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a University of Cyprus, Department of Computer Science
b TU Wien, Institute of Logic and Computation

Abstract. Already in Dung’s seminal paper introducing Abstract Argumentation
Frameworks (AFs), several connections to seemingly unrelated reasoning for-
malisms have been illustrated. In this work, we continue this trend and establish
a connection between abstract argumentation frameworks and boolean networks
(BNs). BNs, in a nutshell, mimic simple binary-valued systems, where for each
point in time, the value of each bit (component) depends only on the other compo-
nents’ values of the previous point in time of the network. This formalism is widely
used to formally analyze biological processes, where from simple rules complex
behavior emerges. We show that stable extensions of an arbitrary AF correspond to
single state attractors of its canonically corresponding BN, the complete extensions
correspond to a distinctive 2-state attractor, and the admissible sets correspond to
the seeds of the BN. We thereby lay the groundwork for a fruitful exchange of ideas
between the two research areas.
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1. Introduction

In this work we investigate the relationship between Dung’s abstract argumentation
frameworks [1] and Boolean Networks. Boolean Networks (BN) [2] were introduced by
S. Kauffman [3] and R. Thomas [4] for representing gene regulatory networks. They
gained wide popularity in the early 2000s as a qualitative approach to the structural anal-
ysis and dynamic modeling of biological systems. Their importance was further strength-
ened with the advent of system biology that investigates the ways the interactions be-
tween the components of a biological system give rise to the system’s behavior.

In a Boolean network model each node can assume one of the two possible val-
ues True (ON) or False (OFF). This value represents the state of that node, for instance
whether a gene is expressed or not. The future state of a node is determined by a boolean
function on the current states of its regulators. A BN eventually reaches a set of stable or
steady states, i.e. a cyclic sequence of states that the system visits successively and re-
peatedly. These sets are called attractors. Attractors represent the long-term behavior of
a BN and have been linked to biological phenotypes (physical properties of an organism),
attracting for this reason a large body of research (see, e.g., [5,6,2]).
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In this paper we establish the relation between the semantics of AFs and the attrac-
tors of their corresponding BNs. It turns out that argumentation frameworks can be rep-
resented by a family of BNs with boolean functions that are conjunctions of negative
literals. The single state attractors of these BNs are exactly the stable extensions of the
corresponding AF. Moreover, it is shown that the complete extensions correspond to 2-
state attractors of the associated BN, whereas admissible extensions correspond to seeds,
that are roughly sets of states in the BN that once reached cannot be escaped.

As a first result of our work, one can use argumentation solvers to obtain some
attractors of BNs of this form without enumerating the exponentially large state space.

2. Background

2.1. Abstract Argumentation

In this section we briefly recall Argumentation Frameworks (AFs) due to Dung [1].

Definition 1. An argumentation framework is a pair F = (A,R) where A is a non-empty
of arguments, and R ⊆ A×A is the attack relation. Let S ⊆ A be a set of arguments. We
say a set S attacks an argument a ∈ A if (b,a) ∈ R for some b ∈ A. We denote by S+ the
set {a ∈ A | S attacks a}.

The semantics of AFs are defined via extensions, i.e., jointly acceptable sets of ar-
guments. In this work we focus on complete and stable extensions, and the underlying
notion of admissibility.

Definition 2. Let F = (A,R) be an AF, a set S ⊆ A is conflicting in F if S attacks a for
some a ∈ S, otherwise S is conflict-free. An argument a ∈ A is defended (in F) by S ⊆ A
if for each (b,a) ∈ R it holds that S attacks b. Let S ⊆ A be a conflict-free set in F. Then,

• S is admissible in F, denoted by S ∈ adm(F), if S defends each a ∈ S in F;
• S is stable in F, denoted by S ∈ stb(F), if S attacks every argument in A\S; and
• S is complete for F, denoted by S ∈ com(F), if S ∈ adm(F) and contains every

argument it defends.

2.2. Boolean Networks

This section presents the basic concepts of boolean networks related to the purposes of
this paper, following the notation of [6].

