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Abstract. Various approaches have been proposed for providing efficient computa-
tional approaches for abstract argumentation. Among them, neural networks have
permitted to solve various decision problems, notably related to arguments (credu-
lous or skeptical) acceptability. In this work, we push further this study in various
ways. First, relying on the state-of-the-art approach AFGCN, we show how we can
improve the performances of the Graph Convolutional Networks (GCNs) regarding
both runtime and accuracy. Then, we show that it is possible to improve even more
the efficiency of the approach by modifying the architecture of the network, using
Graph Attention Networks (GATs) instead.
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Computational methods for abstract argumentation [1] have received much attention
in the last years, notably thanks to the organization of the International Competition on
Computational Models of Argumentation (ICCMA).1 Roughly speaking, there are two
families of approaches: exact algorithms, which guarantee to find the correct result, but
possibly require a large amount of time (because of the high computational complexity of
many interesting problems [2]); and approximate algorithms, which typically outperform
exact algorithms in terms of runtime, but may provide wrong results in some cases.

Several recent approaches have been proposed for defining approximate algorithms
for abstract argumentation. Some of them rely on the relation between the grounded
semantics and most other classical semantics [3], which allows to use this (polynomi-
ally computable) semantics as a good approximation for the status of most arguments
under other (intractable) semantics. In the recent editions of ICCMA, these approaches
are HARPER++ [4] and ARIPOTER [5]. Another approach, named FARGO-LIMITED [6], is
based on (bounded depth) DPLL-style algorithm for searching if an argument belongs
to an admissible set, which allows to answer positively to various acceptability queries.
Finally, using machine learning techniques for abstract argumentation has received some
attention, in particular AFGCN [7] is based on Graph Convolutional Networks (GCNs).
All these approaches participated to the last edition of ICCMA in 2023,2 and solve cred-
ulous and skeptical acceptability problems, i.e. determining whether a given argument
belongs to some or each extension for a given semantics.

1http://argumentationcompetition.org
2http://argumentationcompetition.org/2023
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In this work, we explore two different ways to define approximate algorithms for
these acceptability queries, both based on machine learning techniques. First, building
upon AFGCN, we define new GCN-based methods for solving acceptability queries. We
show that these methods, using different sets of features for training the model or dif-
ferent network architectures allow to outperform the original AFGCN solver. Then, we
show how replacing GCNs by Graph Attention Networks (GATs) improves even more
the performances of the solver.

1. Background

1.1. Abstract Argumentation

Definition 1 (Argumentation Framework [1]). An Argumentation Framework (AF) is a
directed graph F = 〈A ,R〉 where A is a set of abstract entities called arguments and
R ⊆ A ×A is the attack relation.

Although Dung does not put additional constraints regarding the set of arguments,
in this work we assume that A is a non-empty finite set of arguments. When (a,b) ∈ R,
we say that a attacks b, and similarly if ∃a ∈ S s.t. a attacks b, then the set of arguments S
attacks b. Classical AF semantics rely on a notion of collective acceptability: the seman-
tics allow to determine sets of extensions, which are sets of jointly acceptable arguments.
Most extension-based semantics satisfy two basic properties:

Definition 2 (Conflict-freeness and defense). Given an AF F = 〈A ,R〉 and the set of
arguments S ⊆ A , we say that S is conflict-free if ∀a,b ∈ S, (a,b) �∈ R. Then, given an
argument a ∈A , we say that S defends a if ∀b ∈A s.t. (b,a)∈R, ∃c ∈ S s.t. (c,b)∈R.

A conflict-free set which defends all its elements is said admissible. Most semantics
select extensions among the admissible sets of an AF.

Definition 3 (Dung’s Semantics [1]). Given F = 〈A ,R〉 and S ⊆A an admissible set,

• S is a complete extension iff it contains all the arguments that it defends,
• S is a preferred extension iff it is a ⊆-maximal complete extension,
• S is a grounded extension iff it is a ⊆-minimal complete extension,
• S is a stable extension iff it attacks every argument in A \S.

