
Finding Relevant Updates in Incomplete
Argumentation Frameworks

Daphne ODEKERKEN a,b,1

a Department of Information and Computing Sciences, Utrecht University
b National Police Lab AI, Netherlands Police

ORCiD ID: Daphne Odekerken https://orcid.org/0000-0003-0285-0706

Abstract. Incomplete argumentation frameworks (IAFs) are abstract argumenta-
tion frameworks that encode qualitative uncertainty by distinguishing between cer-
tain and uncertain arguments and attacks. In a completion of an IAF, each uncertain
argument or attack is either added (made certain) or removed. Given a completion,
the acceptability of an argument is determined by its justification status. For argu-
ments in an IAF that do not have the same justification status in each completion,
it is interesting to study which uncertain arguments and attacks are relevant, in the
sense that adding or removing them can lead to a different justification status. We
propose algorithms based on Answer Set Programming for enumerating relevant
arguments and attacks under grounded and complete semantics.

Keywords. relevance, incomplete argumentation frameworks, answer set programming

1. Introduction

Computational argumentation is an important research field in artificial intelligence, con-
cerning reasoning with incomplete or inconsistent information [1]. A central concept
are argumentation frameworks (AFs): a set of arguments and an attack relation between
them [2]. Collectively acceptable sets of arguments within an AF, defined by semantics,
are called extensions. Based on these extensions, each argument has at least one justifi-
cation status, stating whether the argument should be accepted, rejected or otherwise.

In practice, however, argumentation is a dynamic process in which not all arguments
may be known in advance. For instance, in an inquiry process where initially the presence
of some arguments is uncertain, agents collaborate in collecting information, aiming to
establish the justification status of some topic argument with certainty [3]. A second
example is in negotiation procedures where the participating agents exchange arguments
to support their preferred offer [4]. Third, participants in a persuasion setting may add
arguments to influence the dialectical strength of other arguments (cf. [5]).

Incomplete argumentation frameworks (IAFs) are an extension to AFs that model
this qualitative uncertainty by distinguishing between certain and uncertain arguments
and attacks [6,7,4]. For the uncertain elements, it is unknown whether they are part of
the argumentation framework. They may be added or removed in the future. An IAF can

1Corresponding Author: Daphne Odekerken, d.odekerken@uu.nl

Computational Models of Argument
C. Reed et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240320

181

be completed by deciding for all uncertain arguments and attacks whether or not they
are present. Any completion of an IAF is an AF, for which the justification status can be
computed. If the justification status of an argument is the same for all completions, this
argument is stable. Otherwise, it is interesting to determine which uncertainties should be
resolved to reach a point where the argument is stable. In other words: which uncertain
arguments or attacks are relevant to add or remove to make some topic argument stable?

The identification of relevant updates is useful in inquiry as it enables efficient col-
lection of information. In negotiation and persuasion settings, agents may choose updates
that are relevant for accepting arguments that support their preferred offer or opinion.

Although the problem of relevance for IAFs has been studied from a complexity-
theoretic perspective in [8], to the best of our knowledge no algorithms for relevance
in IAFs have been proposed. In this paper, we therefore propose the first algorithms for
finding relevant updates in the context of IAFs for grounded and complete semantics. A
common approach for handling complex problems (on the first level of the polynomial
hierarchy) in computational argumentation is by reduction to other formalisms, employ-
ing SAT- or ASP-solvers [9]. In this line of research, we propose ASP-based algorithms
for enumerating relevant updates. Our empirical evaluation shows that the algorithms are
promising, even on inputs with many (uncertain) arguments and attacks. All algorithms
are available at https://github.com/DaphneOdekerken/asp_relevance and can
be tested in an interactive visualisation at https://pyarg.npai.science.uu.nl/
24-visualise-iafs.

2. Relevance in incomplete argumentation frameworks

In this section, we recall the notion of relevance for IAFs. IAFs are an extension to AFs,
initially proposed as partial AFs in [6] and later studied as IAFs in e.g. [7,4]. In an IAF,
the set of arguments and attacks is split into a certain part (A and C) and an uncertain
part (A? and C?), where the uncertain elements may be added or removed in the future.

Definition 1 (IAF). An IAF is a tuple I = 〈A,A?,C,C?〉 s.t. A∩A? = /0, C∩C? = /0 and:

• A is the set of certain arguments,
• A? is the set of uncertain arguments,
• C ⊆ (A∪A?)× (A∪A?) is the certain attack relation and
• C? ⊆ (A∪A?)× (A∪A?) is the uncertain attack relation.

A B C D E

Figure 1. An example of an IAF. Certain arguments are depicted as circles with solid borders, whereas uncer-
tain arguments are circles with dashed borders. Attacks are depicted as arrows, which have a solid line if they
represent certain attacks and a dashed line if they represent uncertain attacks.

Example 1. Figure 1 shows an example of an IAF I = 〈A,A?,C,C?〉 where A =
{B,C,E}, A? = {A,D}, C = {(A,B),(B,C),(D,C),(D,E),(E,D)} and C? = {(C,B)}.

