
Complexity of Semi-Stable Semantics in
Abstract Dialectical Frameworks

Atefeh KESHAVARZI ZAFARGHANDI a and Johannes P. WALLNER b

a Vrije University Amsterdam, The Netherlands,
b Graz University of Technology, Austria

ORCiD ID: Atefeh Keshavarzi Zafarghandi https://orcid.org/0000-0002-5806-1012,
Johannes P. Wallner https://orcid.org/0000-0002-3051-1966

Abstract. Abstract dialectical frameworks (ADFs) have been introduced as a for-
malism for modeling and evaluating argumentation, allowing for general logical ac-
ceptance conditions of arguments. Different criteria used to settle the acceptance of
arguments are called semantics. Two-valued semantics of ADFs reflect the ’black-
and-white’ character of classical logic in non-monotonic frameworks. Stable se-
mantics of ADFs were introduced to exclude cycles of self-justification of argu-
ments among two-valued models. The stable semantics faces the challenge of po-
tential non-existence of stable models. However, one might still want to draw con-
clusions even in case that an ADF has no two-valued models or stable models. Re-
cently, the notions of semi-two-valued semantics and semi-stable semantics were
introduced for ADFs. In the current work, we study the computational complexity
of these two novel semantics. We show that the complexity of the semi-stable se-
mantics is in general one level up in the polynomial hierarchy, compared to the sta-
ble semantics. We study the prominent reasoning tasks of credulous and skeptical
reasoning, as well as the verification problem.

Keywords. Abstract dialectical frameworks, computational complexity, semi-two-
valued semantics, semi-stable semantics

1. Introduction

Interest in argumentation theory is growing among artificial intelligence researchers due
to its diverse applications and formalisms for evaluating arguments [1,2]. Central to eval-
uation of arguments is the sub area of abstract argumentation, at the heart of which lie
Dung’s argumentation frameworks (AFs) [3]. While AFs model individual attack rela-
tions among arguments, a number of generalizations have been proposed [4], with ab-
stract dialectical frameworks (ADFs) [5] being an expressive generalization of AFs in
which logical relations among arguments can be represented. The higher expressivity of
ADFs [6], leading to increased computational complexity in almost all reasoning tasks
compared to AFs, has been analyzed in the literature [7,8,9].

In ADFs, acceptance of arguments (truth-value of arguments) is indicated under
principles governed by several types of semantics, primarily defined based on three-
valued interpretations, which are a form of labeling [10]. The notion of a stable model
in ADFs is grounded on the concept of a two-valued model. Stable semantics for ADFs
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draw inspiration from the concept of stable models in logic programming and answer
set programming [11]. In logic programming, certain minimal models exclude self-
justifying cycles of atoms. Similarly, stable models in ADFs avoid argument support cy-
cles where each argument justifies itself without any external justification in a two-valued
model.

Similarly as in logic programming, stable semantics is a prominent semantics in the
realm of argumentation. However, it is worth noting that an argumentation formalism
may not always have a stable model. To address situations where an AF lacks a stable
model, the concept of semi-stable semantics for AFs was introduced [12] (initially under
a different name) and further explored in subsequent works [13], including algorithmic
approaches to semi-stable semantics for AFs [14].

For ADFs, which generalize AFs, the concept of semi-stable semantics has been de-
veloped based on semi-two-valued models [15]. This approach approximates stable se-
mantics when an ADF lacks a stable model. On one hand, if a given ADF lacks any two-
valued model, it also lacks any stable model. For instance, if an ADF has an argument a
with a self-attack, denoted in ADFs via a Boolean formula for the acceptance condition
of a, e.g., by ϕa : ¬a, such a statement leads to the absence of two-valued models and
stable models as a consequence. On the other hand, an ADF may possess two-valued
models, but none of them may be a stable model because of the presence of support
cycles, where arguments justify each other in a loop.

The semi-two-valued semantics and semi-stable semantics were introduced [15] as
a remedy for cases where an ADF does not have any stable model due to the absence of
a two-valued model. Semi-two-valued semantics for ADFs are more robust in the sense
that each ADF has at least one semi-two-valued interpretation. Furthermore, if an ADF
has a two-valued model, then the sets of semi-two-valued interpretations and two-valued
models are equal. Additionally, the sets of stable models and semi-stable interpretations
coincide [16].

Whereas several fundamental properties of semi-two-valued and semi-stable seman-
tics for ADFs have been established [15,16], the computational complexity under these
semantics has not been studied. This work closes this gap by studying the complexity of
the central reasoning tasks under the semi-two-valued and semi-stable semantics.

