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Abstract. The future faces escalating water scarcity due to population growth, 
climate change, and inefficient resource management. Therefore, innovative 
solutions for sustainable access and usage are needed. Seawater Reverse Osmosis 
(SWRO) desalination stands out as a key technology in tackling this dilemma. 
However, SWRO is energy-intensive, primarily due to the need to pressurize 
seawater to overcome the osmotic pressure to produce fresh water. In this regard, 
real-time management of operating parameters in SWRO plants enables minimizing 
energy consumption and chemical usage and adjusting water production in response 
to demand and water conditions, highlighting the need for real-time monitoring and 
advanced simulation tools such as digital twins. In response, this study explores the 
potential of eleven machine learning algorithms to simulate the SWRO process 
using a vast dataset of 18.816 scenarios generated through a solution diffusion 
transport model. Our investigation covers both non-ensemble and ensemble models. 
Additionally, a Shapley additive explanation analysis was carried out to gain 
insights into the most influential predictors and confirm the model’s ability to 
comprehend the Reverse Osmosis (RO) process. The findings underscore the high 
accuracy of the algorithms, particularly XGBoost, CatBoost and ANN, in predicting 
key parameters such as permeate flow, permeate salinity and specific energy 
consumption. Furthermore, Support Vector Machine regression model shows 
promising in predicting permeate flow. These findings highlight the potential of 
data-driven models, particularly ensemble-based algorithms, in simulating SWRO 
behavior, laying the groundwork for future process optimization. 
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1. Introduction 

Water scarcity is becoming increasingly critical because of accelerated population 
growth [1], exacerbated effect of climate change, and inadequate resource management. 
Therefore, finding innovative solutions for sustainable access and usage is imperative. 
Seawater desalination is one of the most attractive alternatives to supply clean and safe 
drinking water worldwide. Among the various desalination technologies, Reverse 
Osmosis (RO) stands out as the preeminent technology utilized in the process of seawater 
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desalination. Desalination processes are known as energy-intensive, creating an energy-
water nexus, with the two commodities essential for each other [2]. Roughly 71% of the 
total electricity used in RO-based desalination plants is attributed to the RO process, 
around 11% is consumed by pre-treatment and the remainder is used for seawater 
collection and distribution [3]. Moreover, the efficiency of RO plants is significantly 
influenced by both the feed water quality and the plant's operational parameters. This 
underscores the necessity for continuous monitoring and the adoption of sophisticated 
simulation tools, such as digital twins, to enhance performance and ultimately enable 
optimal control. Lately, there has been increasing interest in Artificial Intelligence (AI) 
and Machine Learning (ML) for tackling complex problems related to RO processes, 
compared to mathematical models, due to their flexibility and adaptability in managing 
high dynamic non-linearity and uncertainties, including fouling and fluctuations in feed 
water quality [4,5]. Many studies explore using Artificial Neural Networks (ANN), 
Multiple Linear Regression (MLR) and Support Vector Machine (SVM) models to 
predict the performance of RO process [6]. Research trends are shifting towards 
integrating more sophisticated ML prediction models, like tree-based and boosting 
models [4]. Encouraged by these advancements, this study aims exploring the potential 
of ML models to simulate and optimize the SWRO desalination process. The main goals 
include identifying the most accurate predictive models and gaining insights into the 
factors affecting the RO process performance in terms of permeate flow, permeate 
salinity, and specific energy consumption (SEC). 

2. Methodology 

The dataset comprises 18,816 instances, where each data instance represents a specific 
process step simulation (i.e., a set of input conditions and the corresponding process 
outputs). The simulator is based on a solution-diffusion transport model. For the 
simulation, a pressure vessel was utilized, housing seven sequentially arranged 
commercial Filmtec™ SW30XHR-440 spiral wound RO membrane elements. The 
simulations were conducted considering a grid with the following operating ranges as 
inputs: feed flow ranging from 5 to 17 m3/h; feed temperature ranging from 10 to 40 ̊C; 
feed salinity ranging from 30 to 44 g/L; and feed pressure ranging from 40 to 80 bar, all 
in increments of 2 (see Table 1). The output parameters include permeate salinity, 
permeate flow and SEC. 
Table 1. Summary statistics of process parameters used for predictive models’ development. 

