-
ing can be effective for some classifiers, the fuzzy-based encoding approaches we
propose can lead to improved performance.

The findings suggest that Fuzzy Membership is a good choice for simple ar-
chitectures like CNN and KNN, whereas Fuzzy Two-Hot Encoding may be more
effective for complex models such as TapNet and ResNet. However, no single en-
coding method consistently outperforms others across all classifiers, emphasizing
the importance of testing different encoding approaches.

By selecting the most optimal encoding method for each specific classifier,
we can improve the overall performance of DR prediction models and ultimately
contribute to better healthcare decisions. Moreover, these fuzzy-based encoding
techniques are not limited to DR risk assessment, as they could also be applied to
other domains where historical information is available, or even on non-temporal
datasets.

Future work could involve exploring other fuzzy-based encoding methods or
combining them with traditional encoding approaches to further enhance model
performance. We should also test the proposed methods with other EHR datasets
and other time series classifiers to confirm the validity of these results in different
situations. The possibility of using or adapting the proposed method for non-
temporal datasets could also be studied.
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