We show complexity results for deciding credulous and skeptical acceptance, i.e.,
whether a given argument is assigned to true in at least one or all models under the seman-
tics, respectively. We prove that the credulous acceptance problem and the skeptical ac-
ceptance problem for both semi-two-valued semantics and semi-stable semantics reside
on the third level of the polynomial hierarchy, i.e., are ΣP

3 -complete and ΠP
3 -complete,

respectively. The verification problem is an important cornerstone to show these results
and is viable in its own right. The verification problem asks whether a given interpreta-
tion is an interpretation under the chosen semantics. The verification problem is in ΠP

2
for both semi-two-valued and semi-stable semantics, and being hard for the former. In
summary, we show that ADFs have higher computational complexity under these seman-
tics when compared to AFs [17,18] and that semi-two-valued semantics and semi-stable
semantics experience a complexity jump, compared to stable semantics of ADFs.

2. Abstract Dialectical Frameworks

We summarize key concepts of abstract dialectical frameworks [19,5].
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Definition 1. An abstract dialectical framework (ADF) is a tuple D = (A,L,C) where:
1. A is a finite set of arguments (statements, positions); 2. L⊆A×A is a set of links among
arguments; 3. C = {ϕa}a∈A is a collection of propositional formulas over arguments,
called acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and links show
the relations between arguments. Each argument a in an ADF is labelled by a proposi-
tional formula, called acceptance condition, ϕa over par(a), where par(a) = {b | (b,a)∈
L}. The acceptance condition of each argument clarifies under which condition the argu-
ment can be accepted.

A three-valued interpretation v (for D) is a function v : A �→ {t, f,u} that maps ar-
guments to one of the three truth values true (t), false (f), or undecided (u). For rea-
sons of brevity, we will sometimes shorten the notation of three-valued interpretations
v = {a1 �→ t1, . . . ,am �→ tm} as follows: v = {ai | v(ai) = t}∪{¬ai | v(ai) = f}. For in-
stance, v = {a �→ f,b �→ t}= {¬a,b} (arguments assigned undecided are not explicated).
An interpretation v is called trivial, and v is denoted by vu, if v(a) = u for each a ∈ A.
Furthermore, v is called a two-valued interpretation if for each a ∈ A, v(a) ∈ {t, f}.

Truth values can be ordered via the information ordering relation <i, given by u <i t

and u <i f, with no other pair of truth values being related by <i. The relation ≤i is
the reflexive closure of <i. Interpretations can be ordered via ≤i w.r.t. their information
content, i.e., w ≤i v if w(a)≤i v(a) for each a ∈ A.

Given an interpretation v (for D), the partial valuation of ϕa by v is v(ϕa) = ϕv
a =

ϕa[b/� : v(b) = t][b/⊥ : v(b) = f], for b ∈ par(a). Note that in this work we assume that
D = (A,L,C) is a finite ADF and v is an interpretation of D. Given an argument a ∈ A,
a is called acceptable w.r.t. v if ϕv

a is irrefutable (a tautology) and a is called deniable
w.r.t. v if ϕv

a is unsatisfiable. Semantics for ADFs can be defined via the characteristic
operator ΓD, presented in Definition 2.

Definition 2. Let D be an ADF and let v be an interpretation of D. Applying ΓD on
v leads to v′ such that for each a ∈ A, v′(a) = t if ϕv

a is irrefutable, v′(a) = f if ϕv
a is

unsatisfiable, and v′(a) = u, otherwise.

Most types of semantics for ADFs are based on the concept of admissibility. An
interpretation v for a given ADF D is called admissible iff v ≤i ΓD(v); it is preferred iff v
is ≤i-maximal admissible; it is complete iff v = ΓD(v); it is the grounded interpretation
of D iff v is the least fixed point of ΓD; it is a (two-valued) model iff v is two-valued
and ΓD(v) = v; it is stable iff v is a two-valued model of D and vt = wt, where w is the
grounded interpretation of the stb-reduct Dv = (Av,Lv,Cv), where Av = vt, Lv = L∩(Av×
Av), and ϕa[p/⊥ : v(p) = f] for each a ∈ Av. The set of all σ interpretations for an ADF
D is denoted by σ(D), where σ ∈ {adm,prf,com,grd,mod,stb} abbreviates the different
semantics in the obvious manner.

Example 1. An example of an ADF D= (A,L,C) is shown in Figure 1. To each argument
a propositional formula is associated, the acceptance condition of the argument. For
instance, the acceptance condition of c, namely, ϕc :¬a∨¬b states that c can be accepted
in an interpretation where either a is denied or b is denied.

In D the interpretation v1 = {a �→ u,b �→ t,c �→ u} = {b} is an admissible in-
terpretation. Since ΓD(v1) = {a �→ f,b �→ t,c �→ u} and v1 ≤i ΓD(v1). Furthermore,
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Figure 1. The ADF of Example 1

prf(D) = {v2,v3}, where v2 = {a,¬b,c} and v3 = {¬a,b,c}. In addition, both v2 and
v3 are two-valued models of D and they are also complete interpretations of D. While
grd(D) = vu. Thus, prf(D) = mod(D) = {v2,v3}, and com(D) = {v2,v3,vu}.

