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Abstract. We evaluate two large language models (LLMs) ability to perform ar-
gumentative reasoning. We experiment with argument mining (AM) and argument
pair extraction (APE), and evaluate the LLMs’ ability to recognize arguments un-
der progressively more abstract input and output (I/O) representations (e.g., arbi-
trary label sets, graphs, etc.). Unlike the well-known evaluation of prompt phras-
ings, abstraction evaluation retains the prompt’s phrasing but tests reasoning capa-
bilities. We find that scoring-wise the LLMs match or surpass the SOTA in AM and
APE, and under certain I/O abstractions LLMs perform well, even beating chain-
of-thought–we call this symbolic prompting. However, statistical analysis on the
LLMs outputs when subject to small, yet still human-readable, alterations in the
I/O representations (e.g., asking for BIO tags as opposed to line numbers) showed
that the models are not performing reasoning. This suggests that LLM applications
to some tasks, such as data labelling and paper reviewing, must be done with care.
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1. Introduction

Large language models (LLMs) such as GPT-4 [1] have shown to have spectacular accu-
racy on a variety of tasks. Hence, attempts have been made to automate more complex
tasks reliant on argumentative reasoning, such as data labelling [2] and scientific paper
reviews [3]. Argumentative reasoning encompasses formal and informal logic, and re-
quires a deep understanding of, and reasoning over, the pragmatic context. Hence, to un-
derstand the reliability of LLMs in these tasks we must also evaluate their argumentative
reasoning capabilities. This goes beyond determining whether the model can generate
relevant responses, and asks if it can robustly reason over the context and solve the task.

We evaluate the argumentative reasoning capabilities of two LLMs, GPT-3 [4] and
GPT-4 in two tasks, argument mining (AM) and argument pair extraction (APE [5]).2

We do this by an abstraction evaluation: measuring progressively more abstract input

1Corresponding Author: Adrian de Wynter, adewynter@microsoft.com
2Prompts, code, and outputs are in https://github.com/adewynter/argumentation-llms
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and output (I/O) representations. Unlike prompt-phrasing evaluations, to which LLMs
are known to be sensitive [6, 7], our evaluation maintains the task description untouched,
and only alters the signature of the data. For example, adding line numbers to the input
and requesting the output to be from a specific set (e.g., {0,1}) is a conceptually minor
I/O representation change. This retains the task description, but requires some level of
reasoning to return a correct and parseable response given the specified signatures. In
this paper we then measure the LLMs’ argumentative reasoning capabilities indirectly,
by testing their ability to robustly recognize arguments when altering the I/O.

1.1. Findings

In terms of raw scoring, we find that GPT-4 is able to reach SOTA performance in APE,
and near-SOTA in AM. However, our analysis shows that:

1. LLM scoring varies dramatically with the abstraction level, which suggests a
lack of comprehension of the task. Note that across our experiments the task
description remained fixed, and we only altered the I/O representation.

2. Symbolic prompting (that is, low-abstraction, hints-enabled inputs) bests other
approaches, including chain-of-thought (CoT) [8].

3. CoT approaches are robust to abstraction, but its output distributions over ab-
stractions are similar, which we attribute to its templatized nature.

4. LLM scores worsen with more exemplars, indicating poor inductive reasoning
capabilities.

We conclude that the LLMs are unable to reason reliably in an argumentative setting.

