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Abstract.

In an era characterized by the rapid evolution of data-driven applications, the
generation of high-quality synthetic data has become increasingly indispensable.
This serves as a crucial element for advancing research, development, and ensur-
ing the responsible management of sensitive information. However, the synthesis
of fundus images presents unique challenges due to the intricate and highly de-
tailed structures inherent in retinal images. While Generative Adversarial Networks
(GANs) show promise in image synthesis, they often encounter training difficulties
and struggle to produce truly realistic images. This paper introduces SynthRetina,
an innovative system that harnesses the capabilities of GANs to generate lifelike
fundus images. SynthRetina amalgamates a generator network and a discriminator
network, facilitating the creation of synthetic fundus images with diverse applica-
tions across the medical field. The generator network specializes in transforming
input fundus images from one class to another, while the discriminator network rig-
orously evaluates the authenticity of the generated images. SynthRetina effectively
addresses the challenge of limited availability of medical data for research and de-
velopment, offering a solution that enhances data augmentation and improves the
performance of fundus image classification tasks. An evaluation of the SynthRetina
architecture using a real fundus image dataset demonstrates its ability to produce
a more diverse and realistic collection of fundus images compared to other GAN-
based methods.

Keywords. Deep learning, Synthesis Date, Generative Adversarial Networks,
Fundus Images, Mixture of GANs.

1. Introduction

The demand for high-quality training data has surged in recent years, primarily propelled
by the pervasive adoption of data-driven applications. However, the collection and an-
notation of datasets essential for machine learning applications, especially in domains
like medicine, are often laborious and time-intensive. Synthetic data generation emerges
as an appealing alternative, offering promise for research, development, and safeguard-
ing sensitive information, particularly in light of challenges related to patient data re-
identification and data availability delays [1].
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Figure 1. Our algorithm autonomously learns to ”translate” images from one collection to another when pre-
sented with two image collections, denoted as X and Y . This capability is depicted in the following scenar-
ios: (top-left) translating from the NO DR class to the Mild DR class, (top-right) translating from the NO
DR class to the Moderate DR class, (bottom-left) translating from the NO DR class to the Severe DR class,
and (bottom-right) translating from the NO DR class to the PDR class. This example effectively showcases
our method’s ability to generate synthetic fundus images, facilitating seamless transformations across various
classes.

However, the collection and annotation of datasets that machine learning approaches
require are often labor-intensive and time-consuming, particularly in fields such as
medicine, one appealing alternative is rendering synthetic data [2], and given the risks of
re-identification of patient data and the delays inherent in making such data more widely
available, synthetically generated data is a promising alternative or addition to standard
anonymization procedures [3].

Medical imaging is essential for diagnosing and monitoring eye conditions, with
fundus images being crucial for detecting and assessing retinal issues. However, collect-
ing well-annotated datasets for training machine learning algorithms is expensive. An al-
ternative is rendering synthetic data [4], which addresses privacy concerns and data avail-
ability delays, making it a viable addition to real patient data [5]. Ensuring patient data
privacy and security is vital to prevent severe legal and ethical consequences. The incon-
sistent quality and limited availability of data hinder the advancement of machine learn-
ing. The quality of training data significantly impacts the accuracy of machine learning
models, and insufficient relevant data restricts their performance and adoption [6].

Deep learning models rely on the data used for their training, and the quality of this
data directly affects the accuracy of their decisions and predictions, so a lack of relevant
training data limits machine learning models’ accuracy and the quality of their output [7].
To address this issue, we propose a system that utilizes the SynthRetina model, which
produces class-balanced data samples to mitigate the issue of data scarcity where syn-
thetic data is artificially created to resemble real-world data in its statistical properties,
distribution, and structure, and can be used to supplement or replace scarce, expensive,
or confidential real-world data in machine learning, computer vision, and data mining
applications. Our contributions show that synthetic data improves neural network perfor-
mance on real medical data. Despite having limitations and challenges, the generation of
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synthetic data remains a crucial tool for data scientists and researchers and is expected
to become even more prevalent with increasing concerns regarding data privacy. The
following are the main contributions of this work:

• We introduce SynthRetina, a pioneering system that leverages a combination of
Generative Adversarial Networks (GANs) to generate lifelike fundus images with
remarkable realism.

• SynthRetina addresses the prevalent challenge of limited availability of medical
data for research and development, providing an effective solution that not only
enhances data augmentation but also significantly improves the performance of
fundus image classification tasks.

• In order to ensure that the synthetic fundus images closely resemble real images,
thus maximizing their utility in subsequent classification tasks, we integrate the
Structural Similarity Index (SSIM) loss function into the SynthRetina framework.

• Through a comprehensive evaluation conducted on a real fundus image dataset,
SynthRetina demonstrates its exceptional capability to generate a diverse array
of realistic fundus images, surpassing the performance of existing GAN-based
methods in terms of realism and diversity.