To investigate whether v2 is a stable model, we evaluate the stb-reduct Dv2 =
(Av2 ,Lv2 ,Cv2). Here, Av2 = {a,c}, Lv2 = {(a,c)}, and ϕa : ¬⊥≡� and ϕc : ¬a∨¬⊥≡
�. Since grd(Dv2) = {a,c} and wt = vt

2, v2 is a stable model of D. However, v3 is not
a stable model of D. Since wt �= vt

3, where w = grd(Dv3) = {c}. Intuitively, model v3 is
not a stable model of D since in v3 the acceptance of b depends on b itself, resulting in a
cyclic justification. Thus, v3 violates the main condition of stable semantics, that a stable
model should have no self-justifying cycles of atoms. We find that stb(D) = {v2}.

An ADF D may not have any stable model, intuitively due to two reasons. The first
reason being 1. the existence of support cycles in two-valued models of D. That is, when
there is no constructive proof for arguments that are assigned to t in a two-valued model,
then the two-valued model is not a stable model (see Example 1 for an instance). On the
other hand, 2. if mod(D) = /0 then there are no stable models, i.e., D does not have any
two-valued model to pick a stable model.

As an instance of an ADF that does not have any two-valued model consider ADF
D= ({a,b},{ϕa :�,ϕb :¬a∨¬b}). ADF D has a preferred interpretation v= {a}, which
is also the grounded interpretation of D. Although there is no doubt about the acceptance
of a in D due to the constructive proof for the acceptance of a, D does not have any
two-valued model, and consequently, D does not have any stable model.

2.1. Semi-stable Semantics for ADFs

In this section, we rephrase the concepts of semi-two-valued and semi-stable semantics
for ADFs from [15]. In ADFs, to define the notion of stable semantics as it is in [5], we
first introduce the notion of two-valued semantics. Then, a two-valued model is called
a stable model if it does not contain any support cycles. Due to this distinction between
two-valued models and stable models in ADFs, different levels of semi-stable semantics
can be considered. A similar method to the one presented in [5] for stable semantics is
followed in [15] to introduce the concept of semi-stable semantics. In Definition 3, the
notion of semi-two-valued model is introduced as presented in Definition 9 in [15].

Definition 3. Let D be an ADF and let v be an interpretation of D. An interpretation v is
a semi-two-valued interpretation of D if the following conditions hold: v ∈ com(D), and
vu is ⊆-minimal among all wu s.t. w is a complete interpretation of D.

The set of semi-two-valued interpretations of D is denoted by semi-mod(D). Note that
when an ADF has a two-valued model, then the set of semi-two-valued interpreta-

A. Keshavarzi Zafarghandi and J.P. Wallner / Complexity of Semi-Stable Semantics112



b

a

c

a

¬a
¬a

c∧ (¬a∨ c) b∧ (a∨b)

Figure 2. ADF D of Example 2 (left), sub-reduct Dv2 of D (right)

tions and the set of two-valued models coincide. Note that according to Definition 3,
v �∈ semi-mod(D) if either v �∈ adm(D) or there exists an admissible interpretation w such
that v∗ ⊂ w∗, where v∗ = vt ∪ vf. We introduce the concept of semi-stable models over
the notion of semi-two-valued interpretations in Definition 4.

Definition 4. Let D be an ADF and let v be a semi-two-valued interpretation of D.
An interpretation v is a semi-stable interpretation of D if vt = wt s.t. w is the grounded
interpretation of sub-reduct Dv = (Av,Lv,Cv), where Av = vt ∪ vu, Lv = L∩ (Av ×Av),
and ϕa[p/⊥ : v(p) = f] for each a ∈ Av.

The set of semi-stable interpretations of D is denoted by semi-stb(D). Note that in Defi-
nition 4, in sub-reduct Dv we assume that v is a semi-two-valued interpretation (complete
interpretation) of D, thus Dv may contain an argument that is assigned to u. Intuitively, a
complete interpretation v is a semi-stable interpretation if vu is ⊆-minimal among com-
plete interpretations of D and there exists a constructive proof for arguments which are
assigned to t in v, in case all arguments which are assigned to false in v are actually false.

Since the notion of semi-stable semantics are introduced over the concept of semi-
two-valued semantics for ADFs, each semi-stable interpretation of D is a semi-two-
valued interpretation. Example 2 illustrates the notion of semi-stable semantics of ADFs.