We write (resp.) co(F ), pr(F ), gr(F ) and st(F ) for the sets of complete, pre-
ferred, grounded and stable extensions of F . It is known [1] that each AF has exactly
one grounded extension, at least one preferred and complete extension, and st(F ) ⊆
pr(F )⊆ co(F ). The status of an argument w.r.t. a given semantics is defined by:

Definition 4 (Argument Acceptability). Given an AF F = 〈A ,R〉 and a semantics
σ ∈ {co,pr,gr,st}, the argument a ∈ A is credulously (resp. skeptically) accepted if
a ∈ credσ (F ) =

⋃
S∈σ(F ) S (resp. a ∈ skepσ (F ) =

⋂
S∈σ(F ) S).

Reasoning with the grounded semantics is tractable, but it is not the case in general
for the other semantics. More precisely, DC-σ (resp. DS-σ ) is the decision problem
which consists in determining whether an argument a is credulously (resp. skeptically)
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accepted w.r.t. the semantics σ . DC-σ is NP-complete for σ ∈ {co,pr,st}, and DS-σ
is CONP-complete for σ = st and ΠP

2 -complete for σ = pr (it is polynomial for σ = co

because it coincides with DS-gr). See [2] for more details on this topic.

Example 1. Figure 1a depicts an AF F1 = 〈A1,R1〉. Its extensions and the set of (cred-
ulously and skeptically) accepted arguments are given in Figure 1b.

a1a2

a3 a4 a5

a6
a7

(a) F1

Semantics σ σ(F1) credσ (F1) skepσ (F1)

co {{a1,a4,a6},{a1,a3},{a1}} {a1,a3,a4,a6} {a1}
pr {{a1,a4,a6},{a1,a3}} {a1,a3,a4,a6} {a1}
gr {{a1}} {a1} {a1}
st {{a1,a4,a6}} {a1,a4,a6} {a1,a4,a6}

(b) Extensions and (credulously and skeptically) acceptable arguments

Figure 1. An AF F1 with its extensions and accepted arguments under σ ∈ {co,pr,gr,st}.

While extension-based semantics rely on a notion of collective acceptability of argu-
ments (and then, individual acceptability can be derived thanks to credulous or skeptical
reasoning), other families of semantics directly capture a notion of individual acceptabil-
ity. In particular, a gradual semantics assigns to each argument in an AF an acceptability
degree, usually a real number in the interval [0,1], where 0 represents complete rejection
of the argument and 1 complete acceptance. These semantics are based on different intu-
itions, for instance taking into account the number or the quality of an argument’s attack-
ers. To represent the attackers of an argument a, we define a− = {b ∈ A | (a,b) ∈ R}.
Here are some classical gradual semantics that we use in this work.

Definition 5 (Gradual Semantics). Given an AF F = 〈A ,R〉 and a ∈ A , the gradual
semantics h-categorizer (h− cat [8]), no self-attacker (nsa [9]), Max-based (Mbs [10])
and Card-based (Cbs [10]) map each argument a ∈ A to a value in [0,1] as follows:

h− cat(F ,a) = 1
1+∑b∈a− h−cat(F ,b) nsa(F ,a) =

{
0 if (a,a) ∈ R

1
1+∑b∈a− nsa(F ,b) otherwise

Mbs(F ,a) = 1
1+maxb∈a− Mbs(b,F )

Cbs(F ,a) = 1

1+|a−|+∑b∈a− Cbs(F ,b)

|a−|

Example 2. Let F2 = 〈A2,R2〉 be the AF from Figure 2a. For each x ∈A2, we give the
acceptability degree for all the gradual semantics considered in the paper in Table 2b.

a1 a2 a3

a4a5a6

(a) F2

Argument x h− cat(F2,x) nsa(F2,x) Mbs(F2,x) Cbs(F2,x)

a1 0.618 0.0 0.618 0.414
a2 0.495 0.732 0.618 0.299
a3 0.618 0.414 0.618 0.414
a4 0.398 0.477 0.618 0.231
a5 0.401 0.399 0.5 0.274
a6 1.0 1.0 1.0 1.0

(b) Acceptability degrees (rounded to 10−3)

Figure 2. An AF F2 and the acceptability degrees of arguments for σ ∈ {h− cat,nsa,Mbs,Cbs}.
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1.2. Neural Networks for Argumentation

Now we present basic notions of deep learning as used in the rest of this paper. Deep
learning is an efficient way to approximate the solutions to various kinds of problems
[11]. Given the high complexity of most interesting problems in abstract argumentation
[2], it is not surprising that several approximate reasoning approaches have been pro-
posed for argumentation, including some based on deep learning.

