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Abstract. This study delves into the characterization of synthetic lung nodules us-
ing latent diffusion models applied to chest CT scans. Our experiments involve
guiding the diffusion process by means of a binary mask for localization and var-
ious nodule attributes. In particular, the mask indicates the approximate position
of the nodule in the shape of a bounding box, while the other scalar attributes are
encoded in an embedding vector. The diffusion model operates in 2D, producing a
single synthetic CT slice during inference. The architecture comprises a VQ-VAE
encoder to convert between the image and latent spaces, and a U-Net responsible
for the denoising process. Our primary objective is to assess the quality of synthe-
sized images as a function of the conditional attributes. We discuss possible biases
and whether the model adequately positions and characterizes synthetic nodules.
Our findings on the capabilities and limitations of the proposed approach may be
of interest for downstream tasks involving limited datasets with non-uniform ob-
servations, as it is often the case for medical imaging.
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1. Introduction

Deep learning generative models have revolutionized the landscape of image-based med-
ical applications, providing novel methodologies for data synthesis, augmentation, and
interpretation [1, 2]. These models are capable of learning complex data distributions,
which allows them to generate high-quality, diverse images that closely mimic real data.
This capability is crucial in medical fields where data scarcity and privacy concerns limit
the availability of large datasets [2]. However, generative models may face limitations in
fine-tuning specific image attributes without altering the overall data integrity.

This work explores the synthesis of lung nodules in chest computed tomography
(CT) scans. In particular, the synthesis of lung nodules involves generating images with
controlled variations in nodule characteristics, such as size, shape and location. Having
control over the characterization of synthetic nodules is a fundamental step to generate
well-balanced datasets. Preventing over- or under-represented attributes in synthetic data
is essential for robust training of artificial intelligence (AI) systems in downstream tasks.
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Figure 1. Diagram of the conditional diffusion pipeline. The input CT image is converted by the VQ-VAE en-
coder into a latent space of lower dimensionality, where the diffusion process takes place. The U-Net is trained
to predict the noise in the latent samples (denoising step). A localization mask of the nodule, m, is attached
to the noisy latent vector X, to condition each denoising step ¢. In addition, the mask m and an embedding of
the nodule’s attributes, ¢, can also be injected into the cross-attention layers of the U-Net to further guide the
generative process towards specific visual attributes. Synthetic images are generated by 7' denoising steps.

In-context synthesis has been previously studied [3-5], showing promising results,
especially to artificially insert malignant nodules into healthy lung scans. However, tech-
niques based on adversarial architectures have shown limitations in terms of fidelity and
diversity of synthetic data [6].

Today, diffusion models constitute the state of the art in image generation, also
in medical imaging problems [7], such as data augmentation [8], super-resolution [2],
anomaly detection [9], data repair or alteration [10], and image reconstruction from par-
tial measurements [11, 12]. This work explores different techniques to gain fine-grained
control and fidelity of synthetic nodule characterization in chest CT scans based on con-
ditional latent diffusion models.

2. Methodology

The objective of this work is to study how the conditional information of nodule attributes
and their location can be injected into diffusion models to guide the synthesis process.
Diffusion models using U-Net architectures can be effectively conditioned by incorpo-
rating conditional data as input as well as cross-attention layers [13]. The following sec-
tions describe the architecture of the method (Figure 1) and the different conditioning
mechanisms, as well as the preparation of the training data.

2.1. Data preparation

LIDC-IDRI is a well-known commonly used public dataset [14, 15]. It contains chest
CT scans from 1018 patients annotated by 4 experienced thoracic radiologists. The an-
notations consist of segmentation masks of lung nodules, as well as various nodule at-
tributes scored from 1 to 5. For this study, only annotations related to objective attributes
were considered. The rating of each attribute is summarized in Table 1 and illustrated in
Figure 2.
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Score Sphericity Margin Lobulation Spiculation Texture
1 Linear Poorly defined None None Non-Solid/GGO
2 Ovoid/Linear ~ Near poorly defined Nearly none Nearly none Non-Solid/Mixed
3 Ovoid Medium Medium Medium Part-Solid/Mixed
4 Ovoid/Round Near sharp Nearly marked  Nearly marked Solid/Mixed
5 Round Sharp Marked Marked Solid

Table 1. Attribute annotations of lung nodules in the LIDC-IDRI dataset considered for this study. Sphericity:
shape of the nodule or roundness. Margin: sharpness of the nodule contour. Lobulation: degree of lobulation
present. Spiculation: degree of spiculation present. Texture: radiographic solidity.
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Figure 2. Examples of nodules (2D) in the LIDC-IDRI dataset with high and low attribute scores.

CT scans were resampled to have the same isotropic resolution (0.7 x 0.7 x 0.7 mm)
with pixel intensities clipped between [-1000, 2500] Hounsfield Units and finally nor-
malized between [0, 1]. This pre-processing separates air from tissue and ensures no sat-
urated nodules [16]. A total of 1587 CT images with at least one nodule were used for
training.

