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Abstract. As the usage of the edge-cloud continuum rises, Kubernetes presents it-
self as a solution that allows easy control and deployment of applications in these
highly-distributed and heterogeneous environments. In this context, Artificial Intel-
ligence methods have been proposed to aid in the task allocation process to opti-
mize different aspects of the system, such as application execution time, load bal-
ancing or energy consumption. In this paper, we propose a space-time combina-
tional model that uses Deep Reinforcement Learning (DRL) to recommend node
allocations for Kubernetes pods with the objective of optimizing the overall energy
consumption of the cluster while maintaining pod execution ratio. In particular, our
approach uses Proximal Policy Optimization (PPO) with custom Neural Networks
to train a DRL agent and includes a custom Kubernetes operator to enforce alloca-
tions based on the node recommendations generated by the agent. Using our cus-
tom solution, we performed a series of experiments with different workloads and
compared the performance with the base Kubernetes scheduler. Our experimental
results demonstrate a notable reduction of up to 24% in the energy consumption of
the Kubernetes cluster.

Keywords. Artificial Intelligence, Deep Reinforcement Learning, Edge-to-Cloud
Continuum, Kubernetes, Dynamic Task Allocation, Energy Optimization

1. Introduction

With the focus of bringing applications closer to the user, the edge-cloud continuum
aims to meet security, performance and cost requirements of emerging technologies [1].
In contrast to traditional cloud infrastructures, which largely consist of homogeneous
servers, edge-cloud environments are characterised by the heterogeneity of the devices
where applications are deployed, ranging from cloud servers to more resource-restricted
edge devices, and the large-scale distribution needed to deploy applications [2].
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This heterogeneity and distribution pose new challenges on deploying applications
in these environments. To address them, virtualization and containerization technologies,
such as Kubernetes (K8s), have been widely used to facilitate application deployment as
a set of virtual containers, called pods, in a standardized manner across different infras-
tructures and configurations [3]. Furthermore, container-based orchestration frameworks
have been proposed to optimize the deployment of pods across the nodes of Kubernetes
clusters, a process called dynamic task scheduling or allocation [4, 5].

According to a recent survey of dynamic task allocation methods, Reinforcement
Learning (RL) compromises 10% of all surveyed approaches, being tied with swarm
methods as the most common technique [6]. Most prominently, RL has been used in
edge-cloud orchestration to allocate pods with the objectives of optimizing task execution
times [7, 8], balancing workloads across different nodes [9, 10] or improving the overall
energy consumption of the deployed applications [11, 12].

In this paper, we explore the usage of Deep Reinforcement Learning (DRL) in order
to optimize the energy consumption of Kubernetes clusters. Our approach uses Proximal
Policy Optimization (PPO) with custom Neural Networks to train a DRL agent and rec-
ommend nodes from the Kubernetes cluster to allocate application pods. Furthermore,
our approach also considers already-running pods in the cluster, recommending real-
locations to further optimize the energy consumption. Additionally, our model aims to
maximize the number of allocated pods in order to maintain the pod execution ratio.

In order to test the viability of our DRL agent, we transform the node recommenda-
tions generated by our DRL agent into actionable items by implementing a custom Ku-
bernetes operator that allocates pods to the recommended nodes. We also implemented
a benchmarking tool that can generate different workloads as Kubernetes pods for the
experiments. We compared our custom operator with the base Kubernetes scheduler and
our experimental results show that our approach reduces energy consumption by up to
24% when compared to the Kubernetes scheduler.

The remainder of the paper is organised as follows. Background and related work
are reviewed in Section 2. Our approach to the task allocation problem is formalized
in Section 3. The custom Kubernetes integration we implemented is explained in Sec-
tion 4. Our experimental setup and evaluation results are discussed in Section 5. Finally,
conclusions and lines for future work are highlighted in Section 6.