 Parameter Range Mean Standard 
deviation 

Input 

Feed Salinity (g/L) 30 - 44 37 4.58 
Feed Temperature (̊C) 10 - 40 25 9.21 
Feed Flow(m3/h) 5 - 17 11 4 
Feed Pressure (bar) 40 - 80 60 12.11 

Output 
Permeate Flow (m3/h) 0.398 - 11.02 4.02 1.88 
Permeate Salinity (g/L) 0.057 - 2.087 0.22 0.129 
SEC (kWh/m3) 2.68 - 46.95 4.91 2.21 

 
For computational analyses, Python programming language, version 3.12.0, was 

employed for both data preprocessing and modeling. When necessary, the features were 
standardized. The entire dataset was randomly shuffled and split into a training set (70%) 
and a testing set (30%). Hyperparameters of various ML models were optimized by 
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cross-validated grid-search over a parameter grid, covering a diverse range of 
hyperparameters for each model. To estimate model uncertainty, 10-fold cross-validation 
was performed. In addition, the SHapley Additive exPlanations (SHAP) technique was 
employed to enhance the interpretability of the best-performing models. In total, eleven 
distinct ML regression models were implemented starting from simple non ensemble 
models (ANN, SVR, Kernel Ridge, Linear Regression, and Decision Tree Regressor) to 
more sophisticated black box ensemble models (XGBoost, CatBoost, LightGBM, 
AdaBoost, Hist Gradient Boosting Regressor, and Random Forest) as a screening step to 
come up with the model that has the highest predictive accuracy for each output 
parameter. For this purpose, three of the most common accuracy metrics of regression 
models were used to compare the predicted values against the test targets. These metrics 
include the coefficient of determination (R2), the Root Mean Square Error (RMSE), and 
the Kling-Gupta efficiency (KGE) [7]. 

3. Results and discussion 

Permeate Flow: Table 2 presents the performance metrics of the three highest-
performing models out of eleven implemented algorithms for each output parameter. The 
results indicate that the CatBoost regression model exhibited superior performance in 
predicting permeate flow on the test dataset, achieving an RMSE of 0.0053, an R2 value 
of 99.99%, and a KGE score 99.99%. Additionally, both the SVR and XGBoost regressor 
demonstrate high accuracy in predicting permeate flow. According to the SHAP analysis 
(see Fig 1 (a)), CatBoost shows that the feed pressure is the most critical factor impacting 
the permeate flow. Positive relationships exist between feed pressure, feed flow rate, and 
feed temperature with permeate flow, indicating that increases in these variables result 
in higher permeate flow. 
Table 2: The performance metrics results for the three highest-performing models for each output (Test set). 

 
Permeate salinity: The CatBoost model demonstrated outstanding performance in 

predicting permeate salinity, with an RMSE of 0.0047, an R² of 99.86%, and a KGE of 
99.90%. Both ANN and XGBoost also exhibited notable performance. SHAP analysis 
revealed that permeate salinity is most significantly influenced by feed flow rate, 
followed by feed salinity, feed pressure, and feed temperature (see Fig 1 (b)). This 
suggests that higher feed pressure, lower temperature, and increased feed flow are 
desirable to obtain low permeate salinity aligning with Mohammed et al. findings [4]. 

Specific Energy Consumption: Both CatBoost and XGBoost were ranked as the best 
predictive performance of SEC on test data prediction among other methods, proved by 
the lowest RMSE ranging from 0.1029 to 0.1040, identical highest R2 (99.76%) and KGE 
ranging from 99.31% to 99.36%, respectively. Following closely, the ANN algorithm 
also demonstrates a high prediction capacity. SHAP analysis (see Fig. 1 (c)) indicated 
that feed pressure is the most critical factor impacting SEC. Thus, increasing the feed 
pressure results in reduced SEC due to producing a high permeate flow rate. 

 Permeate Flow Permeate salinity Specific energy consumption 

 SVR XG 
Boost 

Cat 
Boost ANN XG 

boost 
Cat 

Boost ANN XG 
Boost 

Cat 
Boost 

RMSE 0.0063 0.0158 0.0053 0.0068 0.0068 0.0047 0.1072 0.1040 0.1029 

R2 99.99 99.99 99.99 99.69 99.71 99.86 99.74 99.76 99.76 
KGE 99.98 99.99 99.99 98.95 99.57 99.90 99.04 99.36 99.31 
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Figure 1. SHAP analysis. (a) permeate flow and (b) permeate salinity using CatBoost, (c) SEC using XGBoost 

4. Conclusion  

In summary, our findings demonstrated that ML regression models such as Catboost 
and XGBoost could effectively capture the mechanisms of the RO desalination process. 
Additionally, the insights provided by these models can play a crucial role in optimizing 
processes, understanding system behaviors, and enhancing the overall performance of 
the RO desalination process. They can serve as a rapid process simulation tool for a 
subsequent process optimization stage. However, further validation with real data from 
various desalination plants is necessary to confirm their reliability and applicability. 
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