2.2. Latent diffusion pipeline

The method consists of a latent diffusion pipeline to generate synthetic 2D images in-
dividually at each forward step. Note that in the generative process, synthetic chest CT
scans always exhibit at least one pulmonary nodule. To guide the synthesis process, the
diffusion model is conditioned on particular data, i.e., a binary mask to indicate the ap-
proximate nodule location in the shape of a square bounding box, and the nodule at-
tributes to describe the appearance of the nodule (Table 1). The latent diffusion pipeline
consists of three main components: a VQ-VAE, a U-Net and an embedding module, as
illustrated in Figure 1.

VQ-VAE. A variational autoencoder performing the conversion between the image space
and latent space, with a x4 spatial compression factor. The encoder incorporates a vec-
tor quantization step to map the continuous-valued output to a discrete set of codes.
This code book narrows the representation learning problem, improving quality and ef-
ficiency [17]. Performing the diffusion process on a latent space instead of the image
domain requires less steps and makes it possible to synthesize high-resolution images
more efficiently [13].
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U-Net. A convolutional neural network performing the diffusion process in latent space.
More specifically, the forward diffusion process gradually adds noise to the input sam-
ples, and the reverse process generates new samples by performing the inverse opera-
tion [18, 19]. The efficiency of this architecture and the preservation of the resolution of
input and output make the U-Net a common choice in diffusion models [1]. Instead of
generating a denoised image, the U-Net actually learns to predict the noise present in
the noisy input sample. The predicted noise is then subtracted from the input sample. In
the reverse process, this step is performed iteratively a fixed number of time steps until
the output converges to a realistic synthetic sample. Additionally, it is quite common to
insert some self-attention layers in the U-Net to capture long-range dependencies and
global context, enhancing the quality and coherence of generated images [13].

Embedding module. This network encodes the nodule attributes into a feature vector
that is used in the activations of the U-Net. The scalar value of each attribute is used as
input to a dictionary of learnable parameters, which ultimately embeds each value into
a vector of dimensionality D. After concatenation, the embedded vectors feed two fully
connected layers of size 128, each one followed by non-linear ReLU activation functions,
and finally merged into a single vector of length D’. Hereafter, D = 10 and D’ = 10.

Conditioning and cross-attention layers. To guide the spatial information more pre-
cisely, a basic and common approach consists of attaching the binary mask to the input
of the U-Net —previously downsampled to accommodate to the latent space dimension-
ality. The square bounding box in the binary mask indicates the position and size of a
single nodule at a time. Additionally, cross-attention layers [6, 13] at different levels of
the U-Net can dynamically attend to relevant parts of the input and activations, aligning
the semantic information more effectively. Both the binary mask and the embedding of
nodule attributes can be injected into the cross-attention layers by flattening and concate-
nating the vectors. These conditioning mechanisms encourage the model to focus on the
conditional data and to generate outputs consistent with it.

The diffusion model is optimized to minimize the square of the L?-norm between the
actual € and predicted noise &, formulated as || € — &(x,,m, ¢,?)||3. Thus, at time 7 the pre-
diction of the diffusion process relies on —depending on the conditioning mechanism—
a noisy latent x;, the resized binary mask m, and optionally a conditional vector ¢ con-
taining the embedded nodule attributes in addition to the flattened mask. The larger the
time step 7 is, the noisier the input sample x,, which by the end of the process follows a
standard normal distribution x, ~ A (0,I). A total of 1000 time steps are used for both
training and inference. Both the weights of the U-Net and the feature embedding are
optimized during training. The VQ-VAE is instead pre-trained [13] and frozen from the
open-source Diffusers library [20]. For feasibility reasons, slices are resized to 256 x 256
pixels, so latent samples x; are shrunken to 64 x 64 spatial dimensions.

3. Experiments

In this section the synthesis quality is evaluated globally (image-level) and locally
(nodule-level) across 3 incremental conditioning configurations: (1) the conditional bi-
nary mask of the nodule is attached to the sample input, (2) the mask is additionally feed-
forwarded through the cross-attention layers, and (3) cross-attention layers additionally
access the embedded attributes of the nodule.
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FID| Global Nodules

(1) Input nodule mask ~ 31.3069  49.6125
(2)+ CAmask  29.6736  46.3218
(3) + CA mask and attributes ~ 29.9101 47.0072

Table 2. Comparison of global and local synthesis quality on the Fréchet Inception Distance (FID) across 3
incremental configurations: (1) binary nodule mask attached to the input, (2) additionally injecting the mask
into the cross-attention (CA) layers, and (3) adding the embedding vector of nodule attributes to the CA layers.
All FID values were computed using 2048 synthetic samples.