2. Background and related Work

Deep Reinforcement Learning (DRL) uses Neural Networks to improve the policy of
trained RL models in order to help with the dimensionality of problems and the de-
pendency on environment knowledge [13]. In 2017, Schulman et al. proposed Proximal
Policy Optimization (PPO), a family of DRL algorithms that use epochs of Stochastic
Gradient Ascent in order to perform policy updates. PPO works by using the actor-critic
methodology, where two Neural Networks are trained. The actor is trained on the current
state of the system to output possible actions, while in parallel the critic is trained to
predict the obtained reward value by using the action of the actor network and the state.
The reward is then compared with the real one and the networks are updated [14].

Focusing on optimization of energy consumption, Jayanetti et al. propose a PPO-
based RL framework with the key novelty of a hierarchical action space to distinguish
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between cloud nodes and edge nodes [11]. Furthermore, Buschmann et al. implement a
PPO-based RL method for energy consumption optimization conducting a comparative
study that indicates that PPO outperforms Particle Swarm Optimization (PSO) when con-
sidering cases of over 25 tasks [15]. Most recently, Li et al. propose an energy-efficient
task scheduling scheme based on PPO specific to connected vehicles [16].

Aside from PPO, the most common RL technique to optimize energy consumption
has been Deep-Q Learning (DQL) [12, 17]. Other works use less common variants such
as off-policy RL [18] or combine RL with custom logic such as heuristics-based RL [19].
For more information on the use of RL in dynamic task scheduling, we refer the reader
to the survey published by Shyalika et al. [20].

Compared to previous approaches, in this paper we propose an initial modeling to
optimize energy consumption specific to Kubernetes clusters. We guarantee the gener-
alization of our approach to different use cases by basing our DRL model on widely-
available Kubernetes metrics. The model uses PPO as a starting point as it is one of
the most time-efficient DRL methods [21]. Furthermore, we implement a ready-to-use
custom Kubernetes operator to allocate pods based on the generated recommendations.

3. Problem modeling and implementation

In our modeling, we address the dynamic task scheduling problem in Kubernetes. As
such, in this section we use the corresponding terminology and refer to a Kubernetes
cluster where N is the set of nodes in the cluster, with |N| being the total number of
nodes. Also, a pod p represents a task to be allocated to a node n ∈ N.

3.1. Reinforcement Learning model

The main objective of our DRL model is to find the optimal node in the Kubernetes clus-
ter to allocate new and running pods in order to minimize the overall energy consumption
of the cluster. In our modeling, we solve two sub-problems: (1) new pods that need to be
allocated, and (2) running pods in the cluster that might need a reallocation to optimize
their energy consumption based on the changing cluster state. We reduced both problems
to the first one by considering the running pods as new ones and providing an updated
recommendation on the best reallocation for them. The output of the DRL agent is a
percentage of confidence for each node n ∈ N, the higher the value, the more the node is
recommended to allocate pod p.

State definition

We use a continuous space to represent the observation space, a snapshot of which taken
each time a pod p needs to be allocated at a given timestamp t provides a state St con-
sisting of:

• Cp,Mp: the pair of values indicating the CPU and RAM requested by the current
pod to allocate p, respectively.

• Cn−C′n(t),Mn−M′
n(t) ∀n ∈ N: the list of available CPU and RAM of each node

n in the cluster. This is computed by subtracting the consumed CPU and RAM
at time t, C′n(t) and M′

n(t) respectively, from the total CPU and RAM, Cn and Mn
respectively, for all nodes. The CPU is represented in percentage of cores used
whereas the RAM is represented in GB.
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Action space

The action space of our model is a discrete space where values range from 0 to |N|, with
a total of |N|+1 possible actions. Each action represents a possible node allocation, and
the additional action represents a fake node that implies that no action will be taken.
This fake node is used as a waiting mechanism for scenarios where it is not possible to
perform a legal action and the algorithm needs to wait for the cluster to free up resources
before allocating pod p. Thus, the action space is defined as A = {0,1, ..., |N|}.