2. Related Work

We discuss evaluations of LLMs as it pertains to argumentative reasoning. For non-LLM-
based approaches see [9]; and for a survey on reasoning in LLMs see [10]. LLMs are rel-
atively new, though they typically outperform non-LLM approaches, for example in AM
[11] and argument evaluation [12, 13], in terms of raw scoring. Indeed, LLMs have been
observed to generalize to (read: score well in) unseen tasks without training, thus raising
the question as to whether they can reason about the prompts; or are just regurgitating
their training data or returning semantically-close responses. To some, this generaliza-
tion is an indication of emergent reasoning capabilities [14, 15]; but it has been posed
that with better statistics this evidence of emergence disappears [16]. Some tests, such as
GPT-4’s own technical report [1], tout remarkable reasoning capabilities. There is also
evidence to the contrary, e.g. in code generation [17], scientific questions [18], first-order
logic under fictional worlds [19], and arithmetic [20]; more generally, tasks with signifi-
cant reasoning depths cause LLMs to fail [21, 22]. It has hence been suggested that LLMs
do not actually reason, but rely on heuristics (e.g., semantic similarity) [23]. Remark that
these studies are limited to the prompts and versions of the models available then. It was
suggested that LLMs are not meant for formal reasoning, and it is better to evaluate them
in real-world (informal, inductive) scenarios [22]; yet GPT-3 cannot mimic human-like
inductive reasoning [24], or understand the prompts [7]. LLMs have also been found to
not be competent in legal reasoning, due to their inability to make good arguments [25].
LLMs may also retrieve dialogue acts, in line with their success as chatbots, but do not
understand offers in negotiations (i.e., pragmatics) [26].
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Figure 1. Examples of the entries in RRv2. The BIO tag is in parenthesis. Highlighted in orange and blue
are the “B” and “I” labels corresponding to an argument. In AM, review and rebuttal (response) passages are
independent, and the task is to assign BIO tags to every line. In APE, the task is to match arguments from the
review to their corresponding responses. In the above the first argument is unmatched, and the second (“BERT
produces...”) pairs to the first argument from the response.

3. Methodology

3.1. Data

Throughout this paper, we utilize the Review-Rebuttal Submission-v2 (RRv2) dataset
[5]. It is a comprehensive corpus focused on long-distance relationships between state-
ments, and includes both AM and APE. It has 4,764 (474 for test) pairs of review
and rebuttal passages related to scientific article submissions. Each passage is sentence-
separated, and includes multiple arguments. It is human-labelled. For AM, each sentence
is labelled with a BIO tag,3 and the model must retrieve (label) each sentence from the re-
view and rebuttal entries. In AM the distinction between review and rebuttal is irrelevant:
each entry is treated as a separate point in the corpus. For APE, the task is to align the
arguments within each review-rebuttal pair: every argument made by a reviewer must be
mapped, when applicable, to a response from the rebuttal. This is normally represented
as a binary matrix with overlaps [27, 28]. Prior to use we clean the text from tag and
sentence delimiters. See Figure 1 for a sample of the corpus.

3.2. LLMs Evaluated

We evaluate GPT-4 and the TEXT-DAVINCI-003 variant of GPT-3 (“GPT-3.51”). Both
models are autoregressive language models, instruction-pretrained [29, 30] and tuned
with reinforcement learning with human feedback [30, 31]. For GPT-4, there are no
details released around the architecture, model size, or training data. It is considered
better than GPT-3 at more complex tasks [1]. The variant of GPT-4 we used (“GPT-4-
0613”) has a context length of 32,768 tokens; GPT-3 has 4,097 tokens.4. Throughout our
experiments, for both LLMs we set the temperature to 0.8, the maximum return tokens
based on the task, and left everything else as default. To account for randomness, we
report the average of five calls per point to the Azure OpenAI API.

3In the RRv2 corpus, the BIO tags correspond to the Beginning, Inner, and Outer parts of an argument.
4https://platform.openai.com/docs/models
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3.3. Prompting

Prior to starting the work we tuned the prompt phrasing for best performance. When
using n exemplars, we used the first n points from the development set. For AM we
prompted GPT-4 with and without CoT. CoT conditions the LLM to work step-by-step
by following a templatized process (e.g., “Let’s think about this step-by-step...”). It is
known to provide good results in multiple reasoning tasks [8, 15, 32]. All our prompts
followed the structure from GPT-4’s technical report [1], as we observed it produced
more reliable outputs. For CoT we followed a tuned template (“Let’s read line-by-line
and solve this step by step”) indicating which sentence was being read, as well as the
rationale. For example, “We now read {SENTENCE}. It follows the previous argument,
and hence it is labelled with an ‘I’.” Sample prompts can be found in Figures 2a and 2b.

RRv2 is measured with binary F1 (F01) for APE, and micro-F1 (Fμ ) for AM [5]. Our
prompts have specified a return format to signal the beginning of parsing.