A Boolean Network is defined as a pair N = (V,F) where V = {x1, . . . ,xn} is a set of
boolean variables, and F = { f1, . . . , fn} is a set of corresponding boolean functions. In the
context of biological systems, the value xi = 1 (ON) encodes that the entity represented
by variable xi, i.e., gene, protein, or molecule, is active or expressed or is above a certain
concentration threshold, while the value xi = 0 (OFF) represents that the entity is inactive,
not expressed, or is below a certain concentration threshold [7].

Boolean networks are used to represent discrete dynamic systems, where at each
time t, each variable xi ∈ V has an associated state xi(t) ∈ {0,1}. A value assignment
to all variables of network N, denoted by sN(t), represents the network state at time t,
composed of n individual variable states, i.e., sN(t) = (x1(t), . . . ,xn(t)). The set S = S(V )
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of all 2n states of N is its state space. To disburden notation, we omit the Boolean network
N, and write s(t) instead of sN(t). Moreover, when the specific time t is not relevant, we
write s= (x1, . . . ,xn) to denote s(t) = (x1(t), . . . ,xn(t)). Finally, for a state s= (x1, . . . ,xn)
we slightly abuse the notation and write s(xi) to obtain the value of s for variable xi.

A Boolean function fi(xi1 , . . . ,xik), fi ∈F , called the update or transition function, is
associated with each variable xi ∈ X , specifying that the value of xi is determined by the
values of the nodes of the set IN(xi) = {xi1 , . . . ,xik}. The state of variable xi at time t +1
is xi(t+1)= fi(xi1(t), . . . ,xik(t)) which we simplify to xi(t+1)= fi(xi(t), . . . ,xn(t)). The
interaction between the variables of a boolean network N is captured by the interaction
graph of N, defined as GN = (V,E), with E = {(xi j ,xi) | xi j ∈ IN(xi)}.

The order in which the variable updates are carried out in a BN is determined by
its update method, which can be synchronous or asynchronous. In synchronous BNs, the
states of all variables are updated simultaneously, whereas in asynchronous BNs the vari-
able states are not updated concurrently, but separately [8]. In this work we focus on syn-
chronous Boolean Networks. For these networks, a transition step is performed on a state
s = (x1, . . . ,xn) by applying each local transition function simultaneously, and obtaining
F(s) = ( f1(s), . . . , fn(s)) as the successor state, i.e. s(t +1) = (x1(s(t)), . . . ,xn(s(t))).

Naturally, the transition relation can be interpreted as a directed graph.

Definition 3 (Transition Graph). Let N = (V,F) be a boolean network, with V =
{x1, . . . ,xn}. The transition graph Σ(N) is the directed graph with the 2n states {0,1}n as
vertices and an edge (s1,s2) iff s2 = F(s1). We call these transitions between states the
(transition-) steps.

It is clear that each state has exactly one successor state. Hence, applying several
transitions steps (i.e., following a “transition path”) in a final boolean network f in-
evitably leads to a cycle in Σ(N). These cycles are the attractors of N.

Definition 4 (Attractors). Let N be a boolean network and Σ(N) its transition graph. An
attractor of N is each sequence of states s1, . . . ,sm such that for each 2 ≤ i ≤ m it holds
si = F(si−1) and s1 = F(sm). An attractor s1, . . . ,sm is single state or singleton if m = 1
and cyclic or periodic if m ≥ 2. In the latter case, the period of the attractor is m.

In other words, each strongly connected component of Σ(N) forms an attractor.
Another family of dynamically closed subspaces, i.e. subsets of the state space that

no sequence of transitions can escape, are the symbolic steady states and the seeds, in-
troduced in [9,10]. They both hinge on 3-valued states, called partial states.

Definition 5 (Partial state). Let N = (V,F) be a Boolean Network, with V = {x1, . . . ,xn}
and F = { f1, . . . , fn}. A partial state s of N is an assignment (x1, . . . ,xn) ∈ {0,1,θ}n. The
set of variables Ds = {x | s(x) �= θ} is the domain of s. A state s′ = (x1, . . . ,xn) ∈ {0,1}n

extends a partial state s if s′(x) = s(x) for all x ∈ Ds. The set X(s) contains all states
that extend the partial state s. Two partial states s,s′ are compatible if for each variable
x ∈ Ds ∩Ds′ it holds that s(x) = s′(x).