An artificial neuron (or simply, a neuron from now) can be seen as a compu-
tational unit taking as input a vector of values x = (x1, . . . ,xn), a vector of weights
w = (w1, . . . ,wn) and an additional information called the bias b. The neuron is mainly
an activation function f , and the output of the neuron is obtained by applying f to the
weighted sum of the input values and the bias, i.e. f (b+∑n

i=1 wi × vi). Neurons are con-
nected into networks, usually made of various layers. The input layer is made of neu-
rons that only pass their input values to the next layer without processing (i.e. there is no
activation function), then there are (possibly many) hidden layers and finally one output
layer, s.t. the output of these last neurons correspond to the output of the neural network.
For training a neural network in a context of supervised learning, the output of the net-
work is compared to the labels of the training data, and a back-propagation algorithm is
used to find the most accurate representation of the data by adjusting the weights of the
neurons. This back-propagation aims at minimizing the value of the loss function, which
represents the distance between the value predicted by the network output and the real
value of the labeled data. This allows to provide a better approximation of the mapping
(input data → labels) by the neural network. Neural networks are typically represented
as (weighted) directed graphs where the nodes are the neurons and the weighted edges
are the connections between neurons.

1.2.1. Graph Convolutional Network

While “basic” neural networks as described before take a vector of real numbers as input,
[12] introduces neural networks able to directly use graphs as their inputs, named Graph
Convolutional Networks (GCNs). A GCN works by taking as input an adjacency matrix
representation of the graph and a node embedding, i.e. a set of features for each node of
the graph. A layer of a GCN works by applying a convolution on each dimension of the
vector representing the node embedding. The convolution takes into account the node
embedding of the neighbours of the node, and the node itself. Formally, from a layer l
of the GCN and the adjacency matrix of the graph A, the layer l +1 can be obtained by
computing Hl+1 = f (Hl ,A) = σ(D̂− 1

2 ÂD̂− 1
2 HlW l) where Â is the representation of the

graph where self-loops have been added on each argument, W l is the matrix of weights
for the layer l and σ is a (non-linear) activation function. The self-loops allow a node
of the argumentation framework to propagate information to itself (otherwise, the node
would only receive information about its neighbours). The first layer H1 can be obtained
by computing f (H0,A) where H0 is a matrix representation of the node features.

The GCN model was used in the context of abstract argumentation for approximat-
ing the credulous or skeptical acceptability of arguments under various semantics. [13]
focused on credulous acceptability under the preferred semantics (DC-pr) and proposed
two different node embeddings. In the first one, each node is associated to a single fea-
ture, which is the same constant for every node (i.e. there is no additional information
provided for the nodes), while the second one provides two features per node, namely
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the numbers of incoming and outgoing attacks. Then, another approach based on GCNs
has been proposed, with the solver AFGCN performing extremely well at ICCMA 2021.3

The second version of AFGCN, which participated to ICCMA 2023, can solve both DC

and DS problems for the semantics co, pr and st, as well as other semantics not consid-
ered in this paper (semi-stable, stage and ideal [14]). We give more details on AFGCN in
Section 2, where we describe the various modifications that we have made in order to
improve its efficiency regarding both runtime and precision.

1.2.2. Graph Attention Network

In classical graph neural networks like GCNs, the feature update of a node when passing
from layer l to layer l + 1 is typically an average of the features of all its neighbors
and itself. It means that there is no difference in the treatment of all neighbors. With
Graph Attention Networks (GATs) [15], there is an assumption that some node are more
important than some other ones. To take into account this assumption, when updating the
node embedding of the node in a graph attentional layer, an attention score is computed
between the source node and every neighbour of this node (e.g. using a weighted matrix
applied to the node embedding of the nodes, the function Leaky ReLU, normalized by
using the function softmax), which allows to indicate if a node j is important or not
for a node i. These attention coefficients are used to weigh the influence of a neighbors’
features when computing the new embedding of the node during the convolution. The
authors of [15] also incorporate the mechanism of multi-head attention, which allows
the network to perform this process several times independently and in parallel. When
finishing the computation of the updated features with each attention head, the results of
all the heads are concatenated (for inner layers) or averaged (for output layers).