Example 2. Let D = ({a,b,c},{ϕa : ¬a,ϕb : c∧ (¬a∨ c),ϕc : b∧ (a∨b)}) be an ADF,
depicted in Figure 2 (on the left). It holds that prf(D) = {v1,v2} with v1 = {b,c} and v2 =
{¬b,¬c}. In addition, both v1 and v2 are complete interpretations of D. However, none
of them are a two-valued model. Thus, D does not have any stable model. Furthermore,
both v1 and v2 are semi-two-valued interpretations of D, since vu

1 = vu
2 = {a}. However,

we show that only v2 is a semi-stable interpretation of D. To this end, we first evaluate
sub-reduct Dv2 , where Dv2 = ({a},{ϕa : ¬a}), depicted in Figure 2 (on the right). Since
wt = vt

2 = /0, it holds that v2 is a semi-stable interpretation of D.
On the other hand, v1 is not a semi-stable interpretation of D. We have Dv1 = D and

grd(Dv1) = /0, while vt
1 = {b,c}, i.e., wt �= vt

1. Thus, v1 �∈ semi-mod(D).

3. Computational Complexity

We analyse the complexity under semi-two-valued semantics and semi-stable semantics
for the standard reasoning tasks of ADFs [8].

We make use of standard complexity classes of the polynomial hierarchy [20]. For
an introduction to complexity theory, we refer the reader to standard text books in this
field [21]. In particular, P is the class of decision problems decidable in polynomial
time, NP is the class of decision problems decidable in polynomial time with a non-
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Table 1. Novel complexity results for ADFs.

semantics verification credulous skeptical

semi-two-valued semantics ΠP
2 -complete ΣP

3 -complete ΠP
3 -complete

semi-stable semantics in ΠP
2 ΣP

3 -complete ΠP
3 -complete

deterministic algorithm. The class ΣP
i contains all decision problems decidable in non-

deterministic polynomial time with access to an oracle in ΣP
i−1 (i.e., a problem in ΣP

i−1
can be decided in constant time), for i > 0, ΣP

0 = P and ΣP
1 = NP. Class ΠP

i is the
complementary class of ΣP

i .
We recall main decision problems of ADFs.

Definition 5. Let D = (A,L,C) be an ADF and σ ∈ {semi-mod,semi-stb}. We define the
following decision problems.

• Given a three-valued interpretation v the verification problem, denoted by Verσ (v,D),
asks whether v ∈ σ(D).

• Given x ∈ {t, f}, and a ∈ A,

* the credulous (acceptance) problem, denoted by Credσ (a,x,D), asks if there
exists v ∈ σ(D) s.t. v(a) = x, and

* the skeptical (acceptance) problem, denoted by Skeptσ (a,x,D), asks if for
each v ∈ σ(D) we find that v(a) = x.

We summarize our results in Table 1. In words, complexity of reasoning under semi-
two-valued semantics and semi-stable semantics is one level up in the polynomial hier-
archy, compared to the stable semantics of ADFs.

We first investigate the complexity of Verσ (v,D), for σ ∈ {semi-mod,semi-stb}. In
the following, let v∗ = vt ∪ vf.

Theorem 1. It holds that Versemi-mod is ΠP
2 -complete.

Proof. Let us first consider membership in ΠP
2 . Consider an arbitrary instance of the

problem, that is, a given ADF D = (A,L,C) and a three-valued interpretation v. To show
membership, we consider the complementary problem, i.e., whether v is not a semi-
two-valued interpretation of D. Consider the following non-deterministic algorithm with
access to an NP oracle. First, check whether v is admissible in D (this problem is in
coNP [7]). Next, non-deterministically construct a three-valued interpretation v′ and ver-
ify whether v∗ ⊂ v′∗ (can be done in polynomial time) and that v′ is admissible in D. If ei-
ther v �∈ adm(D), or v ∈ adm(D) and there exists v′ ∈ adm(D) s.t. v∗ ⊂ v′∗, then v is not a
semi-two-valued interpretation of D. Thus, the complementary problem Versemi-mod(v,D)
is in ΣP

2 for ADFs. From this it follows that the verification problem is in ΠP
2 .

For the hardness, it was shown that checking whether there exists a non-trivial in-
terpretation in a given ADF D (assigning at least one argument to true or false) is a ΣP

2 -
complete problem in ADFs [7]. For any ADF D, it holds that D has a non-trivial admis-
sible interpretation if and only if the trivial interpretation is not a semi-two-valued inter-
pretation. Thus, the problem of deciding whether there is a non-trivial interpretation can
be reduced in polynomial time to the problem of verifying whether the trivial interpreta-
tion is not a semi-two-valued interpretation. Therefore, the problem of deciding whether
a given three-valued interpretation is not a semi-two-valued interpretation is ΣP

2 -hard,
and, in turn, the verification problem is ΠP

2 -hard.
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Next, we show membership of Versemi-stb(v,D) in ΠP
2 . This problem aks whether a

given interpretation v is a semi-stable interpretation.

Theorem 2. It holds that Versemi-stb is in ΠP
2 .

Proof. Given an arbitrary ADF D = (A,L,C) and an interpretation v, by Definition 4,
first, we check if v is a semi-two-valued interpretation of D. According to Theorem 1,
verifying if v is a semi-two-valued interpretation of D is a ΠP

2 -complete problem. If
Versemi-mod(v,D) returns yes, for the given interpretation v, construct the sub-reduct Dv

in polynomial time. Next, check if vt = wt, where w is the grounded interpretation Dv.
The grounded interpretation can be computed via a polynomial number of coNP oracle
calls [7]. Taken together, there is a non-deterministic polynomial-time algorithm, with
access to a coNP oracle, that first checks whether v ∈ semi-stb(D) and subsequently
computed the grounded interpretation of the constructed sub-reduct. If all computation
paths succeed, the answer is yes. Thus, Versemi-stb is in ΠP

2 .