Given an expression r and a partial state s, the expression r[s] is obtained by substi-
tuting in r the values s(x) for all x ∈ Ds. For instance, given r = x1 ∧ x2 and s = (1,θ),
then r[s] = 1∧ x2 = x2. The image F(s) of a partial state s w.r.t. a Boolean Network
N = (V,F) is the partial state s′ with Ds′ = {xi ∈V | fi[s] is constant} and s′(xi) = fi[s],
for all xi ∈ Ds′ .
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Definition 6 (Seeds and Symbolic Steady States). A partial state s is a seed for a Boolean
Network N = (V,F) if s and F(s) are compatible and Ds ⊆ DF(s); a seed is a symbolic
steady state if Ds = DF(s).

In [10], the notion of a trap set is introduced. A non-empty set of states R ⊆ S is a
trap set if for every r ∈ R it holds that F(r) ∈ R. The inclusion-wise minimal trap sets
of a boolean network N correspond to the attractors of N. It is noted that every trap set
contains at least one attractor.
In [10] it is shown that if a partial state s is a seed of a boolean network N, then the set
X(s) of states extending s is a trap set for N.

Example 7. Consider the Boolean network N = (V,F) with V = {x1,x2,x3,x4}, and F
as depicted below, together with its interaction graph.

f1 = ¬x2
f2 = ¬x1

f3 = ¬x2
f4 = ¬x3 ∧¬x4

x1 x2 x3 x4

The seeds of N are the partial states: s1 =(θ ,θ ,θ ,θ) (because F(s1)= (θ ,θ ,θ ,θ)),
s2 = (1,0,θ ,θ) (F(s2) = (1,0,1,θ)), s3 = (0,1,θ ,θ) (F(s3) = (0,1,0,θ)), s4 =
(1,0,1,θ) (F(s4) = (1,0,1,0)), s5 = (0,1,0,θ) (F(s5) = (0,1,0,θ)), s6 = (1,0,1,0)
(F(s6) = (1,0,1,0)).

The transition graph Σ(N) is depicted below. The states are represented as binary
strings rather than tuples, e.g. the tuple (0,1,1,0) is represented by the string 0110,
where 0 is the value of the first variable x1 of V , 1 the value of the second variable x2 etc.

0000

0001

0010 0011

0100

0101

0110 01111000 1001

1010

1011

1100

1101

1110

1111

The seed s2 = (1,0,θ ,θ) induces the trap set R2 = {1000,1001,1011,1010}, seed
s4 = (1,0,1,θ) the set R4 = {1011,1010} ⊆ R2, and finally s6 = (1,0,1,0) the trap set
R6 = {1010} ⊆ R4. Moreover, the minimal trap set R6 is a singleton attractor. Other
attractors of the above network are the sets {0000,1111} and {0100,0101}, both marked
in red in the figure.

3. Stable Extensions and Single State Attractors

A concise definition of Boolean Networks, that is suitable for addressing networks char-
acterized by complete (i.e., non-partial) states, is the following ([11]). It reduces boolean
networks to their corresponding global transition function.

Definition 8 (Boolean Network). A boolean network on n variables or components is
described by its transition function f : {0,1}n →{0,1}n where a state s = (x1, . . . ,xn) ∈
{0,1}n maps to f (s) via n local transition functions f (s) = ( f1(s), . . . , fn(s)).
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We can model an argumentation framework (A,R) as a boolean network where each
component models an argument a ∈ A. The intuition is that each state s = (a1, . . . ,an)
corresponds to a subset S ⊆ A = {a1, . . . ,an} of arguments, in that ai = 1 in s iff ai ∈ S
(and ai = 0 if ai /∈ S). It remains to define a suitable transition function. For this, we recall
that in stable extensions each argument is in an extension iff all of its attackers are not in
the extension. Hence, we obtain the following local transition functions.