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks182

https://github.com/DaphneOdekerken/asp_relevance
https://pyarg.npai.science.uu.nl/24-visualise-iafs
https://pyarg.npai.science.uu.nl/24-visualise-iafs

An IAF can be completed by deciding for all uncertain arguments and attacks
whether or not they are present, as defined below. Each completion of an IAF is an
AF. An AF 〈A,C〉 consists of a finite set A of arguments and a binary attack relation
C ⊆ A×A, where (A,B) ∈ C indicates that argument A attacks argument B.

Definition 2 (Completions). Given an IAF I = 〈A,A?,C,C?〉, a completion is any AF
〈A′,C′〉 that satisfies A⊆A′ ⊆A∪A? and C|A′ ⊆ C′ ⊆ (C∪C?)|A′ where the restriction
C′|A′ of a set of (uncertain) attacks C′ ⊆ C ∪C? to a set of (uncertain) arguments A′ is
defined as C′|A′ = {(X ,Y) ∈ C′ | X ∈ A′ and Y ∈ A′}.

The evaluation of arguments is done using the semantics of [2].

Definition 3 (Extension-based semantics). Let AF = 〈A,C〉 be an AF and S ⊆A. Then:
S is conflict-free iff for each X ,Y ∈ S : (X ,Y) 	∈ C; X ∈ A is acceptable with respect to
S iff for each Y ∈ A such that (Y,X) ∈ C, there is a Z ∈ S such that (Z,Y) ∈ C; S is an
admissible set iff S is conflict free and X ∈ S implies that X is acceptable with respect
to S; S is a complete extension (CP) iff S is admissible and for each X: if X ∈ A is
acceptable with respect to S then X ∈ S; and S is the grounded extension (GR) iff it is
the set inclusion minimal complete extension.

Given an AF 〈A,C〉, an argument A and a semantics σ , A’s justification status
can be determined by either considering all σ -extensions (sceptical) or at least one σ -
extension of the AF (credulous). In this context, an argument can be IN (part of all/some
σ -extensions); OUT (attacked by all/some σ -extensions), or UNDEC (otherwise) [10].

Definition 4 (Argument justification status). Let AF = 〈A,C〉 be an argumentation
framework and σ some semantics in {GR,CP}. Let A be some argument in A.

• A is σ -sceptical-IN (resp. σ -credulous-IN) iff A belongs to each (resp. some) σ -
extension of AF;

• A is σ -sceptical-OUT (resp. σ -credulous-OUT) iff for each (resp. some) σ -
extension S of AF, A is attacked by some argument in S;

• A is σ -sceptical-UNDEC (resp. σ -credulous-UNDEC) iff for each (resp. some) σ -
extension of AF, A is not in S and not attacked by any argument in S.

The justification statuses that we consider in this paper are {GR,CP}×{sceptical,
credulous}×{IN,OUT,UNDEC}. If the justification status of an argument in the IAF is
the same for all completions, we say that this argument is stable [8].

Definition 5 (Stability). Given an IAF I = 〈A,A?,C,C?〉, a certain argument A ∈A and
some justification status j, A is stable- j w.r.t. I iff A is j in each completion of I.

Example 2. In the running example, E is stable-CP-credulous-IN. E is not stable-GR-
credulous-IN, as there are completions (containing D) where E is not in the GR extension.

In order to define which uncertainties are relevant to be resolved for obtaining some
stability status, we need a notion of partial completions. A partial completion of an IAF
I is an IAF I′ such that a (possibly empty) part of the uncertain elements of I is resolved
in I′, while another (possibly empty) part of the uncertain elements is still uncertain [8].
Partial completions without uncertain elements correspond to completions.

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks 183

Definition 6 (Partial completion). Given an IAF I = 〈A,A?,C,C?〉, a partial completion
for I is an IAF I′ = 〈A′,A?′,C′,C?′〉, where A ⊆ A′ ⊆ A∪A?, C|(A′∪A?′) ⊆ C′ ⊆ (C ∪
C?)|(A′∪A?′), A?′ ⊆ A? and C?′ ⊆ C?. Since I′ is an IAF, we have A′∩A?′ = /0; C′ ∩C?′ =
/0; C′ ⊆ (A′ ∪A?′)× (A′ ∪A?′) and C?′ ⊆ (A′ ∪A?′)× (A′ ∪A?′). We denote all partial
completions for I by part(I).
Example 3. Returning to the running example, the following IAFs are some (but not all)
examples of partial completions in part(I):

• I1 = 〈A∪A?, /0,C ∪C?, /0〉: all uncertain arguments and attacks become certain.
• I2 = 〈A, /0,{(B,C)}, /0〉: only certain arguments and attacks in C|A are left.
• I3 = 〈A∪ {A},{D},C,C?〉: the argument A is moved from the uncertain to the

certain part. The argument D and the attack (C,B) are still uncertain.