2. New Neural Networks for Arguments Acceptability

We propose several new approaches to (approximatively) evaluate arguments acceptabil-
ity in abstract argumentation. Section 2.1 shows our modified version of the AFGCN ap-
proach, and Section 2.2 shows our proposal for using GATs instead of GCNs. Our soft-
ware is available here: https://github.com/Paulo-21/AF-GCN-GAT_wGS .

2.1. GCNs for Arguments Acceptability

Our first approach is based on the work by Lars Malmqvist using Graph Convolutional
Networks [7] for approximating arguments acceptability, but (among other technical dif-
ferences) our method uses a different kind of node embedding. Based on [7] and the
solver source code4, let us first describe with more details the AFGCN solver, more pre-
cisely its second version that was submitted to ICCMA 2023. AFGCNv2 starts by running
a grounded extension solver (based on NumPy [16], which provides a quadratic space
representation of the AF), and if the query argument is not a member of the grounded
extension, then a GCN is used to predict the acceptability of this argument. The GCN
model is built as follow. Its inputs are the adjacency matrix of the argumentation graph

3http://argumentationcompetition.org/2021/
4https://github.com/lmlearning
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and a graph embedding made of a vector of dimension 128 for each argument, containing
features representing the eigenvector centrality, the graph centrality, the in-degree and
out-degree, PageRank and the graph coloring. The other features are randomized input
features. All of these assign numbers to the nodes, which are normalized in order to be-
long to a comparable scale and constitute the node embedding of the graph. The core
component of the GCN is built with 4 consecutive blocks, each made of a GCN layer
and a Dropout layer [17], which aim at reducing the risk of overfitting by dropping some
of the neurons during the forward pass of the learning process. At each block, there are
residual connections that feed it with the original features (in addition to the new em-
bedding produced by the previous layer). After these blocks, a layer reduces the dimen-
sion of the features vector to 1. Finally, a Sigmoid layer computes the probability for the
arguments to be accepted.

2.1.1. Speed and Memory Management Improvements

There are several parts of the process where AFGCNv2 could not succeed its computation
because of output errors or timeout, notably when managing large instances.

Python provides various interesting tools for applying machine learning techniques,
but it may lack of efficiency in some cases. In particular, for AFGCNv2, the time taken for
computing the graph centrality when building the node embedding may be important, as
well as the time required to parse the text files describing large instances.

To improve the speed of the solver, we propose a Rust Made Python package that
can read and parse the AF much faster than the Python implementation. This package
receives a path to the file describing the AF, and then parses it. The second part of the
process is the computation of its grounded extension. This Rust tool verifies if the query
argument belongs to the grounded extension or is attacked by it. In this case, the sys-
tem immediately stops and provides the correct answer. If the argument is neither in the
grounded extension nor attacked by it (i.e. it is labeled UNDEC regarding the grounded
labelling of the AF [18]), then we need to use the neural network to estimate the accept-
ability of the arguments. So, the Rust package computes the node embedding of the argu-
mentation graph in order to feed the GCN or kind of GNN that need a node embedding.

This approach can speed up a lot the process for several reasons. As said before,
the Rust package is faster for parsing large AF files compared to the original Python
implementation. The main improvement regarding runtime is computation of the graph
centrality, which was the main cause for long runtimes (and timeout) with AFGCNv2. Its
computation is much faster with the Rust package than with the Python-based NetworkX
library [19] used by AFGCNv2. The other potential runtime improvement concerns argu-
ments attacked by the grounded extension. These arguments cannot belong to any exten-
sion under any semantics considered in this paper (nor other classical semantics like the
semi-stable and ideal semantics [14]), but AFGCNv2 still needs computing the node em-
bedding and running the GCN for them, while our package instantly answers that these
arguments are not acceptable. This approach, inspired by [4,5] can considerably speed
up the computation for arguments attacked by the grounded extension.