Reward

We modeled the reward of the DRL agent with the objective of minimizing the total en-
ergy consumption of the cluster while at the same time encouraging the agent to allocate
pods to be executed. As such, the reward function r is composed of 5 components.

First, we use a custom metric to optimize the energy in the system by estimating the
energy that will be consumed by pod p if allocated to a node n. To do so, we multiply
the requested resources of the pod, Cp,Mp, by a power efficiency coefficient, CCn,MCn,
assigned to CPU and RAM for node n . The power coefficients have a value between 0
and 1 and represent the efficiency of the node’s CPU and RAM, given that some hard-
ware consume more energy than others. In this case, we assume that the bigger the node
capacity and components, the more it consumes. The values are then normalized between
0 and 1 and multiplied by -1 in order to minimize the metric as seen in Eq. 1.

e(p,n) =−1∗ (norm(Cp ∗CCn)+norm(Mp ∗MCn)) (1)

Second, we include two components, Load Distribution CPU ldc (Eq. 2) and Load
Distribution Memory ldm (Eq. 3), that represent the standard deviation σ of consumed
CPU and RAM across the nodes of the Kubernetes cluster, respectively. These compo-
nents are used to optimize load balancing across the cluster’s nodes.

ldct =−1∗σ({C′n(t)
Cn

∀n ∈ N}) (2) ldmt =−1∗σ({M′
n(t)

Mn
∀n ∈ N}) (3)

Third, we include a component representing the cost of allocating a pod (Eq. 4).
This component is needed since pods are always allocated from the master node, which
can have different types of connections with different worker nodes in the cluster. To cal-
culate this metric, we used the latency L(m,n) measured in seconds between the master
node m and the node n where the pod should be allocated. We worked under the assump-
tion that the energy cost associated to shutting down a pod is close to 0, so the energy
cost of reallocating a running pod is equivalent to that of allocating a new one.

tc(p,n) = Mp ∗L(m,n) (4)

Finally, to ensure that our DRL agent chooses to allocate pods over not performing
any action, which would otherwise always be the most energy-efficient solution, an en-
couraging value eg is given to the reward if the allocation is correctly made to a node n.
This value is simply eg = 1.

The reward rt(p,n) for a specific pod-node recommendation p,n at timestamp t is
then computed by weighting all components as defined in Eq. 5. The weights aim to
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(a) Actor network (b) Critic network

Figure 1. Architecture of the two PPO Neural Networks used to train our DRL agent.

change the objective of the model to focus on reducing total energy consumption we,
distributing energy consumption across all nodes wldc and wldr, reducing cost of pod
allocation wtc or allocating as many pods as possible weg. The reward has a value of 0 if
the agent chooses to do nothing (i.e. allocation to the fake node) and a value of −10 if
the action is illegal (e.g. surpassing the maximum available resources of a node).

rt(p,n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−10 if action is illegal
0 if action is fake node
e(p,n)∗we + ldct ∗wldc + ldmt ∗wldr+

tc(p,n)∗wtc + eg∗weg otherwise

(5)

3.2. PPO Neural Network architectures and model training

In our PPO model, both the actor and critic networks have the same hidden layer archi-
tecture as depicted in Figure 1. All the activation functions are LeakyReLU, which is
used to help with vanishing gradient problems in the training process. We implemented
the model using stable baselines3 2 and trained it to focus on reducing the total energy
consumption we while allocating the maximum number of pods weg. We performed the
training on a custom simulated environment implemented using gymnasium 3. The envi-
ronment includes a generator that generates a dataset of pod specifications with different
requested resources (RAM and CPU) and emulates resource consumption with different
quantities from the requested ones to simulate a more realistic diverse behavior.

4. Integration with Kubernetes

In order to validate our trained DRL agent, we integrated it with Kubernetes as depicted
in Figure 2. The objective of this integration is to influence the Kubernetes base scheduler
so that it schedules pods for execution in the node recommended by the pre-trained DRL
model. In order to enforce the desired allocations, we developed a Kubernetes Operator

2https://stable-baselines3.readthedocs.io/en/master/. Accessed May 13th, 2024
3https://gymnasium.farama.org/index.html. Accessed May 13th, 2024
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Figure 2. System diagram showing the integration of our DRL agent with the Kubernetes control plane.