Figure 2 and 3 illustrate the proposed SynthRetina model for both training and test-
ing stages. The remainder of the paper is organized as follows: Section 2 summarizes
related work in the field. Section 3 presents the methodology for the SynthRetina model.
Experimental findings and performance metrics are detailed in Section 4. Finally, Section
5 concludes the work and outlines potential avenues for future research.

2. Related work

The need for high-quality training data has driven researchers to explore innovative meth-
ods to tackle the challenges associated with data scarcity, privacy concerns, and the limi-
tations of real-world data collection. In this section, we review the state of the art in data
augmentation, Generative Adversarial Networks (GANs), and the broader landscape of
synthetic data generation, highlighting their significance in addressing these challenges.

Data augmentation techniques have long been employed in machine learning to en-
hance the robustness and generalization capabilities of models. These methods involve
generating new training samples by applying various transformations to existing data,
such as rotations, translations, and mirroring [8,9]. Additionally, in [10], the authors pro-
posed the idea of creating synthetic images from BIM images using a CycleGAN, en-
abling the transformation of style between different domains and the automated genera-
tion of synthetic data.

Recent years have witnessed significant progress in the field of medical image syn-
thesis, particularly in the domain of fundus images. The integration of Generative Ad-
versarial Networks (GANs) into medical image generation has displayed substantial po-
tential, facilitating the creation of synthetic datasets for machine learning model train-
ing [11]. While several techniques for data augmentation are available, GAN-based ap-
proaches for fundus image synthesis have been relatively scarce. In [12], the authors ex-
amined the impact of the quality of synthetic images generated by GANs on the classifi-
cation performance of models, emphasizing the advantages of GAN-based data augmen-
tation over traditional geometric transformations.
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Medical imaging, particularly in ophthalmology, relies heavily on high-quality data
for the diagnosis and treatment of various eye conditions. Fundus images, capturing the
inner surface of the retina, are instrumental in early detection and monitoring [4]. How-
ever, the cost and scarcity of well-annotated fundus image datasets hinder the develop-
ment and deployment of machine learning solutions in this domain. Synthetic data gen-
eration has emerged as a valuable tool to bridge this gap, enabling the training of robust
and accurate machine learning models for fundus image analysi [5]. For instance, [13]
employed synthesized short-axis CMR images generated using a segmentation-informed
conditional GAN to improve the robustness of heart cavity segmentation models.

Our work builds upon the previous research on data augmentation, GANs, and syn-
thetic data. We propose a novel system, SynthRetina, that combines the strengths of these
methods to generate high-quality synthetic fundus images. SynthRetina stands out by
adopting an innovative strategy that combines multiple GANs, yielding a diverse and
high-quality collection of synthetic fundus images.
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Figure 2. Illustrates the general overview of the proposed SynthRetina model during the training stage. The
architecture comprises a Generator network (NG) responsible for synthesizing retinal fundus images and a
Discriminator network (ND) tasked with discerning between real and synthetic images.

3. Proposed Methodology

In this section, we outline the proposed methodology for addressing the challenge of data
scarcity and imbalance in retinal fundus image analysis for Diabetic Retinopathy (DR)
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Figure 3. Depicts the general overview of the proposed SynthRetina model during the testing stage. The model
consists of a Generator network (NG), which generate synthetic fundus images based on input from the real
fundus images.

grading. We begin by elucidating the problem formulation, wherein we define the objec-
tives and scope of our study. Subsequently, we delve into the architecture of the networks
utilized in our proposed approach, highlighting the design choices and considerations.
Following this, we provide insights into the training process, including parameter set-
tings and optimization techniques employed. Through this comprehensive overview, we
aim to provide a clear understanding of the methodology employed in our study to tackle
the challenges inherent in DR grading using retinal fundus images.

3.1. Problem Formulation

To formally define the problem, we consider the task of synthesizing retinal fundus im-
ages (Xsynth) that closely resemble real fundus images (Xreal). Given a dataset of real fun-
dus images (Dreal) ∈ class A, our objective is to train a model that can generate synthetic
images (Dsynth) ∈ class B.

Mathematically, our goal is to find a mapping function G such that:

G : Dreal ∈ A → Dsynth ∈ B (1)

This mapping function G takes the real fundus image x ∈ Dreal from class A as input
and produces a synthetic image Xsynth ∈ Dsynth from class B.

3.2. Networks Architecture

In our network architecture, we have incorporated two fundamental components: the
Generator Network (N G) and the Discriminator Network (N D). These components are
pivotal in orchestrating the process of retinal image synthesis, each contributing uniquely
to the overall procedure.
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3.3. Generator Network

The generator network (NG) learns the mapping from an input x ∈Dreal ⊂ A to the output
x ∈ Dsynth ⊂ B. The input to generator network is a fundus image, x ∈ class A, and it
generates a fundus image, x ∈ class B.