Before proceeding to a formal definition of relevance, we define the notion of mini-
mal stable partial completions. Intuitively, the minimal stable- j partial completion for A
is a partial completion in which A is stable- j, while in any partial completion with more
uncertain elements, A is not stable- j [8].

Definition 7 (Minimal stable- j partial completion). Given an IAF I = 〈A,A?,C,C?〉, a
certain argument A∈A and a justification status j, a minimal stable- j partial completion
for A w.r.t. I is an I′ ∈ part(I) such that A is stable- j in I′ and there is no I′′ in
part(I) such that A is stable- j in I′′, I′′ 	= I′ and I′ ∈ part(I′′).

We can now define j-relevance in terms of minimal stable- j partial completions.
In words, addition of an uncertain element U is j-relevant if a minimal stable- j partial
completion can be reached by moving U from the uncertain to the certain part of the
IAF I; and removal of U is j-relevant if completely removing U from I, possibly in
combination with other actions, leads to a minimal stable- j partial completion [8].

Definition 8 (Relevance). Given an IAF I = 〈A,A?,C,C?〉, an argument A ∈ A, an
uncertain argument or attack U ∈ A? ∪C? and a justification status j,

• Addition of U is j-relevant for A w.r.t. I iff there is a minimal stable- j partial
completion I′ = 〈A′,A?′,C′,C?′〉 for A w.r.t. I such that U ∈ A′ ∪C′; and

• Removal of U is j-relevant for A w.r.t. I iff there is a minimal stable- j partial
completion I′ = 〈A′,A?′,C′,C?′〉 for A w.r.t. I such that U /∈ A′ ∪A?′ ∪C′ ∪C?′.

Example 4. Suppose that we need to know if argument C is stable-GR-sceptical-IN.
I has one minimal stable-GR-sceptical-IN partial completion for C, which is I4 =
〈{A,B,C,E}, /0,{(A,B),(B,C)},C?〉. Given that A was uncertain in I and is certain
in (the minimal stable-GR-sceptical-IN partial completion) I4, addition of A is GR-
sceptical-IN-relevant for C w.r.t. I. Furthermore, as D was uncertain in I and is no
longer present in I4, the removal of D is GR-sceptical-IN-relevant for C w.r.t. I.

For any justification status j, the j-RELEVANCE problem is the problem of deter-
mining if the addition and/or removal of some uncertain argument or attack is j-relevant
for some argument w.r.t. an IAF. The complexity of this problem has been studied in
[8]. For grounded semantics, all variants of the RELEVANCE problem are NP-complete.
For complete semantics, CP-sceptical-IN-, CP-sceptical-OUT- and CP-credulous-UNDEC-

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks184

RELEVANCE are NP-complete (as these coincide with their GR counterparts), while
CP-credulous-IN-, CP-credulous-OUT- and CP-sceptical-UNDEC-RELEVANCE are Σp

2 -
complete.

3. Representing AFs and IAFs as an ASP program

In this section, we show how IAFs, AFs and their semantics can be encoded into ASP
programs. First, we give a brief introduction to ASP. A normal ASP program π is
a set of rules of the form b0 ← b1, . . . ,bk,not bk+1, . . . ,not bm., where each bi is an
atom. A rule is positive if k = m. A rule without head b0 is a constraint and a short-
hand for a ← b1, . . . ,bk,not bk+1, . . . , not bm,not a. for a fresh a. An atom bi has the
form p(t1, . . . , tn), where each tj is either a constant or a variable. An answer set pro-
gram is ground if it is free of variables. For a non-ground program, the grounded ver-
sion is the set of rules obtained by applying all possible substitutions from the vari-
ables to the set of constants appearing in the program. An interpretation I, i.e., a sub-
set of all the ground atoms, satisfies a positive rule r = b0 ← b1, . . . ,bk. iff all posi-
tive body elements b1, . . . ,bk being in I implies that the head atom is in I. For a pro-
gram π consisting only of positive rules, let Cl(π) be the uniquely determined inter-
pretation I that satisfies all rules in π and no subset of I satisfies all rules in π . An
interpretation I is an answer set of a ground program π if I = Cl(π I) where π I =
{b0 ← b1, . . . ,bk. | b0 ← b1, . . . ,bk,not bk+1, . . . ,not bm. ∈ π,{bk+1, . . . ,bm}∩ I = /0}
is called the reduct. For a non-ground program π , an interpretation I is an answer set if I
is an answer set of the grounded version of π .

3.1. ASP-based encodings for AFs

We first discuss ASP-based encodings for complete and grounded semantics in abstract
argumentation frameworks that were proposed in earlier work. The program π〈A,C〉 en-
codes an AF, πlab encodes the OUT and UNDEC labels and πcp encodes complete seman-
tics. The πcp program was proposed and proven to be correct in [11]. The program πgr en-
codes grounded semantics, using the conditional literal lab(out,Y) : attack(Y,X), which
can be read as a conjunction of atoms lab(out,y) where also attack(y,x) is True [12].