3.4. Baselines

Our baselines are the MLMC [28] and MRC-APE [27] models. MLMC approaches APE
as a table-filling problem: passages are related by their pairing on a table and it relies
on an especially designed encoding scheme and loss. MRC-APE phrases it as a reading
comprehension task: first, the model does AM, and then pairs the detected arguments.
This approach is effective when using longer-context layers, of up to 4,096 tokens. We
additionally consider random guessers for AM (around 33% Fμ ) and APE (14% F01).

3.5. Settings

We have named our settings (i.e., representations) as concrete and symbolic, to distin-
guish the approach taken towards representing the task. Concrete returns full sentences,
while symbolic encompasses a variety of I/O symbols. This is only for practical pur-
poses: symbolic approaches cover multiple I/O representations, some of which may be
easier than concrete; and, strictly speaking, the concrete setting is a type of symbolic
representation [33]. See Table 1 for a full description of the settings tested.

The concrete setting we instruct the LLM to return lines in text based on the prompt:
in AM, it must be part of an argument, in APE, an argument pair. To distinguish the “B”
and “I” labels, we enforce a specific return format to work with our parsing code via a
special token (|START|). For scoring concrete settings we expect an exact text match.

In symbolic settings the LLM must return symbols (labels) based on the prompt.
This requires more reasoning steps than in concrete settings: the LLM is solving AM
and labelling the span with an arbitrary label set defined in the prompt. In AM symbolic
we evaluated two types of labels: BIO tags and line indices. For APE we evaluated line
indices and the full binary matrix representation. We also used abstract meaning repre-
sentation (AMR [34]) graphs, which are used in argument interpretation [35].

4. Experiments and Results

We report our results comparing raw scores with respect to our settings (Section 4.1);
number of exemplars (Section 4.2); and I/O representations (Section 4.3).
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Extract from the passage all the arguments.
The output should be in the form:
| begin response |
| START| line from argument 1
line from argument 1
|START| line from argument 2
line from argument 2
...
etc
| end response |
For example,
{EXEMPLARS GO HERE}
Passage:
{PASSAGE GOES HERE}
Response:
| begin response |

(a) Sample concrete AM prompt. The model must
mark every new argument with a special token
(“|START|”) for identification. In APE we ask for the
pairing (e.g., “return all arguments from the response
that match those of the review”).

Extract from the passage all the arguments.
Label the beginning of every argument with a
"B". Label the rest of the argument with an
"I ". Label every line that is not part of an
argument with an "O".
The output should be in the form:
| begin response |
B
I
...
etc
| end response |
For example,
{EXEMPLARS GO HERE}
Passage:
{PASSAGE GOES HERE}
Response:
| begin response |

(b) Sample symbolic AM prompt. The model must
return BIO tags. In other representations (e.g., in-
dices) the model must to mark the B-label in paren-
thesis (e.g, “(15) 16 17”). In APE this output is of the
form “argument lines: response lines”, and we con-
vert into a binary matrix for scoring.

Figure 2. Sample prompts for our concrete (left) and symbolic (right) settings. Exemplars, if any, are included
in the prompt. For zero-shot we only specify the output representation. Note how the actual task definition and
prompt structure remains unchanged, and we only alter the I/O representations.

Task Input Output (label set) Abstraction

AM* Text Text and |START| Lowest

AM* Text with indices Indices Low

AM* Text Indices Medium

AM* Text BIO tags Medium-high

AM Text with AMR graph BIO tags High

AM AMR graph BIO tags Highest
Table 1. Input representations tested, in roughly increasing order of abstraction. Tasks marked with an asterisk
(*) were tested with and without CoT. The first row is our concrete reasoning setting. Our ranking of abstraction
is arbitrary: we consider the text with indices marked inline less abstract than a text without them, since the
former provides a “hint” of what the label set is supposed to be like. Output representations with BIO tags as
the output are more abstract, since it requires rule matching to determine the labeling.