Another issue with the computation of the grounded extension is the use of the
quadratic data structure in AFGCNv2. This leads to some out-of-memory errors with large
instances (for instance, an AdmBuster graph5 with n= 50000, requires 18.6 GiB of mem-

5See https://argumentationcompetition.org/2017/AdmBuster.pdf for details on AdmBuster.
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ory). On the contrary, our Rust package relies on a linear algorithm and data structure,
similar to the approach from [20], which avoids errors like those faced by AFGCNv2.

2.1.2. Model Precision Improvement

The node embedding of a graph maps each node (in our case, each argument) of the graph
with a vector of N dimensions, each dimension representing information about some
features of the node. As explained previously, in AFGCN, N = 128 with a large part of the
features being randomly generated. We propose several variants of the node embedding
of AFGCN, where the acceptability degrees of the argument for various gradual semantics
(namely, h− cat, nsa, Cbs and Mbs) are added to the features of the argument. Another
feature that we take into account is the acceptability status w.r.t. the grounded semantics
(represented as 1 for arguments in the grounded extension, 0 for arguments attacked by
it, and 0.5 for the remaining arguments). Now we describe five versions of AFGCN:

• AFGCNv2, i.e. the solver that participated to ICCMA 2023, (with the features cor-
responding to the eigenvector centrality, the graph centrality, the in-degree and
out-degree, PageRank, the graph coloring, and the randomised values),

• AFGCN-P128, our implementation (with the technical improvements described in
Section 2.1.1) with the 6 features used in AFGCNv2 and the 5 additional features
corresponding to the gradual semantics and the grounded semantics, and 117 ran-
domly generated features,

• AFGCN-P11, our implementation with only the 11 “meaningful” features (i.e. with-
out the random features).

• AFGCN-P128−do, similar to AFGCN-P128 but without dropout layers,
• AFGCN-P11−do, similar to AFGCN-P11 but without dropout layers.

Comparing AFGCNv2 with AFGCN-P128 aims at evaluating the interest of the new
features (i.e. the gradual semantics and the grounded semantics), while the comparison
between AFGCN-P128 and AFGCN-P11 assesses the impact of the randomized features.
These randomized features are used for preventing the dropout layers from having a neg-
ative impact on the learning process by dropping too many important features. For this
reason, we also perform a comparison of these approaches without the dropout layers.

2.2. GATs for Arguments Acceptability

We have also implemented a Graph Attention Network (called AFGAT in the rest of the
paper), and used the second version proposed by the authors [15], which generally out-
performs the first version in all benchmarks according to the authors of the model. In-
tuitively, not all neighbours of an arguments have the same impact on its acceptability
(e.g. an attacker of a which is attacked by the grounded extension has no impact on a, but
an attacker which is UNDEC in the grounded labelling may belong to some extension
and thus prevent a from being skeptically accepted), hence the interest of the attention
mechanism of GATs for evaluating arguments acceptability. As far as we know, it is the
first implementation of a GAT for argument acceptability according to extension-based
semantics. In our experiment we choose to implement the GATv2 with 3 graph atten-
tionals layers parameterized with 5 head for the first layer, and 3 heads for the second
and the third ones. We only consider the same 11 input features as in AFGCN-P11. For
the following layers, the numbers of their input features is the number of output features
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from the previous layer multiplied by the number of attention heads from the previous
layer (so there are 5×5 = 25 features for the second layer, and 5×3 = 15 for the third
layer), while the output layer only has one feature representing the acceptability of the
arguments we have an Sigmoid Layer to transform the output feature of the last layer into
a probability of acceptability. Following the approach described by [15], the concatena-
tion of the results provided by each attention head is used between the layers 1 and 2 on
the one hand, and 2 and 3 on the other hand. The average operation is used after the last
layer (instead of concatenation) in order to obtain a single value for each argument.

3. Experimental Evaluation

In the following, we compare the efficiency of our approaches with those of HARPER++
and FARGO-LIMITED which were the best performers in the approximate track of IC-
CMA 2023, as well as AFGCN which is the state-of-the-art approximate solver based on
neural networks (and the foundation of our work).