The generator network (NG) is responsible for synthesizing retinal fundus images
from class A to class B. It takes the x ∈ Dreal ⊂ A as input and generates synthetic images
G(x) ∈ Dsynth ⊂ B:

NG(x ∈ Dreal ⊂ A) = (Dsynth ⊂ B) (2)

To assess the performance of optimizing the training of the network with respect to
the structural similarity between the generated image (synthesized image) from a real
image and the ground-truth image, we use the Structural Similarity Index (SSIM) as a
loss function. SSIM is a comprehensive metric that evaluates the structural similarity
between two images. SSIM values closer to 1 indicate a higher similarity between the
synthetic and real images.

The SSIM formula is given by:

SSIM(Xreal,Xsynth) =
(2μXreal μXsynth +C1) · (2σXrealXsynth +C2)

(μ2
Xreal

+μ2
Xsynth

+C1) · (σ2
Xreal

+σ2
Xsynth

+C2)
(3)

where:

• μXreal and μXsynth are the means of the real and synthesized images, respectively.
• σXreal and σXsynth are the standard deviations of the real and synthesized images,

respectively.
• σXrealXsynth is the covariance between the real and synthesized images.
• C1 and C2 are constants to stabilize the division by preventing a zero denominator.

These components together assess the structural similarity by comparing luminance,
contrast, and structure between the two images.

3.3.1. Discriminator Network

The Discriminator network assumes a pivotal role in the adversarial training framework
by discerning between real and synthetic images. It accepts inputs comprising both real
images (x∈Dreal ⊂B) and synthetic images generated by the generator network (Xsynth ⊂
B), aiming to output a probability score indicative of the authenticity of the input image.

Functioning as a binary classifier, the Discriminator undergoes training to assign
high probabilities to real images and low probabilities to synthetic ones. Its architecture
typically encompasses convolutional layers followed by fully connected layers, culmi-
nating in a single probability score as the final output. The primary objective is to op-
timize the Discriminator’s parameters to minimize the binary cross-entropy loss during
the training process.

Mathematically, the Discriminator’s output (ND(x)) for a given image x is defined
as follows:
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ND(x) =

{
High probability if x ∈ Dreal

Low probability if x = Xsynth
(4)

Training the Discriminator involves iteratively updating its parameters to accurately
differentiate between real and synthetic images. This adversarial interplay, where the
Generator and Discriminator engage in oppositional learning, fosters a dynamic equilib-
rium. Over time, the Generator excels at producing realistic synthetic images, while the
Discriminator becomes adept at discerning between real and synthetic data.

3.3.2. Training

In this section, we delve into the training process of the SynthRetina model for synthe-
sizing realistic fundus images. The training procedure involves optimizing the parame-
ters of both the generator and discriminator networks using suitable loss functions. The
generator network aims to produce synthetic fundus images that closely resemble real
images, while the discriminator network seeks to distinguish between real and synthetic
images.

For the Generator network (NG), the loss function is based on the Structural Simi-
larity Index (SSIM) between the generated images and the real images. This loss encour-
ages the Generator to produce images that closely match the real fundus images:

LSSIM(Xreal,Xsynth) = 1−SSIM(Xreal,Xsynth) (5)

For the Discriminator network (ND), the loss function is the binary cross-entropy
loss. This loss encourages the Discriminator to accurately classify the images as real or
synthetic:

LBCE(yreal,ysynth) =− 1
N

N

∑
i=1

[yreal · log(D(xreal))+(1− ysynth) · log(1−D(xsynth))] (6)

By iteratively updating the networks’ parameters based on these loss functions, the
SynthRetina model learns to generate high-quality synthetic fundus images that can be
used for various medical applications, including Diabetic Retinopathy (DR) grading.

3.4. Parameter settings

We used the ADAM optimizer introduced in [14] to train our model with parameters of
beta1 = 0.5, beta2 = 0.999, and an initial learning rate of 0.0002. The optimal combina-
tion was with a batch size of 2 and 15 epochs. The PyTorch [15] deep learning framework
was used to run all experiments on a 64-bit Core i7-6700, 3.40 GHz CPU with 16 GB of
memory, and an NVIDIA GTX 1080 GPU under Ubuntu 16.04. The proposed model’s
computational cost for the training process is about 2.5 hours per epoch with a 2 batch
size. The performance of the online depth map estimation is around 0.028 seconds.

N. Sharaf et al. / SynthRetina22



4. Experiments and Results

In this section, we detail the experiments conducted to evaluate the effectiveness of uti-
lizing synthetic images generated by the SynthRetina model in retinal fundus image anal-
ysis for Diabetic Retinopathy (DR) grading. We begin by discussing the dataset utilized
for training and evaluation, followed by an introduce the evaluation measures used to
quantify the performance of the classification model. Finally, we present and discuss the
results obtained from our experimental analysis, providing insights into the impact of
synthetic images on classification performance.