Definition 9 (Abstract Argumentation as Boolean Network). Let T = (A,R) be an AF.
Its corresponding boolean network f T consists of n = |A| variables, with

fa =
∧

(b,a)∈R

¬b

For a state s = (a1, . . . ,an) ∈ {0,1}n we define {a | s(a) = 1} as its corresponding set of
arguments, denoted by As. Likewise, for a set of arguments M ⊆ A we define the state s
s.t. s(a) = 1 iff a ∈ M as its corresponding state, identified by sM.

Notice that, by the above, also each boolean network where all transition functions
are conjunctions of negative literals naturally corresponds to an AF. That is, we have a
one-to-one mapping between AFs and this class of boolean networks.

Example 10. Consider the following AF T and its corresponding boolean network f T .

a b c

d

f T
a = ¬b

f T
b = ¬a

f T
c = ¬b

f T
d = ¬a∧¬b

The AF T also acts as interaction graph for the boolean network f T . We have stb(T ) =
{{b},{a,c}}. We obtain the following transition graph Σ( f T ).

0000

00010010

0011

0100

0101

0110

0111 10001001

10101011

1100

1101 1110

1111

We have two single state attractors (highlighted):

1. (0,1,0,0) corresponding to {b}, and
2. (1,0,1,0) corresponding to {a,c}.

As we have seen, in Example 10 the single state attractors exactly correspond to the
stable extensions of the corresponding argumentation framework. This is no coincidence,
as we show in our first main result.

Theorem 11. Let T = (A,R) be an AF. The single state attractors of f T are in a one-to-
one correspondence with the stable extensions of T .

Proof. First assume s = (a1, . . . ,an) is a single state attractor of f T and As is its cor-
responding set of arguments. This means, by the definition of f T , that for each a with
s(a) = 1 we have that for each attack (b,a) ∈ R towards the corresponding argument, it
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holds s(b) = 0 (otherwise the value of a would change to 0 in the next step). Hence, As
is conflict-free in T . Moreover, for each a with s(a) = 0 we have that for at least one b
where (b,a) ∈ R it holds s(b) = 1 (otherwise the value of a would change to 1 in the next
step). Hence, each argument a ∈ A\As is attacked by As, i.e., As is stable in T .

Now assume M is a stable extension of T and sM is its corresponding state of f T .
This means for each argument a ∈ M, each argument b where (b,a) ∈ R is not in M,
i.e., sM(b) = 0. Therefore, sM(a) = 1 will not change in the next step. Likewise, for each
argument a ∈ A\M, since M is stable, there is an argument b ∈ M with (b,a)∈ R. Hence,
since sM(b) = 1, in the next step we will maintain sM(a) = 0. In summary, sM is a single
state attractor of f T .

4. Characterizing Complete Extensions

Intuitively, the transition steps in the boolean network corresponding to an argumenta-
tion framework behave similar to an application of the characteristic function2 of the
framework. In particular, arguments that are attacked only by arguments that are not in
the characterized set will be in the characterized set in the next step. However, the be-
havior of the boolean network is clearly not monotonic (in contrast to the characteristic
function of AFs) and makes no distinction between defeated arguments (i.e., attacked
by the characterized set) and undecided arguments (i.e., neither in nor attacked by the
set). Still, we will show that there is a connection between the attractors of the boolean
network and the underlying AF.

Example 12. Consider the following AF T .

a b c

We have stb(T ) = {b} and com(T ) = { /0,{a},{b}}. We obtain the following transition
graph Σ( f T ) of the corresponding boolean network f T .

000001 010 011 100 101110 111

We have three attractors (highlighted):

1. (0,1,0) corresponding to the stable extension {b},
2. (0,0,0),(1,1,1) corresponding to the complete extension /0, and
3. (1,0,0),(1,0,1) corresponding to the complete extension {a}.

By Theorem 11 we get that the single state attractor (0,1,0) corresponds to the stable
extension {b}, for the cyclic attractors we are going to establish the correlation next.