π〈A,C〉 = {arg(a) | a ∈ A}∪{attack(a,b) | (a,b) ∈ C}.
πlab = {lab(out,Y)← lab(in,X), attack(X,Y).}

∪{lab(undec,X)← arg(X), not lab(in,X), not lab(out,X).}
πcp = {lab(in,X)← not not in(X), arg(X).}

∪{not in(X)← not lab(in,X), arg(X).}
∪{← lab(in,X), lab(in,Y), attack(X,Y).}
∪{undefended(Y)← attack(X,Y), not lab(out,X).}
∪ {← lab(in,X), undefended(X).}
∪{← not in(X), not undefended(X).}

πgr = {lab(in,X)← arg(X), lab(out,Y) : attack(Y,X).}

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks 185

Example 5. Consider the AF 〈A,C〉 where A= {A,B,C,D,E}, and C = {(A,B),(B,C),

(C,B),(D,C),(D,E),(E,D)} (a completion of I in the running example). Then π〈A,C〉 ∪
πlab ∪ πcp has three answer sets. One of these answer sets contains, amongst others,
lab(in,a), lab(out,b), lab(undec,c), lab(undec,d), lab(undec,e). This answer set corre-
sponds to the set {A}, which is a CP extension of I. Note that {A} is also the GR exten-
sion. Indeed, the program π〈A,C〉 ∪πlab ∪πgr has one answer set, containing lab(in,a),

lab(out,b), lab(undec,c), lab(undec,d) and lab(undec,e).

3.2. ASP-based encodings for IAFs

Having recalled ASP-based encodings for AFs from earlier work, we now extend them
to ASP-based encodings for IAFs. The program π〈A,A?,C,C?〉 models the IAF in a similar
way as the program π〈A,C〉 models an AF. The program πguess “guesses” a completion
from 〈A,A?,C,C?〉 by selecting a subset of A? in the first rule (informally, the choice
rule {arg(X)} means: choose which of the uncertain arguments to include in the model).
Similarly, the second rule selects a subset of C?. Finally, πval comp ensures that attacks are
only included if both the incoming and the outgoing argument are present.

π〈A,A?,C,C?〉 = {arg(a). | a ∈ A}∪{uarg(a). | a ∈ A?}
∪{att(a,b). | (a,b) ∈ C}∪{uatt(a,b). | (a,b) ∈ C?}

πguess = {{arg(X)}← uarg(X).}∪{{att(X,Y)}← uatt(X,Y).}
πval comp = {attack(X,Y)← att(X,Y),arg(X),arg(Y).}

Example 6. For our example IAF I = 〈A,A?,C,C?〉 where A= {B,C,E}, A? = {A,D},
C = {(A,B),(B,C),(D,C),(D,E),(E,D)} and C? = {(C,B)}, the program π = πI ∪
πguess ∪πval comp has eight answer sets, corresponding to the eight completions of I. The
program π ∪πlab∪πcp has 21 answer sets, corresponding to all CP extensions of all eight
completions of I. If we add the constraint {← not lab(in,b).} to π ∪ πlab ∪ πcp, only
eight answer sets remain. These correspond to completions with CP extensions that con-
tain B. If, alternatively, we add the constraint {← lab(in,b).}, we obtain 13 answer sets,
corresponding to CP extensions of completions where B is not IN.

Example 6 indicates a correspondence between answer sets and the possible justifi-
cation status in the IAF’s completions. Proposition 1 states this correspondence formally.

Proposition 1. Let I = 〈A,A?,C,C?〉 be an IAF. Consider a query argument a ∈ A, a
semantics σ ∈ {CP,GR} and a label l ∈ {IN,OUT,UNDEC}.

• πI ∪πguess ∪πlab ∪πσ ∪{← not lab(l,a).} has an answer set iff there is a com-
pletion AF of I such that a is σ -credulous-l w.r.t. AF.

• πI ∪πguess ∪πlab ∪πσ ∪{← lab(l,a).} has no answer set iff for each completion
AF of I, a is σ -skeptical-l w.r.t. AF.

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks186

4. Encodings for relevance under grounded semantics

In this section, we propose ASP encodings for relevance under grounded seman-
tics. Given that all variants of the relevance problem for grounded semantics are NP-
complete [8], they can be solved in a single call of an ASP-solver. The crux of the com-
plexity proof is the following property: for a justification status j, addition of an uncer-
tain argument or attack U is j-relevant for an argument A if and only if there is some
completion such that A does not have the justification status j, while A is j in the com-
pletion resulting from adding U . This property is also useful for developing encodings
for relevance.

Lemma 1 ([8], Lemma 7). Given an IAF I = 〈A,A?,C,C?〉, a certain argument A ∈ A
and a justification status j:

1. For each U ∈ A?, addition of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},C′, /0〉 ∈ part(I) such that A is not j in 〈A′,C′|A′ 〉, while A is j in
〈A′ ∪{U},C′|A′∪{U}〉.