We conjecture that verifying whether an interpretation is a semi-stable interpretation
is ΠP

2 -hard (due to the verification complexity of semi-two-valued models). Note that for
the subsequent results, membership is sufficient.

Next, we turn our attention to the complexity of Credσ (a,x,D). We first show mem-
bership for both semantics and, seperately, hardness. Theorem 3 shows that the credulous
problem under both semantics is in ΣP

3 and Theorem 4 shows the hardness results below.

Theorem 3. Let σ ∈ {semi-mod,semi-stb}. It holds that Credσ is in ΣP
3 for ADFs.

Proof. Let D = (A,L,C) be an arbitrary ADF, a ∈ A, and x ∈ {t, f}. Moreover, let σ ∈
{semi-mod,semi-stb}. To check if there exists a σ interpretation v satisfying v(a) = x,
guess a three-valued interpretation v with v(a) = x, and then verify whether v ∈ σ(D).
According to Theorem 1 and Theorem 2, verifying whether v ∈ σ(D) is in ΠP

2 . Thus, the
combined guessing and checking process results in NPΠP

2 = ΣP
3 .

To investigate hardness results of credulous and skeptical acceptance problems, sev-
eral of our results employ a similar reduction technique, wherein a reduction is a function
that takes a quantified Boolean formula (QBF) and maps it to an ADF.

For background on QBFs, we refer the reader to chapters of the recent second vol-
ume of the Handbook of Satisfiability [22]. For the sake of this paper, we recall QBFs
of the form Θ = ∃X∀Y∃Z θ(X ,Y,Z), with X , Y , and Z being disjoint set of propositional
variables and θ(X ,Y,Z) a non-quantified Boolean formula over these variables (i.e., all
variables occuring in the formula are quantified, the formula is closed). The closed QBF
Θ is valid (true) if it holds that there is an assignment on the variables in X such that
for all extensions of this assignment to the variables in Y there is a completion of these
assignments on the set Z such that θ evaluates to true. This problem is ΣP

3 -complete [20].
We introduce our main reduction in Reduction 1 and prove properties that we will

later utilize in hardness proofs.

Reduction 1. Let Θ = ∃X∀Y∃Z θ(X ,Y,Z) be a QBF with θ in a negation normal form.
Define X∗ = {x∗ : x ∈ X}, X ′ = {x′ : x ∈ X}, and X ′′ = {x′′ : x ∈ X}. Let Ȳ = {ȳ : y ∈Y}.
Construct ADF RED1(Θ) = DΘ = (A,L,C), s.t.
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xx′′ x′ y ȳ z

s1fg s2

x∗

Figure 3. Illustration of Reduction 1

A = X ∪X∗ ∪X ′ ∪X ′′ ∪Y ∪ Ȳ ∪Z ∪{ f ,g,s1,s2}
C = {ϕx : ¬x∗ | x ∈ X}∪{ϕx∗ : ¬x | x∗ ∈ X∗}

∪{ϕx′ : (x∨¬x′) | x′ ∈ X ′}∪{ϕx′′ : (x∧¬x′′) | x′′ ∈ X ′′}
∪{ϕy : ((¬ȳ∨¬ f )∧ s2)∨ (s1 ∧¬y) | y ∈ Y}
∪{ϕȳ : ((¬y∨¬ f )∧ s2)∨ (s1 ∧¬y) | ȳ ∈ Ȳ}
∪{ϕz : ¬z | z ∈ Z}∪{ϕ f : (¬ f ∧θ [¬x/x∗])∨ s1}
∪{ϕg : ¬ f}∪{ϕs1 : ¬s2}∪{ϕs2 : ¬s1}

We say that ADF DΘ is an encoding of Θ, denoted by RED(Θ) = DΘ. Figure 3 shows an
illustration of the reduction. Table 2 illustrates the two “types” of semi-two-valued inter-
pretations present in ADFs that result from Reduction 1. One property of this encoding
is that f may be assigned to f in an admissible interpretation of DΘ if Θ is not valid.

Proposition 1. Given a QBF Θ = ∃X∀Y∃Z θ(X ,Y,Z) let RED(Θ) = DΘ.

• For any two valued interpretation u on X, DΘ has a preferred interpretation v s.t.
u(x) = v(x), for all x ∈ X, and v( f ) = t.

• If Θ is not valid, then there is a preferred interpretation in DΘ in which f is as-
signed to f.