Let us investigate the cyclic attractor (1,0,0),(1,0,1). Note that we observe a 3-
valued behavior: while the first component remain invariably at 1 in all states of the
attractor, the second component similarly remains at 0. The third component on the other
hand “oscillates” between 0 and 1. We will establish that this corresponds to a complete
extension E where the argument corresponding to the first component (a in our case)

2For an AF T =(A,R) the characteristic function ΓT for a set S⊆A is defined as ΓT (S)={a∈A|S defends a}.
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is in E, b is attacked by E, and c is neither in nor attacked by E (i.e., undecided). The
intuitive reason is that all attackers of a are set to 0 and at least one attacker of b is set
to 1 (namely a). However, the argument c is attacked by b and c. In the first state of the
attractor (1,0,0), this means that c is attacked only by arguments that are 0, and will
hence be set to 1 in the next step. In the second state (1,0,1) the argument c is attacked
by an argument that is set to 1 (namely c itself), and will be set to 0 in the next step.
Indeed, this generalizes to every complete extension and their undecided arguments, as
the next result illustrates. For this, we define the following pair of states.

Definition 13 (Complete State-Pair). Let T = (A,R) be an AF and let E ⊆ A. The fol-
lowing two states s,s′ of f T are the complete state-pair w.r.t. E.

s(a) =

⎧⎪⎨
⎪⎩

1 if a ∈ E
0 if a ∈ E+

0 if a ∈ A\ (E ∪E+)

s′(a) =

⎧⎪⎨
⎪⎩

1 if a ∈ E
0 if a ∈ E+

1 if a ∈ A\ (E ∪E+)

If a complete state-pair is an attractor, we call it a complete state-pair-attractor.

We next show how complete extensions translate to complete state-pairs.

Proposition 14. Let T = (A,R) be an AF, let E ⊆ A be a complete extension, and let f T

be the corresponding boolean network. Then either

1. sE is a single state attractor iff E is stable, or otherwise
2. the complete state-pair s,s′ w.r.t. E is an attractor.

Proof. 1. follows directly from Theorem 11. For 2. assume E is a complete extension of
T . For s, let us first look at the components (arguments) a with s(a) = 1 (a ∈ E). Since
E is conflict-free, we have for each (b,a) ∈ R that b /∈ E and hence s(b) = 0. Hence,
f T
a (s) = 1, i.e., a remains at 1. Now for a ∈ E+, we have s(a) = 0. From a ∈ E+ we get

that there is a b with (b,a) ∈ R s.t. s(b) = 1, which means f T
a (s) = 0, i.e., a remains at

0. Finally, for a ∈ A \ (E ∪E+), we again have s(a) = 0. If a is unattacked, then a ∈ E
(since E is complete), so there is at least one (b,a) ∈ R towards a. Since a /∈ E+, for all
(b,a) ∈ R it holds s(b) = 0, which means fa(s) = 1, i.e., a is set to 1 in the successor
state. We see that the successor state of s is exactly s′.

Now for s′ we again first consider the components a corresponding to a ∈ E. For the
same reason as for s we have that f T

a (s′) = 1. Likewise, let a ∈ E+ and we get as with s
that f T

a (s′) = 0. Now let a ∈ A\ (E ∪E+), which means s′(a) = 1. Let b s.t. (b,a) ∈ R.
If b ∈ E we would have a ∈ E+, so we get b /∈ E. If each b with (b,a) ∈ R is in E+, we
would have a ∈ E (since E is complete), i.e., there is at least one b s.t. b ∈ A\ (E ∪E+).
For this b it holds s′(b) = 1, which gives us f T

a (s′) = 0, i.e., a is set to 0 in the next step.
We now see that the successor state of s′ is exactly s. Since f T (s) = s′ and f T (s′) = s we
know s,s′ is a cyclic attractor.

The next natural question is whether each attractor of f T corresponds to a complete
extension. However, the following counter example3 illustrates the opposite.

3This counter example was originally proposed by Loizos Michael of the Open University of Cyprus.
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Example 15. Consider the following AF T and its corresponding boolean network f T .

a

b
c

de
f T
a = ¬c

f T
b = ¬a

f T
c = ¬b

f T
d = ¬a∧¬b∧¬c

f T
e = ¬d

It holds com(T ) = { /0}. We have two attractors for f T :

1. (0,0,0,0,0), (1,1,1,1,1) which by Proposition 14 corresponds to the empty
complete extension, and

2. (1,0,0,0,1), (1,0,1,0,1), (0,0,1,0,1), (0,1,1,0,1), (0,1,0,0,1), (1,1,0,0,1)
which does not correspond to any complete extension.