2. For each U ∈ C?, addition of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′, /0,C′,{U}〉 ∈ part(I) such that A is not j in 〈A′,C′|A′ 〉, while A is j in
〈A′,(C′ ∪{U})|A′ 〉.

3. For each U ∈ A?, removal of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},C′, /0〉 ∈ part(I) such that A is j in 〈A′,C′|A′ 〉, while A is not j in
〈A′ ∪{U},C′|A′∪{U}〉.

4. For each U ∈ C?, removal of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},C′, /0〉 ∈ part(I) such that A is j in 〈A′,C′|A′ 〉, while A is not j in
〈A′,(C′ ∪{U})|A′ 〉.

The program πarg rel in Listing 1 uses the property from Lemma 1 to find the uncer-
tain arguments for which adding or removing a “query” uncertain argument is relevant
for some topic argument. In Lines 1–3, an uncertain argument (query) is added to the
completion. Lines 4–6 handle the definition of the GR labels of the resulting completion.
Lines 7–8 check for relevance using Lemma 1 based on the label of the topic and the
topic’s label in the original completion.

Listing 1 Module πarg rel

1 arg_with_q(X,Q) ← arg(X), query(Q).

2 arg_with_q(Q,Q) ← query(Q).

3 attack_with_q(X,Y,Q) ← attack(X,Y), arg_with_q(X,Q), arg_with_q(Y,Q).

4 lab_with_q(in,X,Q) ← arg_with_q(X,Q), lab_with_q(out,Y,Q) :

attack_with_q(Y,X,Q).

5 lab_with_q(out,X,Q) ← attack_with_q(Y,X,Q), lab_with_q(in,Y,Q).

6 lab_with_q(undec,X,Q) ← arg_with_q(X,Q), not lab_with_q(in,X,Q), not

lab_with_q(out,X,Q).

7 add_relevant_for(J,Q,T) ← query(Q), topic(T), not lab(J,T), lab_with_q

(J,T,Q).

8 remove_relevant_for(J,Q,T) ← query(Q), topic(T), lab(J,T), not

lab_with_q(J,T,Q).

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks 187

Example 7. In Example 4, we observed that addition of A is GR-sceptical-IN-relevant
for C w.r.t. I = 〈A,A?,C,C?〉. Indeed, there is a partial completion 〈A′,{A},C′, /0〉 of I
where A′ =A and C′ = C, such that C is not GR-sceptical-IN in 〈A′,C′|A′ 〉, while C is GR-
sceptical-IN in 〈A′∪{A},C′|A′∪{A}〉. When solving the program πI ∪πgr ∪πlab∪πguess∪
πarg rel ∪ {query(a).} ∪ {topic(c).} ∪ {← not add query relevant for(in,c,a).}, we
find an answer set containing add query relevant for(in,a,c).

The program πatt rel in Listing 2 is similar to πarg rel and finds the uncertain attacks
that are relevant to add or remove for some topic argument.

Listing 2 Module πatt rel

1 attack_with_q_att(X,Y,Q1,Q2) ← attack(X,Y), q_att(Q1,Q2).

2 attack_with_q_att(Q1,Q2,Q1,Q2) ← q_att(Q1,Q2).

3 lab_with_q_att(in,X,Q1,Q2) ← arg(X), q_att(Q1,Q2), lab_with_q_att(out,

Y,Q1,Q2) : attack_with_q_att(Y,X,Q1,Q2).

4 lab_with_q_att(out,X,Q1,Q2) ← attack_with_q_att(Y,X,Q1,Q2),

lab_with_q_att(in,Y,Q1,Q2).

5 lab_with_q_att(undec,X,Q1,Q2) ← arg(X), q_att(Q1,Q2), not

lab_with_q_att(in,X,Q1,Q2), not lab_with_q_att(out,X,Q1,Q2).

6 add_att_relevant_for(J,Q1,Q2,T) ← q_att(Q1,Q2), topic(T), not lab(J,T)

, lab_with_q_att(J,T,Q1,Q2).

7 remove_att_relevant_for(J,Q1,Q2,T) ← q_att(Q1,Q2), topic(T), lab(J,T),

not lab_with_q_att(J,T,Q1,Q2).

Proposition 2. Let I = 〈A,A?,C,C?〉 be an IAF. Consider a (topic) argument t ∈ A
and a label l ∈ {IN,OUT,UNDEC}. Let π = πI ∪πgr ∪πlab ∪πguess ∪πval comp. For any
uncertain (query) argument q ∈ A? and for any uncertain (query) attack (a,b) ∈ C?:

• π ∪ πarg rel ∪ {query(q)., topic(t).,← not add relevant for(l,q, t).} has an an-
swer set iff addition of q is GR-l-relevant for t w.r.t. I.

• π ∪ πarg rel ∪ {query(q)., topic(t).,← not remove relevant for(l,q, t).} has an
answer set iff removal of q is GR-l-relevant for t w.r.t. I.