3.1. Protocol

All our GNNs (i.e. AFGCN-P11, AFGCN-P128, AFGCN-P11−do, AFGCN-P128−do and
AFGAT) were trained with the same dataset used to train AFGCNv2 by Lars Malmqvist, i.e.
an aggregate of instances from ICCMA 2017, 900 AFs from the sets A, B, C6. Similarly
to AFGCNv2, we used the Deep Graph Library (DGL) and Pytorch to train our models,
with the option “shuffle” enabled to allow DGL to reshuffle the set of graphs given to
the GNN for every batch during training. The batch size was set to 64 for all variants of
AFGCN and 4 for AFGAT (because of memory limitations). For the optimization process,
we used Adam [21] (like in AFGCNv2). The learning rate was set to 0.01, like AFGCNv2.
The training ended after 400 epochs. The hardware used for the training was a CPU i3-
9100F, 8GB of RAM and a GPU Nvidia GTX 1070 (8GB VRAM). For the test we used
the same configuration except that solvers only had access to the CPU for this phase.

3.2. Results

Now, we describe our experimental results regarding four classical decision problems,
namely DC-co, DC-st, DS-pr and DS-st. We conducted two different evaluations, using
the instances from the ICCMA 2023 competition (329 instances).7

3.2.1. Comparison of the Neural Networks

In this first experiment, in order to define our test set we tried to compute with the SAT-
based solver Crustabri (see https://github.com/crillab/crustabri) the accept-
ability status for each argument in each AF in the dataset. Notice that in this case, we
only compare the relative efficiency of the neural networks, but we do not use the pre-
computation of the grounded semantics which is mentioned in Section 2.1.1. Some in-
stances required too much time to do so, and were thus excluded from the test set. Since

6https://github.com/lmlearning/AFGraphLib
7https://zenodo.org/records/8348039/files/iccma2023_benchmarks.zip

P. Cibier and J.-G. Mailly / Graph Convolutional Networks and Graph Attention Networks32

https://github.com/crillab/crustabri
https://github.com/lmlearning/AFGraphLib
https://zenodo.org/records/8348039/files/iccma2023_benchmarks.zip


all problems are not equivalently hard for a given AF, the exact test set is slightly different
for each of them (DC-co: 252 instances, DC-st: 268 instances, DS-pr: 217 instances and
DS-st: 259 instances). Then, for each of these problems and AFs, we have executed the
six different GNN models. When running a GCN or a GAT, the output layer of the neural
network does not only give an estimation of the acceptability for one specific argument,
but for all the arguments in the AF, which means we can compare the precision of these
approaches for all the arguments. A possible issue here, if we chose to directly present
global results (for instance, providing the accuracy as n/m with n the number of correctly
predicted arguments, and m the total number of arguments over the full test set), would
be related to the variability in the sizes of the AFs. For instance, if a neural network is
particularly efficient for a given type of AFs which are generally large, it could “hide”
the fact that the network does not perform very well on another type of AFs which are
typically small. So we first compute the accuracy on a given instance passed to the GNN,
where all its arguments are taken into account (θF = n/m with n the number of correctly
predicted arguments in F , and m the number of arguments in F ). From this accuracy
of the predicted acceptability on one given instance, we compute the average accuracy
across all AFs to get the global accuracy (∑F θF /N with N the number of AFs).

GNN DC-co DC-st DS-pr DS-st

AFGCNv2 53 (48;76) 75 (57;76) 91 (20;99) 64 (17;98)
AFGCN-P128 70.9 (38;95) 83 (65;89) 96 (52;99) 71 (47;99)
AFGCN-P11 67 (28;96) 73 (42;90) 92 (26;97) 69 (31;99)

AFGCN-P128−do 76 (52;89) 82 (61;89) 97 (63;99) 72 (51;99)
AFGCN-P11−do 74 (46;93) 83.0 (62;88) 96 (56;99) 71 (47;98)

AFGAT 88 (78;90) 87 (77;92) 98 (80;90) 73 (59;99)

Table 1. Accuracy of the GNNs. In each cell, the first value corresponds to the global accuracy, and the number
between parenthesis correspond respectively to the accuracy restricted to the positive and negative instances.
Bold-faced values represent the highest accuracy for a problem (and a type of instances).

Our results are given in Table 1. The main insight that we obtain from this exper-
iment is the overall performance of AFGAT, which obtains the best highest accuracy in
most of cases. We also observe that (except for DC-co), our AFGCN-P128 performs better
than AFGCNv2, which confirms the interest of our new features in the learning process. On
the contrary, the version without randomized features (AFGCN-P11) is the least perform-
ing approach. The most plausible explanation is that dropout layers induce a major loss
of information on a small number of features. This also explains why both approaches
without dropout layers perform better than the other solvers based on GCNs.