In the second attractor in each state component d is “deactivated” by at least one of a, b,
or c. However, these arguments are not invariably set to 1, and would not be interpreted
as part of a complete extension. On the other hand, component d is 0 and e is 1 in each
state. Clearly, the set of arguments {e} is not complete.

It now seems like all attractors of size 2 correspond to complete extensions, while
no attractor of size ≥ 3 does. Both of these ideas are false.

Example 16. Consider the following AFs T1 (left) and T2 (right) and below their respec-
tive attractors.

a

b
ca b c

d

1. (0,0,0,0),(1,1,1,1)
2. (1,0,0,1),(0,0,1,1)

1. (0,0,0),(1,1,1)
2. (0,0,1),(0,1,1),(0,1,0),(1,1,0),(1,0,0),(1,0,1)

Again we consider the sets of arguments corresponding to the components that are set to
1 in all states of an attractor. While in T1 the second attractor of size 2 corresponds to
{d}—which is clearly not complete, in T2 the second attractor of size 6 corresponds to
the empty set—which is indeed complete.

All hope is not lost. The next result finally provides a tool to distinguish attractors
that correspond to complete extensions from those that do not. Moreover, we exactly
characterize the attractors that “most closely” correspond to the complete extensions. We
thereby make use of the idea of Proposition 14 and show that each of these state-pair-
attractors correspond to a complete extension. To recall, we consider 2-state attractors,
where the first state s is the one corresponding to the complete extension E in the sense
of Definition 9. The second state s′ coincides with s on all components that correspond to
arguments in (E ∪E+), and sets the remaining components (corresponding to arguments
in A\(E∪E+)) to 1. For example, recalling Example 12 we have for E = {a} that a ∈ E,
b ∈ E+, and c ∈ A\ (E ∪E+). We obtain s = (1,0,0) and s′ = (1,0,1).

Proposition 17. Let T = (A,R) be an AF, let M ⊆ A and let sM,s′M be the complete
state-pair w.r.t. M. If sM,s′M form an attractor of f T then M is a complete extension of T .
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Proof. Assume sM �= s′M is an attractor of f T . We have M = {a ∈ A | sM(a) = 1}. Let
a be an arbitrary argument in M, note that both in state sM and in state s′M it holds for
all (b,a) ∈ R that sM(b) = s′M(b) = 0, as otherwise a would be set to 0 in the next step.
Hence, M is conflict-free in T . Moreover, since sM(b) = s′M(b) = 0 this means that both
in sM and s′M there is a (c,b) ∈ R s.t. sM(c) = s′M(c) = 1 (as otherwise b would be set
to 1 in the next step). Hence, M defends itself in T . In fact, by the same reasoning we
obtain that for each argument b ∈ M+ we get sM(b) = s′M(b) = 0. Let a be an arbitrary
argument that is attacked only by arguments b ∈ M+ (i.e., an arbitrary argument that is
defended by M). Since for these arguments it holds sM(b) = s′M(b) = 0, we must have
sM(a) = s′M(a) = 1, i.e., M contains every argument it defends. In summary, we obtain
that M is complete in T .

Effectively, these results do not only characterize the attractors corresponding to
complete extensions, but also give us a tool to check if an arbitrary attractor also corre-
sponds to a complete extension (like attractor 2. in Example 16 (right)). If we have an
attractor s1, . . . ,sm we observe a three-valued behavior of the components: while some
components stay at 1 or 0 for all states, other components will change. If the attractor
characterizes a complete extension, the components a with s1(a) = · · ·= sm(a) = 1 cor-
respond to an argument in M, the components b with s1(b) = · · ·= sm(b) = 0 correspond
to an argument in M+, and the arguments c with si(c) �= s j(c) for some 1 ≤ i, j ≤ m cor-
respond to an argument in A\ (M∪M+) (an undecided argument). By Proposition 14 we
know that if M is complete, the corresponding state sM = {a ∈ A | s1(a) = · · ·= sm(a) =
1} will form an attractor in a complete state-pair. Hence, to check if our arbitrary attractor
s1, . . . ,sm corresponds to a complete extension, we can perform the following steps:

1. Identify the (potentially) characterized set M = {a∈A | s1(a) = · · ·= sm(a) = 1},
2. Compute the complete state-pair sM,s′M w.r.t. M (i.e., compute s′M by setting

s′M(c) = 1 for the arguments c with sM,i(c) �= sM, j(c) for some 1 ≤ i, j ≤ m), and
3. Check if f (sM) = s′M and f (s′M) = sM , i.e., apply two steps of the transition func-

tion to check if we found a complete state-pair-attractor.

If this check is true, we know M is a complete extensions that corresponds to our (arbi-
trary) attractor, otherwise by Proposition 17 we know that M is not complete in T . We
illustrate this in the following example.

Example 18. Assume we put for the following AF T its corresponding boolean network
f T into a solver that outputs at first attractor 1.

a b c

d e f

g h i

1. (0,0,0,1,1,1,0,1,0),
(0,1,0,1,0,1,0,1,0),
(0,1,0,0,0,1,1,1,0),
(1,1,0,0,0,1,1,0,0),
(1,0,0,0,1,1,1,0,0),
(1,0,0,1,1,1,0,0,0)

2. (0,0,0,0,0,1,0,0,0),
(1,1,1,1,1,1,1,1,0)

3. (0,1,0,1,0,0,0,0,1),
(0,1,0,0,1,0,1,1,1),
(1,1,0,0,0,0,0,0,1),
(1,0,0,0,1,0,1,1,1),
(1,0,0,1,0,0,0,0,1),
(0,0,1,1,1,0,1,1,1)

4. (0,0,0,0,0,0,0,0,1),
(1,1,1,1,1,0,1,1,1)

We want to find out if the attractor 1. corresponds to a complete extension, so we compute
check if 2. is an attractor. We have f T ((0,0,0,0,0,1,0,0,0)) = (1,1,1,1,1,1,1,1,0).
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However, we get f T ((1,1,1,1,1,1,1,1,0)) = (0,0,0,0,0,0,0,0,0), i.e., we do not have
an attractor. We can conclude that the corresponding set { f} is not complete (and indeed,
it can easily be verified that { f} is not defended against the attack from c).

Now assume our solver provides attractor 3. We again check whether 4. is an attrac-
tor, and indeed this time we are lucky. Indeed, the corresponding set {i} is complete.

Finally, combining Proposition 14 and Proposition 17 we immediately obtain the
following characterization for complete extensions.

Theorem 19. Let T = (A,R) be an AF. The complete state-pair-attractors of f T corre-
spond to the complete extensions of T .

First note that this result subsumes the result from Theorem 11 (as all stable exten-
sion are also complete) if we allow the slight abuse of notation where a single state at-
tractor s can be written as a complete state-pair s,s. Also note that the “correspondence”
in Theorem 19 should be interpreted slightly differently than in Theorem 11, where the
single state attractor in question has a one-to-one correspondence to the complete exten-
sions in the sense of Definition 9. This is not the case for Theorem 19 as we saw in Ex-
ample 18 where the complete extension {i} corresponds both to attractor 3. and 4. How-
ever, there is a one-to-one correspondence between complete extensions and complete
state-pair-attractors.

5. Seeds and Symbolic Steady States

In this section we consider partial states of boolean networks and investigate how they
relate to admissible sets and complete extensions. First we show that admissible sets
correspond to seeds in the corresponding boolean network.

Theorem 20. Let T = (A,R) be an AF and let f T be its corresponding boolean network.
A set S ⊆ A is admissible in T iff s is a seed in f T with

s(a) =

⎧⎪⎨
⎪⎩

1 if a ∈ S
0 if a ∈ S+

θ otherwise

Proof. With a slight abuse of notation, we will use f T (s) to refer to the image of a partial
state s.
⇒: Let S ⊆ A be admissible in T . Let a ∈ S, we have s(a) = 1 and s(b) = 0 for each b
where (b,a) ∈ R, which in turn means f T (s′)(a) = 1 for each state s′ extending s. Now
let a ∈ S+, we have s(a) = 0 and s(b) = 1 for some b where (b,a) ∈ R, which in turn
means f T (s′)(a) = 0 for each state s′ extending s. Hence, s is a seed of f T .