• π ∪πatt rel ∪{q att(a,b)., topic(t)., ← not add att relevant for(l,a,b, t).} has
an answer set iff addition of (a,b) is GR-l-relevant for t w.r.t. I.

• π ∪ πatt rel ∪ {q att(a,b)., topic(t).,← not remove att relevant for(l,a,b, t).}
has an answer set iff removal of (a,b) is GR-l-relevant for t w.r.t. I.

From Proposition 2 it follows that the proposed programs using πarg rel and πatt rel
solve the decision problems of finding relevant updates. However, in a practical (inquiry,
negotiation or persuasion) setting, we would like to enumerate all relevant updates for
specific topics, without specifying the query in the input. Listing 3 therefore guesses one
query from the uncertain arguments. Line 1 in Listing 3 chooses a subset of uncertain
arguments as query argument. Line 2 then makes sure that there is at most one query
(using the operator < for comparison between symbolic constants), while Line 3 adds the
constraint that at least one query should exist, provided that there is at least one uncertain
argument. Similarly, Listing 4 guesses an uncertain attack query.

Proposition 3. Let I = 〈A,A?,C,C?〉 be an IAF. Consider a (topic) argument t ∈ A
and a label l ∈ {IN,OUT,UNDEC}. Let π = πI ∪πgr ∪πlab ∪πguess ∪πval comp. For any
uncertain (query) argument q ∈ A? and for any uncertain (query) attack (a,b) ∈ C?:

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks188

Listing 3 Module πquery arg

1 {query(X)} 1 ← uarg(X).

2 ← query(X), query(Y), X < Y.

3 ← uarg(Y), not query(X) : uarg(X).

Listing 4 Module πquery att

1 {q_att(X,Y)} 1 ← uatt(X,Y).

2 ← q_att(A,B), q_att(C,D), A < C.

3 ← q_att(A,B), q_att(C,D), B < D.

4 ← uatt(A,B), not q_att(X,Y) : uatt(X,Y).

• Addition of q is GR-l-relevant for t w.r.t. I iff π ∪πarg rel ∪πquery arg ∪{topic(t).}
has an answer set containing add query relevant for(l,q,t).

• Removal of q is GR-l-relevant for t w.r.t. I iff π ∪πarg rel ∪πquery arg ∪{topic(t).}
has an answer set containing remove query relevant for(l,q,t).

• Addition of (a,b) is GR-l-relevant for t w.r.t. I iff π ∪ πatt rel ∪ πquery att ∪
{topic(t).} has an answer set containing add att relevant for(l,a,b,t).

• Removal of (a,b) is GR-l-relevant for t w.r.t. I iff π ∪ πatt rel ∪ πquery att ∪
{topic(t).} has an answer set containing remove att relevant for(l,a,b,t).

All relevant operations for t w.r.t. I can be obtained by running π ∪ πarg rel ∪
πquery arg ∪πatt rel ∪πquery att ∪{topic(t).} in the “brave” enumeration mode of the ASP
solver clingo, which takes the union of all answer sets [13].

5. CEGAR-based approach for relevance in other semantics

While deciding relevance for GR is NP-complete [8] and can therefore be solved by
a single ASP call, this does not hold in general for other semantics. In particular, for
CP semantics, deciding CP-credulous-IN-, CP-credulous-OUT- and CP-sceptical-UNDEC-
relevance is ΣP

2 -complete. We therefore propose algorithms that make iterative ASP calls,
based on multi-shot solving in which the solver is not restarted between solver calls but
retains learned information and avoids repeated grounding [13]. Specifically, we propose
ASP-based counterexample-guided abstraction refinement (CEGAR) algorithms [14]. In
CEGAR, an initial abstract model (which is an overapproximation of the solution space)
is iteratively refined by drawing candidates from this space and verifying if the candi-
date is an actual solution, or otherwise refining the abstraction and continuing the search
procedure. The procedure for retrieving all queryables that are credulous-CP-IN-relevant
to add and/or remove is given in Algorithm 1. This algorithm uses subprocedures COM-
PLETE (Lines 13 and 19) to specify one completion and REFINE (Line 23) to exclude a
completion in further search. These are defined as follows.

Definition 9. Consider an IAF I = 〈A,A?,C,C?〉 and tuple 〈A∗,C∗〉 with A∗ ⊆ A∪
A? and C∗ ⊆ C ∪ C?. PARTS(〈A,A?,C,C?〉,〈A∗,C∗〉) = {arg(ai) | ai ∈ A? ∩ A∗} ∪
{not arg(a′i) | a′i ∈ A? \ A∗} ∪ {att(ci) | ci ∈ C? ∩ C∗} ∪ {not att(c′i) | c′i ∈ C? \ C∗}.
COMPLETE(I,AF) = {r. | r ∈ PARTS(I,AF)} and REFINE(I,AF) = {← r1, . . . ,rn. |
{r1, . . . ,rn}= PARTS(I,AF)}.