1 a p i V e r s i o n : codeco . codeco / v1
2 k ind : PodPlacement
3 m e t a d a t a :
4 . . .
5 c u r r e n t S t a t u s :
6 podName : s t r e s s −pod −7155
7 currentNodeName : spoke −node

8 requi redCPU : 2500m
9 requi redMemory : 5000Mi

10 o b j e c t i v e S t a t u s :
11 podName : s t r e s s −pod −7155
12 objec t iveNodeName : worker −node
13 t imes t amp : 2024 −04 −30T16 : 1 6 : 5 1 Z

Figure 3. Example Custom Resource of the PodPlacement CRD defined by our custom K8s Operator.

based on the Operator Framework 4 which defines a Custom Resource Definition (CRD),
named PodPlacement. This CRD specifies both the current status of the pods, including
their resource requests (in terms of CPU and RAM) and the node where each pod is
currently executed, as well as the objective status with the node indicated by the DRL
model as better placement for the pod. An example of a Custom Resource (CR) for this
definition with fictitious attribute values is depicted in Figure 3.

The DRL model can indicate at any time the node where a pod, whether new or
already running, should be allocated by updating the objectiveNodeName in the CR. In
parallel, the operator is responsible for both keeping the CR up to date with the current
status of the pods as well as for enforcing the pod allocation by constantly monitoring all
instances of the PodPlacement CR and applying any required allocations or reallocations
that appear in the objectiveStatus. To monitor the energy consumption of the cluster, the
operator uses the Kepler plug-in 5, which measures energy consumption per node and
exports the data to a Prometheus service 6.

5. Experimental setup and evaluation results

To perform our experiments, we used a 3-server testbed with the architecture and specifi-
cations depicted in Figure 4. In order to mimic an edge-cloud environment, the testbed is
conformed of 2 powerful servers, equivalent to cloud servers, and one with more limited
resources, simulating an edge device. The Supermicro 1U hosts the control plane of the
Kubernetes cluster and can also be used to host pods for execution, while the other two
servers are used as Kubernetes worker nodes.

4https://operatorframework.io/. Accessed May 13th, 2024.
5https://github.com/sustainable-computing-io/kepler. Accessed May 13th, 2024.
6https://prometheus.io/. Accessed May 13th, 2024.
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Figure 4. Testbed setup and hardware specifications of the servers used in our experiments.

5.1. Workload benchmarking and pod generator

We ran our experiments on simulated edge-cloud workloads by leveraging the stress tool
available in Debian OS 7 to develop a benchmarking tool that stresses the Kubernetes
cluster in terms of CPU, RAM and I/O. We then used this tool to generate a number
of “stresser pods” with different duration, CPU and RAM requirements. Stresser pods
ensure that requested resources are always used so that we can have reproducible experi-
ments that stress the hardware components of the cluster. For the reported evaluation, we
ran 3 sets of experiments with 10, 25 and 40 stresser pods. To ensure reproducibility, all
the stresser pods in all of the experiments were created at timestamp 0 with 2.5 cores of
CPU, 5 GB of RAM and 400 seconds of duration. Additionally, we chose to give pods
an execution time of 400 seconds to analyze the behaviour of the system throughout the
pod lifecycle and to detect any potential patterns in the energy consumption.

5.2. Evaluation metrics

In order to validate our approach, we compared the pod allocations recommended by the
DRL agent and enforced by the custom Kubernetes Operator to the pod allocation de-
cisions taken by the standard Kubernetes scheduler. The Kubernetes scheduler allocates
new pods to the node with the most available resources at the time, essentially follow-
ing a greedy algorithm, and does not consider reallocations of running pods at all. In
particular, we compared both approaches using the following metrics:

• Total energy consumed in the cluster over the last minute, measured in Joules and
obtained from Kepler. Results are reported per time unit instead of aggregated
metrics in order to analyze patterns in the behaviour of the cluster.