4.1. AM/APE: Symbolic and Concrete Reasoning

Results for the best-performing prompts and settings are in Table 2, and a description of
every setting in Table 1. In AM the LLMs did well but did not beat the SOTA. The best-
performing symbolic setting had line indices included in the input representation, and
requested the indices of each argument as the output representation. To convert to BIO
tags, we instructed the model to return the “B” labels as indices enclosed in parentheses.
Not including the indices in the input did not lead to an equivalently good performance.
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For APE, GPT-4 consistently bested the best-performing models (+14% F01). Both
symbolic and concrete approaches did well with respect to the existing non-LLM-based
baselines. We tested other approaches, such as first extracting the arguments and then
matching them, but it did not yield sufficiently good results. Requesting a binary matrix
output led to extremely poor performance (9.88% F01, below random). Due to token-
length and budget limitations, we were unable to test CoT and AMR in APE.

CoT approaches had generally better performance than their non-CoT counterparts,
even though they use fewer exemplars. The only exception to this was symbolic prompt-
ing (indices inline and indices as output) where the difference was 3% points.

Model AM Fμ APE F01

GPT-3 (concrete) 39.86±0.51 18.58±0.70

GPT-4 (concrete) 64.51±0.53 53.84±0.73

GPT-3 (symbolic) 62.00±0.32 20.15±0.91

GPT-4 (symbolic) 70.63±0.21 49.85±0.96

MRC-APE 72.43 39.92

MLMC 71.35 32.81
Table 2. Results for the AM and APE tasks in our settings. The best-performing symbolic prompt had indices
inline and indices as the output. We also report MLMC and MRC-APE, the two best-performing, non-LLM-
based approaches for RRv2. GPT-4 almost matched the existing baselines in AM and bested them in APE.

4.2. Performance and Number of Exemplars

We compared the number of exemplars ({0,4,8,16,τ}, where τ is the maximum number)
with the LLM performance. For GPT-3, τ tended to be around 4; for GPT-4 it varied,
with an average of 44 for symbolic, non-CoT approaches in AM (15 CoT, 9 AMR) and
29 concrete; and 22 for both approaches in APE. Results are in Figures 3a and 3b. The
LLMs peaked in performance at 4 exemplars, and their scores decreased from there. This
was independent of the task and setting. We did not observe this trend in CoT.

4.3. Performance and Input Representation

In this section we focused on GPT-4 and AM and the following representations: text with
indices inline, plain text, and with and without an AMR graph. There is no rigorous way
to quantify the level of abstraction for these. However, we consider the concrete approach
to be least abstract; “hints” (indices inline, indices in output) to be slightly more abstract;
and purely symbolic input representations (AMR graphs) as most abstract. Other I/O
representations are ranked based on the output representation: BIO tags are more abstract
than indices (they require rules for matching); and both are more complex than concrete
settings, since outputting a matching string is easier than mapping to an arbitrary symbol.
The list of experiments is in Table 1, and our results in Figure 4.

For non-CoT approaches, we observed noticeable improvements in low-abstraction
scenarios (indices inline and indices in output; concrete). As it rose, LLMs scored worse,
though remaining above random. The results are significant under a Welch’s t-test on the
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(a) Number of exemplars versus Fμ in AM. CoT
(thin solid red lines) outperformed concrete and all
but one of the symbolic approaches.

(b) Number of exemplars versus F01 in APE. We
could not test CoT and AMR due to limitations on
token length and budget.

Figure 3. Exemplar number versus score for AM and APE. In blue is the concrete approach; thick red line is
the averaged performance (symbolic; dashed red lines). Last entry in all plots is the average maximum number
of exemplars supported. LLM scoring in non-CoT peaked at around 4 exemplars, and decreased afterwards.

Figure 4. Effect of abstraction in the I/O representation with respect to Fμ in AM. For non-CoT, the more
abstract the input, the more difficult it is for the model to solve the task. Even the most abstract representations
(AMR graphs) are noticeably better than a random. In CoT (top, marked with an asterisk) consistently outper-
formed non-CoT, even when the maximum number of exemplars supported is much lower, and regardless of
abstraction level. We did not test CoT with AMR in AM due to token limitations.