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks 189

Algorithm 1 Listing queryables that are credulous-relevant for t

1: procedure GET-CP-CREDULOUS-RELEVANT(〈A,A?,C,C?〉, l, t)
2: R+ = /0, R− = /0
3: πc = π〈A,A?,C,C?〉 ∪πguess ∪πval comp ∪πlab ∪πcp ∪{← not lab(l, t).}
4: πv = π〈A,A?,C,C?〉 ∪πval comp ∪πlab ∪πcp ∪{← not lab(l, t).}
5: while True do

6: (sat,model) = SOLVE(πc)
7: if sat then

8: A∗ = {a ∈ A∪A? | arg(a) ∈ model}
9: C∗ = {(a,b) ∈ C ∪C? | att(a,b) ∈ model}

10: for q ∈ A? ∪C? do

11: if q ∈ A∗ ∪C∗ then

12: if q ∈ A∗ then F− = 〈A∗ \{q},C∗〉 else F− = 〈A∗,C∗ \{q}〉
13: πcompletion = πv ∪COMPLETE(F−)
14: (sat′,model′) = SOLVE(πcompletion)
15: if not sat′ then

16: R+ = R+∪{q}
17: else

18: if q ∈ A∗ then F+ = 〈A∗ ∪{q},C∗〉 else F+ = 〈A∗,C∗ ∪{q}〉
19: πcompletion = πv ∪COMPLETE(F+)
20: (sat′,model′) = SOLVE(πcompletion)
21: if not sat′ then

22: R− = R− ∪{q}
23: πc = πc ∪REFINE(〈A,A?,C,C?〉,〈A∗,C∗〉)
24: else

25: return (R+, R−)

The program πc in Line 3 has an answer set if and only if I has a completion AF such
that t is CP-credulous-l w.r.t. AF (Proposition 1). Line 6 then runs the solver to search
for an answer set. If such an answer set exists, an initial abstract model has been found.
The algorithm then extracts the corresponding completion from the model in Line 8–9
and verifies for each “query” uncertain argument and attack if removing (Line 11–16)
or adding (Line 17–22) the query results in a completion where t is not CP-credulous-l.
If so, the query is added to the relevant updates R+ or R−. Then, REFINEMENT adapts
the original program, instructing the solver to find another completion in which t is CP-
credulous-l. If no such completion is found, Line 25 returns all relevant updates.

Proposition 4. Let I = 〈A,A?,C,C?〉 be an IAF, t ∈ A an argument and l ∈ {IN,OUT,
UNDEC} a label. Let (R+,R−) = GET-CP-CREDULOUS-RELEVANT(I, l, t). For any un-
certain argument or attack q ∈ A? ∪C?, addition of q is CP-credulous-l-relevant for t
w.r.t. I iff q ∈ R+ and removal of q is CP-credulous-l-relevant for t w.r.t. I iff q ∈ R−.

6. Reducing the input IAF in a preprocessing step

Each of the relevance algorithms can be extended by a preprocessing step that prunes all
(certain or uncertain) arguments and attacks that cannot reach the topic argument via a

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks190

path of (certain or uncertain) attacks. For grounded and complete semantics, this does
not influence the relevant updates, as these semantics satisfy directionality [15].

Definition 10. Let I = 〈A,A?,C,C?〉 be an IAF and t ∈ A be a (topic) argument. Then
I′ = 〈A′,A?′,C′,C?′〉 = REDUCE(I, t) = 〈A∩R,A? ∩R,C|A∩R,C?|A∩R〉 is the IAF re-
duced to R = {a ∈ C ∪C? | 〈(t,ai),(ai,ai+1), . . . ,(a j−1,a j),(a j,a)〉 in C ∪C?}.

Proposition 5. For any IAF I = 〈A,A?,C,C?〉, justification status j, uncertain argument
or rule q ∈ A? ∪C? and argument t ∈ A, addition (resp. removal) for q is j-relevant for
t w.r.t. I iff addition (resp. removal) for q is j-relevant for t w.r.t. REDUCE(I, t).

7. Empirical evaluation

Finally, we empirically evaluate the runtime of the proposed algorithms on synthetically
generated benchmarks, using clingo 5.4.1 for ASP solving [13] on a Intel(R) Core(TM)
i7-7820HQ CPU 2.90 GHz 16 GB RAM machine. For generating the benchmarks for
the grounded relevance algorithm, we randomly generated IAFs 〈A,A?,C,C?〉 such that
|A∪A?| ∈ {50,100,150,200,250}, |C ∪C?|= 1.5 · |A∪A?| with a probability of uncer-
tainty p ∈ {0.1,0.2,0.3,0.4}, where |A?|= �p∗ |A∪A?| and |C?|= �p∗ |C ∪C?|. For
each of these settings, we generated 25 IAFs, where the first argument of A is the topic
argument. This resulted in a total of 500 IAFs, for which we measured the runtime of the
algorithm for enumerating all grounded-relevant operations, in two variations: without
preprocessing step (no prep.) and with preprocessing step (with prep.) – see the left part
of Table 1. The first number refers to the number of instances (out of 100) that were
computed successfully within a time limit of 60 seconds. The number between brackets
refers to the average runtime in seconds for instances that were computed within this
time limit. Table 1 shows improved runtimes of the variation of the algorithm with pre-
processing step, where first the IAF is reduced to the elements reaching the topic (Def-
inition 10) and the relevance procedure is applied on the reduced IAF. The reduction in
runtime is present in particular for large IAFs with high p.