Proof. We show that for any arbitrary two valued truth values over X , DΘ has a preferred
interpretation with the same truth values over X in which f is assigned to t. Let u be
an arbitrary interpretation s.t. for each x ∈ X , u(x) ∈ {t, f}. We construct interpretation

Table 2. In the first line, the symbol ‘[X ]2, arb’ denotes an arbitrary two-valued interpretation over a set X . The
symbol [X ]−2 represents that v(x∗) is the reverse of v(x), for each x∗ ∈ X∗. The symbol [X ]t under X ′ represents
that for each x′ ∈ X ′, v(x′) = v(x) if v(x) = t; otherwise, v(x′) = u. The symbol [X ]f under X ′′ represents that
for each x′′ ∈ X ′′,v(x′′) = v(x) if v(x) = f; otherwise, v(x′′) = u. The second line indicates the truth value of
all arguments under w. In this line, the symbol ‘θ [M] unsat’ denotes that the formula θ is unsatisfiable for the
values assigned to arguments X , Y , and Z (“interpretation” M on the vocabulary of θ ). The symbol MX under
X represents that w(x) = t if x ∈ M; otherwise, it is f. Similarly for MY under Y . The symbol M̄Y under Ȳ
represents that w(ȳ) = ¬w(y).

s1 s2 f g θ X X∗ X ′ X ′′ Y Ȳ Z

v t f t f arb [X ]2, arb [X ]−2 [X ]t [X ]f u u u

w f t f t θ [M] unsat MX [X ]−2 [X ]t [X ]f MY M̄Y u
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v based on the truth value of u over X as follows. Let v(x) = u(x), for each x ∈ X .
Then, let v(x∗) = t iff v(x) = f, and v(x∗) = f iff v(x) = t. In addition, let v(x′) = v(x)
if v(x) = t; otherwise, v(x′) = u, denoted by v(X ′) = vt(X) = [X ]t. Let v(x′′) = v(x)
if v(x) = f; otherwise, v(x′′) = u, denoted by v(X ′′) = vf(X) = [X ]f. Furthermore, let
v( f ) = t, v(s1) = t, v(s2) = f, v(g) = f, and v(Y ) = v(Ȳ ) = v(Z) = u. Since v = ΓDΘ(v),
and it is maximal w.r.t. ≤i, v is a preferred interpretation of DΘ. That is, for any arbitrary
two valued truth values over X , there is v ∈ prf(DΘ) s.t. v( f ) = t. Thus, v ∈ prf(DΘ).

Now assume that Θ is invalid. We show that DΘ has a preferred interpretation that
assigns f to f. Since Θ is invalid, it holds that for all truth value assignments on X ,
there is an extension of these assignments to Y s.t. for all extensions to Z we find that θ
evaluates to false. Let IX be an arbitrary such assignment on X , and IY be an assignment
such that for all extensions to Z the formula evaluates to false. We construct preferred
interpretation w for DΘ as follows. For each x ∈ X , if x ∈ IX , then let w(x) = t and
w(x∗) = f; otherwise, let w(x) = f and w(x∗) = t. For each x′ ∈ X ′, if w(x) = t, then let
w(x′) = t; otherwise, let w(x′) = u. For each x′′ ∈ X ′′, if w(x) = f, then let w(x′′) = f;
otherwise, let w(x′′) = u. For each y ∈ Y , if y ∈ IY , then let w(y) = t and w(y′) = f;
otherwise, let w(y) = f and w(y′) = t. Let w(s1) = f, w(s2) = t, w( f ) = f, w(g) = t, and
w(z) = u for each z ∈ Z. Since IX ∪ IY ∪ IZ |= ¬θ for any IZ and w(s1) = f, it follows that
ΓDΘ(w)( f ) = f. It is straightforward to verify that w = ΓDΘ(w) and w is ≤i-maximal.
Thus, w ∈ prf(DΘ).

We prove that for two preferred interpretations in DΘ that assign argument f to true,
they are “incomparable” w.r.t. arguments assigned undecided. Thus, different truth-value
assignments to X give rise to different semi-two-valued interpretations.

Corollary 1. Given a QBF Θ = ∃X∀Y∃Z θ(X ,Y,Z), let RED(Θ) = DΘ. Moreover, let
v1,v2 ∈ prf(DΘ) s.t. both of them assign f to t. It holds that v∗1 �⊂ v∗2, where v∗ = vt ∪ vf.

Proof. Toward a contradiction, assume there exist v1,v2 ∈ prf(DΘ) s.t. v1( f ) = v2( f ) = t,
but v∗1 ⊂ v∗2. By the acceptance condition of f in DΘ, if v1,v2 ∈ prf(DΘ) and v1( f ) =
v2( f ) = t, then v1(s1) = v2(s1) = t, v1(s2) = v2(s2) = v1(g) = v2(g) = f. Since both
interpretations assign each x ∈ X to either t or f, and by the assumption v∗1 ⊂ v∗2, v1(X) =
v2(X), v1(X ′) = v2(X ′) and v1(X ′′) = v2(X ′′). As v1( f ) = v2( f ) = t, by the assumption,
v1(Y ) = v2(Y ) = v1(Ȳ ) = v2(Ȳ ) = v1(Z) = v2(Z̄) = u. Thus, v∗1 = v∗2. This contradicts
the assumption of the existence of v1,v2 ∈ prf(DΘ) s.t. v1( f ) = v2( f ) = t and v∗1 ⊂ v∗2.
Therefore, for any v1,v2 ∈ prf(DΘ), if v1( f ) = v2( f ) = t, then v∗1 �⊂ v∗2.