⇐: Let s be a seed in f T . Let a be s.t. s(a) = 1. We have for each b s.t. (b,a)∈ R that
s(b) = 0, as otherwise there is a state s′ extending s with s′(b) = 1 where f T (s′)(a) = 0
which would mean that s is not a seed, a contradiction. This means the corresponding set
S = {a ∈ A | s(a) = 1} is conflict-free. Moreover, this means there is a c s.t. (c,b) ∈ R
with s(c) = 1, since otherwise there is a state s′ extending s where for each such c it
holds s(c) = 0 which means f T (s′)(b) = 1 which in turn means f T ( f T (s′))(a) = 0 which
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would again mean that s is not a seed, a contradiction. This means that c defends a in T ,
and, hence, S defends itself in T , i.e., S is admissible.

Notice however, that this correspondence is many-to-one in the sense that several
seeds can correspond to the same admissible set. This mirrors the relation between ad-
missible sets and admissible labellings discussed in [12], where several labelings that
agree on the accepted arguments but disagree on which arguments are labeled out, or
undecided respectively, correspond to the same admissible set.

Next we show a one-to-one correspondence between symbolic steady states of BNs
and complete extensions of the corresponding AF.

Theorem 21. Let T = (A,R) be an AF and let f T be its corresponding boolean network.
A set S ⊆ A is complete in T iff s is a symbolic steady state in f T with

s(a) =

⎧⎪⎨
⎪⎩

1 if a ∈ S
0 if a ∈ S+

θ otherwise

Proof. With a slight abuse of notation, we will use f T (s) to refer to the image of a partial
state s.

⇒: Assume S is complete. By Theorem 20 we get that s is a seed. Assume to-
wards contradiction that DS ⊂ D f T (s). First we examine the case (i) where s(a) = θ and
f T (s)(a) = 1. This means that for each (b,a) ∈ R we have s(b) = 0 (we clearly have
b ∈ Ds, as otherwise we do not get f T (s)(a) = 1), but by Theorem 20 we get that b ∈ S+

which means a is defended by S but not in S, contradicting completeness. We now exam-
ine the case (ii) where s(a) = θ and f T (s)(a) = 0. This means there is some (b,a) ∈ R
with f T (s)(b) = 1, and by case (i) this is not possible. Hence, we indeed get Ds = D f T (s).

⇐: Assume s is a symbolic steady state. By Theorem 20 we get that S is admissible
in T . Towards contradiction assume S is not complete, i.e., a /∈ S is defended by S (which
means s(a) = θ ). This means for each (b,a) ∈ R we have that s(b) = 0, which means
f T (s)(b) = 1, a contradiction, since we assumed s is a symbolic steady state. Hence, S is
complete.

6. Conclusions

In this work we established a connection between abstract argumentation frameworks
and boolean networks. That is, we provided a one-to-one mapping between Dung style
argumentation frameworks and the class boolean networks where transitions functions
are conjunctions of negative literals, such that the AF coincidences with interaction graph
of the BN. We have shown that stable extensions correspond to single state attractors,
complete extensions correspond to symbolic steady states—in particular, the complete
state pairs, and admissible sets correspond to seeds in the corresponding boolean net-
work. This, on the one hand side allows us to use the formal machinery of boolean net-
works to reason on argumentation frameworks and on the other hand side argumentation
semantics provide alternative characterizations in the “static” setting of the interaction
graph of a BN for concepts that are rooted in the dynamic setting of the transition graph.
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Given that in general boolean networks the transition function can be an arbitrary
boolean function an interesting direction for future work is to investigate how richer ab-
stract argumentation formalisms like Argumentation Frameworks with collective attacks
(SETAFs) [13], Bipolar Argumentation [14], or even Abstract Dialectical Frameworks
(ADFs) [15] relate to boolean networks, and vice versa how frequently studied classes
of BNs [16,17,18], that put restrictions on the transition functions, relate to abstract ar-
gumentation.
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