3.1. Quantitative results

The Fréchet Inception Distance (FID) [21] is used to quantify the synthesis quality with
respect to real samples. At the global level, the FID is computed using the entire image
with dimensions of 256 x 256. At the nodule level, crops of 32 x 32 pixels centered
around the nodules are used instead. The local and global impact of the localization mask
in the synthetic images is also visually inspected.

According to Table 2, configuration 2 demonstrated superior performance in terms
of FID score at both the global and nodule levels. This indicates that configuration 2
produces images that are statistically closer to the real images in terms of overall distri-
bution, suggesting higher synthesis quality. Configuration 1, on the other hand, achieved
the worst FID values, highlighting the importance of injecting the spatial mask into the
cross-attention (CA) layers at different levels of the U-Net.

Configuration 3 uses the most conditional data in the CA layers, including the em-
bedded nodule attributes. However, its FID is worse compared to configuration 2. We at-
tribute this result to several factors. The resolution of the input images, downsampled to
256 x 256 for feasibility reasons, is likely insufficient to fully capture the nodule visual
attributes, especially in the smallest nodules of the training data, corresponding to areas
of 1-2 pixels after downsampling. Additionally, the noise in the four radiologist anno-
tations of the LIDC-IDRI dataset may contribute to misleading results, as discrepancies
of 1 or 2 scores on the scale of Table 1 are common (during training one of the four
annotations is randomly selected to characterize each nodule). Another possible factor is
that the embedding vectors may not be encoded in the optimal manner —other studies
have explored encoding text captions instead of scalar values [22,23].

Another key aspect shown in Table 2 is that all approaches achieved better FID at
image-level compared to nodule-level. This is probably related to the input and the latent
space resolution. Previous work on diffusion models for medical image synthesis has
indicated that over-compressing the spatial resolution leads to a loss of small anatomic
details [24].

Note that the relative differences between configurations are likely more significant
than the absolute values in Table 2. This is because the image features used in the FID
computation are extracted using the Inception model, which was trained on ImageNet
images and not medical images [21]. Previous studies have pointed out this issue and
explored alternative networks for the feature extraction step [25].



R. Mari Molas et al. / Characterization of Synthetic Lung Nodules 49

Real images Synthetic images

Figure 3. Examples of real and synthetic 2D CT slices containing a nodule. The location and size of the
nodule are represented by a red bounding box corresponding to the binary mask that conditions the synthesis.
Synthetic samples were generated using the latent diffusion pipeline configuration 2 listed in Table 2.

3.2. Qualitative results

Visual inspection of the synthetic images reveals additional points of interest. Notably,
all configurations, including configuration 1, generate a nodule within the bounding box
of the localization mask, even configuration 1. Figure 3 displays sets of real and syn-
thetic images generated using the top-performing configuration of the experiments (con-
figuration 2). The synthetic images exhibit similar anatomical diversity compared to the
real images. However, there are some failure cases, such as images (d) and (1), where the
binary mask points to an unrealistic area of the CT slice. For example, a nodule cannot
be inside muscle tissue, in a bone, or outside the body. We attribute these failure cases to
the choice of the mask m given a latent vector x;. Ideally, m defines the size and location
of the nodule, while x; defines the rest of the body structure (i.e., the CT slice depth, lung
shape, tissue textures, etc.). However, the process we use to generate the synthetic mask
m during inference is independent of x;. In particular, a probability of nodule presence
is computed for each pixel of the CT slice based on the training masks, from which the
centroid of the bounding box is drawn. The size of the bounding box is decided next
by sampling from a second probability distribution over the square size of the training
bounding boxes. Lastly, the synthetic nodule attributes are sampled from uniform distri-
butions in a range of 1 to 5. Note that this procedure does not consider correlation be-
tween all these distributions modeling the nodule attributes as well as location and size,
which might neglect relevant morphological and pathological factors.



50 R. Mari Molas et al. / Characterization of Synthetic Lung Nodules

Conclusions and future work

Synthetic medical images play a crucial role in ensuring privacy compliance and
anonymization in medical data handling. By generating realistic, yet artificial, medical
images, researchers and developers can access rich datasets without risking the exposure
of sensitive patient information.

Our work experimented with pipelines of diffusion models to customize specific
visual attributes in synthetic medical images. Different conditioning techniques were
compared to address the position, size and appearance of nodules in 2D chest CT slices.
The results are promising and show the advantages of using spatial masks and cross-
attention layers to better exploit conditional information.

Future work involves exploring strategies to better capture the visual attributes of
nodules, such as reducing spatial compression to preserve more image details [24], or
encoding nodule attributes in alternative ways, like using text prompts [22,23].

A final noteworthy point is that recent diffusion models operating directly in 3D
have also shown promising results in medical imaging, at the expense of sometimes
unaffordable computational resources. The described approach could be extended to a
3D data by means of 3D layers [24] or by adding loss terms to reinforce coherence
between adjacent CT slices [12].
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