4.1. Dataset

In our experimental analysis, we employed a dataset obtained from the public DDR
dataset [16], which includes 13,673 meticulously curated retinal fundus images used for
grading Diabetic Retinopathy (DR). The first step in our process involves resizing all
images from 1024 × 1024 to 256× 256. Following this, we utilized the training set to pro-
duce synthetic images for training the generator of the MonGANs model. The model’s
performance is then assessed using the testing set. Synthetic images generated from the
testing set are crucial in our thorough evaluation process. These synthetic images are em-
ployed to augment the data, aiming to balance the classes and enabling us to assess how
well the model performs with and without synthetic data. This approach yields valuable
insights into the efficacy of our model to balance the classes.

4.2. Evaluation Measures

This work focuses on creating retinal fundus images, where the influence of synthesized
images on classification tasks is pivotal, particularly in scenarios with imbalanced data.
In this section, we employ classification evaluation criteria to assess the effectiveness of
the generated images. Initially, we train the model using the original images Xreal and
subsequently incorporate augmented images to balance the classes. Evaluation is then
performed on the original images Xreal alongside the augmented generated images Xsynth
after classes balancing. The evaluation metrics encompass Accuracy, Precision, Recall,
and F1 Score. These metrics are defined based on the counts of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). these metrics are defined as
follows:

Accuracy =
T P+T N

T P+FP+T N +FN
(7)

Precision =
T P

T P+FP
(8)

Recall =
T P

T P+FN
(9)

F1 Score =
2 ·Precision ·Recall
Precision+Recall

(10)
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These classification metrics provide valuable insights into the practical utility of the
synthesized images in classification scenarios.

4.3. Results and Discussion

The performance of the SynthRetina model is evaluated through classification metrics.
The results are presented and discussed in detail below. In Table 1 provides an overview
of the classification evaluation metrics, which consist of Accuracy, Precision, Recall, and
F1 Score, for both balanced datasets achieved through traditional methods and synthetic
images. A detailed comparative analysis is undertaken to assess the effectiveness of a
trained model using original images before balancing, contrasted with the performance
of the same model trained on original images augmented with traditional techniques.
Moreover, the evaluation extends to the model’s performance when trained on original
images augmented by images generated through our SynthRetina model.

Table 1. Classification Evaluation Metrics for the test model after training using Balanced Data Utilizing
Traditional and Synthetic Images Generated by the SynthRetina Model, Evaluated with Different Metrics Using
the VGG16 Model [17].

Techniques Accuracy Precision Recall F1 Score

Traditional images 0.7721 0.7605 0.7612 0.7641

Synthetic images 0.7875 0.7685 0.7864 0.7761

The outcomes depicted in Table 1 reveal a notable advantage for the test model
trained on synthetic images compared to the model trained on traditional images. Specif-
ically, the model trained on synthetic images achieves an Accuracy of 78.75%, outper-
forming the traditional image-based model with an Accuracy of 77.21%. This improve-
ment in accuracy underscores the efficacy of utilizing synthetic images generated by
the SynthRetina model. Moreover, a closer examination of the Precision, Recall, and
F1 Score metrics further corroborates the superior performance of the synthetic image-
based model. The synthetic image-based model exhibits a higher Precision of 76.85%,
Recall of 78.64%, and F1 Score of 77.61% compared to the traditional image-based
model, which achieved Precision, Recall, and F1 Score of 76.05%, 76.12%, and 76.41%
respectively. These findings collectively highlight the effectiveness of the SynthRetina
model in generating high-quality synthetic images for training purposes. By augment-
ing the dataset with synthetic images, the model’s ability to generalize to unseen data
is significantly improved, leading to enhanced classification accuracy and robustness.
Furthermore, the integration of synthetic images into the training data helps alleviate
the challenges associated with data imbalance, resulting in more reliable and effective
classification outcomes.

5. Conclusion and Future Directions

SynthRetina represents a breakthrough solution for the challenges faced by limited fun-
dus image datasets in the medical realm. By integrating a generator network and a dis-
criminator network, SynthRetina facilitates the generation of synthetic fundus images
with multifaceted applications in medicine. The generator network adeptly transforms
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input fundus images across different classes, while the discriminator network rigorously
assesses the authenticity of the generated images. Our evaluation of the SynthRetina ar-
chitecture using a real fundus image dataset has showcased its capacity to produce a
more diverse and realistic assortment of fundus images. The successful development of
SynthRetina opens avenues for further research, including optimization for enhanced ef-
ficiency and accuracy. Additionally, SynthRetina hold promise beyond fundus images,
potentially extending to synthesizing images of other anatomical structures, enriching
medical research and healthcare practices.
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