3.2.2. Comparison with the ICCMA 2023 Participants

For the second experiment, we follow more closely the process of ICCMA 2023. In this
case, for each AF, we use only one query argument for each AF (the same that was
used in the competition). For this reason, there is no need to exclude AFs from the test
set, since the ground truth is provided by ICCMA 2023 organizers. This means that we
can easily compare the results of an approach based on neural networks (here, AFGAT)
with the results of the best performers during the competition, namely FARGO-LIMITED

and HARPER++. In this experiment, a timeout of 39 seconds was enforced (instead of
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60 seconds at ICCMA 2023, because the experiments we conducted on a CPU 54%
higher clock rate than ICCMA 2023), and the pre-processing based on the grounded
semantics is incorporated in all our GNNs based solver. The number of correctly solved
instances are given in Table 2. We observe that FARGO-LIMITED generally outperforms
the other approaches, except for the skeptical acceptability under the stable semantics
where our AFGAT obtains the best results. However, the results are generally tight, and let
us envision better results for future versions of AFGAT with other parameters or another
training dataset used in the learning process.

GNN DC-co DC-st DS-pr DS-st

AFGAT 265 268 297 205

HARPER++ 220 187 300 196
FARGO-LIMITED 300 307 303 199

Table 2. Number of correctly solved instances by the solvers on the ICCMA 2023 test set.

4. Related Work

Besides AFGCN, other approaches have been proposed for approximate reasoning in ab-
stract argumentation, including some based on machine learning. As mentioned earlier,
[13] proposed a first implementation of a GCN for solving the credulous acceptability
problem under the preferred semantics. This preliminary work showed the potential inter-
est of using GCNs for argumentation, although the approach did not exhibit high enough
performances for practical application (with accuracy scores remaining low for some
types of instances). Then, [22,23] proposed a so-called Argumentation Graph Neural
Network (AGNN) which approximates the acceptability of arguments under several se-
mantics with a high accuracy. The main difference between this approach and most other
approaches (which participate to ICCMA competitions) is the size of the instances (less
than 200 arguments). Studying whether the AGNN approach scales-up well with ICCMA
instances (w.r.t. runtime and accuracy), and how it compares with our approaches, is an
interesting task for future work. Deep learning has also been used for other purposes, like
extension enforcement [24,25] or approximating gradual semantics of Bipolar AFs [26].
Even if these contributions are out of the scope of the present paper, a deeper analysis of
these works could provide interesting insights for improving our algorithms. Finally, we
have already briefly mentioned another approach for approximate reasoning that partici-
pated to ICCMA 2023, namely ARIPOTER [5]. This solver combines the initial intuition
of HARPER++ (regarding the grounded extension) and the use of gradual semantics for
evaluation arguments acceptability. In ICCMA 2023, it performed generally better than
AFGCN but not as good as HARPER++ and FARGO-LIMITED. An experimental comparison
of our approaches with ARIPOTER is also an interesting future work.

5. Conclusion

We have shown how small changes of the GCN architecture from AFGCN can improve
its performance on ICCMA 2023 benchmarks. Also, we have proposed a new approach
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based on GATs, which performs even better than all the GCN variants that we have tested,
and is competitive with the best performers from ICCMA 2023. This opens interesting
research questions regarding the used of neural networks in abstract argumentation. A
first natural extension of this work consists of empirically evaluating other variants of
our GNN models (e.g. by testing other parameters for the behaviour of the dropout layers
in the GCNs or the graph attentional layers in the GATs). We plan to continue this line
of work, e.g. determining how our approaches generalize to other kinds of instances,
or how other approaches based on neural networks compare to ours w.r.t. accuracy or
computation time. We also wish to extend our approach by taking into account other
semantics (e.g. the ideal, semi-stable or stage semantics) or by considering other kinds
of abstract argumentation frameworks, like Incomplete AFs [27] for which reasoning
may be harder than standard AFs. Finally, it would be interesting to provide approximate
reasoning methods for other problems (e.g. computing some extension of an AF).
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