To evaluate the runtime of Algorithm 1 for the (more complex) relevance problem
for complete semantics we applied a similar benchmark generation algorithm but used
smaller instances: we now generated IAFs with |A∪A?| ∈ {5,10,15,20,25}. We evalu-
ated the algorithm with preprocessing step for the task of enumerating all CP-credulous-
IN-relevant updates. As shown in the right-hand part of Table 1, the algorithm is very
fast for the instances that can be solved within the time limit of 60 seconds. For larger
instances (in particular those with high p) the algorithm is not able to finish in time.

|A∪A?| |C∪C?| No prep. With prep.

50 75 100/100 (0.52) 100/100 (0.16)
100 150 96/100 (1.24) 98/100 (0.69)
150 225 88/100 (3.17) 96/100 (2.13)
200 300 79/100 (3.63) 84/100 (1.51)
250 375 80/100 (4.55) 86/100 (1.93)

|A∪A?| |C∪C?| With prep.

5 7 100/100 (0.02)
10 15 100/100 (0.06)
15 22 100/100 (0.21)
20 30 96/100 (1.31)
25 37 89/100 (1.11)

Table 1. Number of finished instances and average runtime in seconds for the algorithms for grounded rele-
vance (on the left, without and with preprocessing step) and complete-credulous-IN-relevance (on the right).

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks 191

8. Conclusion

The contribution of this paper consists of providing the first algorithms for relevance
problems under grounded and complete semantics. In our empirical evaluation, we have
shown that the algorithms are sufficiently fast for instances with hundreds of (uncertain)
arguments under grounded semantics and tens of (uncertain) arguments under complete
semantics. In future work, this approach could be extended to other semantics. Further-
more, it would be interesting to develop strategies for pruning even more candidates
from the solution space. Finally, we would like to investigate if our algorithms can be
adapted for relevance in structured notions of argumentation, where completions are only
considered if they have an instantiation in the structured argumentation framework.

References

[1] Atkinson K, Baroni P, Giacomin M, Hunter A, Prakken H, Reed C, et al. Towards artificial argumenta-
tion. AI magazine. 2017;38(3):25-36.

[2] Dung PM. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence. 1995;77:321-57.

[3] Odekerken D, Bex F, Borg A, Testerink B. Approximating stability for applied argument-based inquiry.
Intelligent Systems with Applications. 2022;16:200110.

[4] Mailly JG, Rossit J. Stability in abstract argumentation. In: NMR 2020 Workshop Notes; 2020. p. 93-9.
[5] Prakken H. Formalising an aspect of argument strength: degrees of attackability. In: Computational

Models of Argument: Proceedings of COMMA 2022; 2022. p. 296-307.
[6] Cayrol C, Devred C, Lagasquie-Schiex MC. Handling ignorance in argumentation: semantics of partial

argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty. Springer; 2007. p. 259-70.

[7] Baumeister D, Järvisalo M, Neugebauer D, Niskanen A, Rothe J. Acceptance in incomplete argumen-
tation frameworks. Artificial Intelligence. 2021;295:103470.

[8] Odekerken D, Borg A, Bex F. Justification, stability and relevance in incomplete argumentation frame-
works. Argument & Computation. 2023;Pre-press(Pre-press):1-58.

[9] Cerutti F, Gaggl SA, Thimm M, Wallner J. Foundations of implementations for formal argumentation.
IfCoLog Journal of Logics and their Applications. 2017;4(8):2623-705.

[10] Caminada M. On the issue of reinstatement in argumentation. In: European Workshop on Logics in
Artificial Intelligence. Springer; 2006. p. 111-23.

[11] Egly U, Gaggl SA, Woltran S. Answer-set programming encodings for argumentation frameworks.
Argument & Computation. 2010;1(2):147-77.

[12] Dvořák W, Rapberger A, Wallner JP, Woltran S. ASPARTIX-V19-an answer-set programming based
system for abstract argumentation. In: International Symposium on Foundations of Information and
Knowledge Systems. Springer; 2020. p. 79-89.

[13] Gebser M, Kaminski R, Kaufmann B, Schaub T. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming. 2019;19(1):27-82.

[14] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM. 2003;50(5):752-94.

[15] Baroni P, Giacomin M. On principle-based evaluation of extension-based argumentation semantics.
Artificial Intelligence. 2007;171(10-15):675-700.

D. Odekerken / Finding Relevant Updates in Incomplete Argumentation Frameworks192