prediction arrays. When the input text is unaltered, line numbers or BIO tags make no
difference in predictions with CoT (p ≈ 0.77; large p-values imply the distributions have
identical expected values), but are noticeably worse without (p < 0.05). Another t-test
shows that t < −0.86 and p ≈ 0.39 for inline indices when compared with its non-CoT
version. Hence we reject the null hypothesis that the distributions are distinct. Since the
performance in non-CoT was better on average (67% vs 70% Fμ ), it is possible that CoT
harms performance on outlier points. We compared CoT in other scenarios, and also
observed large p values when comparing with only indices in the output (< 0.98); and
when comparing the latter with BIO tags (p < 0.77). This suggests that CoT is effective
in highly abstract scenarios, such as requesting BIO tags, but detrimental otherwise.
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5. Discussion

The LLMs scored highly in AM and APE, to the point of beating or almost matching the
existing SOTA models. This is not sufficient to claim that the models are able to perform
argumentative reasoning. When we altered the I/O representation with conceptually mi-
nor changes–such as adding line numbers or requesting a BIO set as opposed to integers–
the LLMs had noticeably different performances. An explanation for the relatively low
scores in APE is that the LLMs failed to generalize due to the length of the task; which
causes problems in transformer-based models [21].

CoT prompts had on average higher scores than their non-CoT counterparts. They
also yielded better scores in ill-posed (overly abstract) scenarios. However, our analysis
showed that the output distributions for all CoT approaches were rather similar. This is
perhaps indicative that CoT allows the models to return the same output regardless of
representation. This appears to be due to the templatized nature of CoT, i.e., “Let’s read
line-by-line and solve step-by-step”, and the specific steps needed to generate the output
regardless of the I/O representation. This itself is not indicative of reasoning.

Finally, there is a clear peak at four exemplars with respect to the model’s down-
stream performance. This suggests that, assuming that more exemplars imply better in-
formation about the task, the LLMs are not accurately performing inference from the
data provided. This exemplar effect did not extend to CoT settings, though we do not
discard the possibility that models with longer token limitations could also show this
trend. Overall, we pose that the models are unable to reason in an argumentative setting,
but their scores give an excellent appearance of being able to do so.

6. Limitations

Our analysis has three main limitations. In terms of reasoning evaluation, it could be
argued that our results are not complete in terms of evaluating argumentative reasoning
capabilities. We agree: recognizing an argument is not the same as deciding its quality.
However, without the ability of the model to show that it is able to recognize arguments
and identify relations between them, any potentially generated argument or result evalu-
ating the model’s performance in these tasks is untrustworthy.

We factored out, to an extent, potential data contamination, which is known to im-
pact downstream model performance [36, 37], by tasking the model to recognize argu-
ments from the passage. However, we are unable to guarantee that the models have not
been trained with this data, and therefore have at least some bias towards these results.
Finally, we only evaluated two models, so our results may not extend to other LLMs.
Likewise, we did not fine-tune the models, and opted instead to treating them as gener-
alists performing in-context learning, in line with their contemporary usage.

7. Conclusion

We evaluated the argumentative reasoning capabilities of GPT-3 and GPT-4, by measur-
ing whether they could recognize arguments from a passage–the first step on performing
such reasoning. The LLMs score well in AM and APE, beating or nearly-matching the
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SOTA. However, statistical analysis on the LLMs’ predictions when subject to small,
yet still human-readable, alterations in the I/O representations showed that the LLMs
were extremely sensitive to the abstraction level and the number of exemplars. Hence,
we concluded that they were not reasoning over the arguments seen.

However, symbolic prompting strategies (e.g. reducing the abstraction level of the
prompt by adding line numbers) allowed the LLMs to score well and even beat CoT.
We were also unable to conclude that CoT helped argumentative reasoning in LLMs, but
did observe more robust results due to its templatized nature. Our analysis implies that it
helps mitigate issues stemming from overly abstract or ill-conditioned problems.

As mentioned in Section 6, we did not evaluate the LLMs’ ability to judge an argu-
ment’s strength, or to provide reasonable rebuttals. Moreover, due to experimental limi-
tations, we were unable to evaluate AMR, the most abstract setting we tested, with CoT,
and other prompting strategies, such as Tree-of-Thoughts [38]. This, along with further
evaluation on benchmarks specific to reasoning, could provide valuable insights on to
what extent these models are able to discern abstract input representations. Further work
could explore these issues. Overall, our work suggests that LLM usage in areas like data
labelling and paper reviewing must be exercised with care and good judgement.
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