The main part of correctness of the reduction is then proved in the next result.

Proposition 2. Given a QBF Θ = ∃X∀Y∃Z,θ(X ,Y,Z), let RED(Θ) = DΘ.

• If Θ is valid, then there exists a semi-two-valued interpretation for DΘ that assigns
f to t, and g to f.

• If there exists a semi-two-valued interpretation for DΘ that assigns f to t and g to
f, then Θ is valid.

Proof. Assume that Θ is valid. We aim to show that there exists an interpretation v s.t.
v ∈ semi-mod(DΘ) and v( f ) = t. Since Θ is valid, there exist an assignment IX on X s.t.
for each extension to Y there is an extension to Z that evaluates θ to true. We construct
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a semi-two-valued interpretation v for DΘ, based on IX , in which v( f ) = t. Let v be
as follows. For each x ∈ X , if x ∈ IX , then v(x) = t and v(x∗) = f; otherwise, v(x) = f

and v(x∗) = t. For each x′ ∈ X ′, if v(x) = t, then v(x′) = t; otherwise, v(x′) = u. For
each x′′ ∈ X ′′, if v(x) = f, then v(x′′) = f; otherwise, v(x′′) = u. Let v(s1) = t, v(s2) = f,
v( f ) = t, v(g) = f, and v(Z) = v(Y ) = v(Ȳ ) = u. Since v = ΓDΘ(v) and v is ≤i-maximal
for DΘ, v ∈ prf(DΘ). We aim to show that v ∈ semi-mod(DΘ). Toward a contradiction
assume that v �∈ semi-mod(DΘ), that is, there exists w ∈ prf(DΘ) s.t. v∗ ⊂ w∗. If v∗ ⊂ w∗,
then either w( f ) = t or w( f ) = f. By Corollary 1, w( f ) �= t (i.e., w( f ) = f).

Assume that w( f ) = f. Since w ∈ adm(DΘ), it follows that w(s1) = f. Moreover, by
construction of the acceptance condition of f , it holds that any completion of w does not
satisfy θ (otherwise f cannot be false in w). Furthermore, by the assumption of v∗ ⊂ w∗,
v(X ′) = w(X ′) = X t and v(X ′′) = w(X ′′) = X f. Therefore, v(X) = w(X). Based on the
acceptance condition of each y, preferred interpretation w assigns y either to t or f if both
w(s1) =w( f ) = f. The false truth value of f in w, give us a freedom to choose an arbitrary
truth values for each y ∈ Y and y′ ∈ Y ′. Thus, if there is w ∈ prf(DΘ) s.t. v∗ ⊆ w∗, then w
has to be an interpretation similar to the second line of Table 2 in which w( f ) = f.

Since all z are assigned u by w, it follows that any two-valued interpretation u as-
signing to X and Y variables the same values as w, and an arbitrary value to variables
Z, that u �|= θ . This contradicts Θ being valid. By assumption, for the presumed assign-
ment on the X variables (same as w), for all assignments on Y there is an assignment on
Z such that θ is satisfied. However, it holds that for this assignment on X , there is an
assignment on Y such that for all assignments on Z, θ is falsified, a contradiction. Thus,
the assumption that there exists w s.t., w ∈ prf(DΘ) and v∗ ⊆ w∗ is a contradiction.

Now we show the second item. Assume that there exists a semi-two-valued model
for DΘ that assigns f to t. We show that Θ is valid. Let v ∈ semi-mod(DΘ) s.t., v( f ) = t.
Since v ∈ prf(DΘ), for each x ∈ X , either v(x) = t or v(x) = f. Toward a contradiction
assume that Θ is not valid. That is, for any IX ⊆ X , there exists IY ⊆Y , s.t. for all IZ ⊆ Z,
it holds that IX ∪ IY ∪ IZ |= ¬θ .

We construct interpretation w as follows. Let w(X) = v(X), w(y) = t if y ∈ IY ; oth-
erwise, let w(y) = f, and let w(z) = u. Let w(s) = w( f ) = f. The remaining arguments in
X∗, X ′ and X ′′ are assigned in a similar way as above. This interpretation is an admissi-
ble interpretation of DΘ, and v∗ ⊂ w∗. Thus, v �∈ semi-mod(DΘ). This is a contradiction
by the assumption that v ∈ semi-mod(DΘ). Thus, our assumption was wrong, that is, if
Credsemi-mod( f , t,DΘ) : yes and Credsemi-mod(g, f,DΘ) : yes, then Θ is valid.