• Energy consumed per pod running in the cluster over the last minute, also mea-
sured in Joules. This metric is considered due to the fact that the Kubernetes sched-
uler has a simpler logic and allocates pods faster than our custom Kubernetes Op-
erator. Thus, a comparison of the total consumed energy might not always be ac-
curate. This metric is computed by dividing the total consumed energy over the
last minute by the number of running pods as obtained from Prometheus.

7https://manpages.debian.org/buster/stress/stress.1.en.html. Accessed May10th, 2024.
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(a) 10 pods

(b) 25 pods

(c) 40 pods

Figure 5. Experimental results for 10, 25 and 40 pods showing total energy consumption (to the left) and
energy consumption per pod (to the right) of our DRL-based approach (in green) compared to the base Kuber-
netes scheduler (in orange).

5.3. Evaluation results

The results obtained from our experiments can be seen in Figure 5, which shows total
energy consumed (to the left) and energy consumed per pod and pods running (to the
right) for three sets of experiments with 10, 25 and 40 stresser pods. In the case of 10
pods, we can observe that our DRL-powered custom operator is able to save 100 joules
per minute, amounting to 19% in the total energy consumption of the experiment as
explained in Table 1. A similar improvement of about 120 joules per minute (or 24%) in
the consumed energy can be observed with 25 pods. Additionally, in both experiments we
observe sharp periodic drops in the energy consumption, which result from the stresser
pods restarting every 400 seconds (the duration they were configured to last for). On the
other hand, the improvement in total consumed energy in the experiment with 40 pods
drops down to around 11.78%. This is due to the fact that the testbed servers start being
overloaded with that number of pods, and thus the allocation and execution of pods is
slower than in the previous two experiments.

Considering the energy consumption per pod, the results indicate that the improve-
ment in the case of 10 and 25 pods is fairly comparable to the one in the reduction of
the total energy consumption. However, when considering 40 stresser pods, the improve-
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Table 1. Percentage of improvement in total and per pod energy consumption in our experiments.

Number of pods Total energy improvement Energy per pod improvement

10 19.35% 16.45%
25 24.57% 20.05%
40 11.78% 2.08%

ment rate of energy consumption per pod drops down to about 2%. This is due to the
fact that the allocation of pods with our custom operator is slower than in the other two
experiments due to the clusters saturation. This slower allocation makes our custom op-
erator consume more energy per pod initially, reducing its overall improvement when
compared to the Kubernetes scheduler which is able to allocate all pods instantaneously.

Overall, these results indicate that our proposed approach can significantly reduce
energy consumption in Kubernetes clusters while not affecting the execution of pods,
especially in cases of normal cluster operations. On the other hand, when a cluster’s re-
sources start becoming overloaded, the reduction offered by our DRL method is signif-
icantly reduced, although a slight improvement is still noticeable. Crucially, our custom
Kubernetes operator is able to allocate all pods to the cluster, even in highly-stressed
cases such as our 40 pods experiment.

6. Conclusions and future work

In this paper, we proposed a PPO-based DRL agent to optimize energy consumption
in Kubernetes clusters and implemented a custom Kubernetes operator to evaluate our
agent. Our experiments indicate that our solution manages to reduce the overall energy
consumption by between 19% and 24% when the cluster is not saturated, with a lower
reduction of 11% in case of saturation. In the future, we plan to extend our energy mod-
eling to include other parameters coming from the network and system layers. Moreover,
we will improve our current Kubernetes operator together with the testbed in order to run
experiments with larger datasets. We shall also expand our experiments by performing a
comparison between PPO and other RL techniques such as A2C or DQN using heteroge-
neous pods and a more complex baseline than the Kubernetes scheduler. Finally, we shall
convert our DRL model into a Multi-Agent Reinforcement Learning (MARL) solution
in order to ensure privacy of the used data, especially in multi-cluster environments.
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