We show that f is never assigned to undecided in a semi-two-valued interpretation
of DΘ.

Proposition 3. Given a QBF Θ = ∃X∀Y∃Z,θ(X ,Y,Z), let RED(Θ) be an encoding of
Θ in ADFs. Let v be an arbitrary semi-two-valued interpretation of DΘ, v( f ) �= u.

Proof. Towards a contradiction, assume that there exists v ∈ semi-mod(DΘ), such that
v( f ) = u. Note that, if v( f ) = u, then v(s1) = f, and v(y) = v(ȳ) = u, for each y ∈ Y and
for each ȳ ∈ Ȳ . Let w be an interpretation s.t. w(s1) = t, w(s2) = f, w( f ) = t, w(g) = f,
w(X) = v(X),w(X∗) = v(X∗),w(X ′) = v(X ′),w(X ′′) = v(X ′′). It is straightforward to
check that w∈ adm(DΘ), and v∗ ⊂w∗. However, this is a contradiction by the assumption
that v ∈ semi-mod(DΘ). Thus, the assumption that there exists v ∈ semi-mod(DΘ) s.t.
v( f ) = u is wrong. Hence, for each v ∈ semi-mod(DΘ) it holds that v( f ) �= u
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We show that all semi-two-valued interpretations of DΘ are in fact also semi-stable
interpretations.

Proposition 4. Given a QBF Θ = ∃X∀Y∃Z,θ(X ,Y,Z), let RED(Θ) = DΘ. Let v be a
semi-two-valued interpretation for DΘ. It holds that v is a semi-stable interpretation for
DΘ.

Proof sketch. Let v ∈ semi-mod(DΘ). By Proposition 3, v( f ) �= u. Thus, v corresponds to
the truth values depicted in either the first or the second line of Table 2. In either case, it
is straightforward to verify that vt = wt, where w represents the grounded interpretation
of the stb-reduct Dv = (Av,Lv,Cv). Hence, v is a semi-stable interpretation of DΘ.

Next, we consider hardness of credulous reasoning.

Theorem 4. Let σ ∈ {semi-mod,semi-stb}. It holds that Credσ is ΣP
3 -hard.

Proof. Given a QBF Θ = ∃X∀Y∃Z,θ(X ,Y,Z), let RED(Θ) be an encoding of Θ in
ADFs, as presented in Reduction 1. By Proposition 2, Θ is valid, iff there exists
v ∈ semi-mod(DΘ) such that v( f ) = t and v(g) = f. By Proposition 4, each semi-two-
valued interpretation for DΘ is a semi-stable interpretation for DΘ. Finally, if f in the
reduction is assigned to t then g is assigned to f, and vice versa. Thus, Credσ is ΣP

3 -hard.

Finally, we address the complexity of Skeptσ (a,x,D), again for σ ∈{semi-mod,stb}.

Theorem 5. Let σ ∈ {semi-mod,semi-stb}. It holds that Skeptσ is ΠP
3 -complete.

Proof. First we show that Skeptσ is in ΠP
3 . Given an ADF D = (A,R,C), an argument a,

and the truth value x where x ∈ {t, f}, answering Skeptσ (a,x,D) involves considering the
complementary problem. In this case, we determine whether there exists a σ model v in
which a is not assigned to x. As per Theorem 1 and Theorem 2, the task of checking if v
is a σ model in D is a ΠP

2 -complete problem.
Next we show that Skeptσ is ΠP

3 -hard. Given a quantified Boolean formula
Θ = ∃X∀Y∃Z,θ(X ,Y,Z), let RED(Θ) be an encoding of Θ in ADFs. We know
that Skeptσ (g, t,DΘ) : yes, iff Skeptsemi-mod( f , f,DΘ) : yes. Furthermore, by Propo-
sition 3, for each v ∈ semi-mod(DΘ), v( f ) ∈ {t, f}. Thus, Skeptsemi-mod( f , f,DΘ) :
yes iff Credsemi-mod( f , t,DΘ) : no. In a similar way; Skeptsemi-mod( f , f,DΘ) : yes, iff
Skeptsemi-mod(g, t,DΘ) : yes, iff Credsemi-mod(g, f,DΘ) : no. By Proposition 4, the same
holds for semi-stable semantics.

4. Conclusion

We studied the computational properties of the semi-two-valued and semi-sable seman-
tics of ADFs. When compared to AFs, computational complexity for ADFs increases by
at least one step in the polynomial hierarchy for nearly all reasoning tasks [7,8].

As future work, we aim to study the complexity of further decision problems. For
instance, the complexity of the smallest witness problem, which involves determining
whether a given argument is assigned to x in a semi-two-valued interpretation or semi-
stable interpretation v such that |v∗|< k. Furthermore, studying fragments of ADFs, such
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as bipolar ADFs [5] appears as an interesting research direction for semi-stable seman-
tics.
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