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Abstract. In order to enhance collaboration between humans and artificially intel-
ligent agents, it is crucial to equip the computational agents with capabilities com-
monly used by humans. One of these capabilities is called Theory of Mind (ToM)
reasoning, which is the human ability to reason about the mental contents of oth-
ers, such as their beliefs, desires, and goals. For an agent to efficiently benefit from
having a functioning computational ToM of its human partner in a collaboration, it
needs to be practical in computationally tracking their mental attitudes and it needs
to create approximate ToM models that can be effectively maintained. In this pa-
per, we propose a computational ToM mechanism based on abstracting beliefs and
knowledge into higher-level human concepts, referred to as abstractions. These ab-
stractions, similar to those guiding human interactions (e.g., trust), form the basis
of our modular agent architecture. We address an important challenge related to
maintaining abstractions effectively, namely abstraction consistency. We propose
different approaches to study this challenge in the context of a scenario inspired by
a medical domain and provide an experimental evaluation over agent simulations.

Keywords. Theory of Mind, Abstraction, Human-AI Collaboration, Human-
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1. Introduction

Hybrid Intelligence (HI) [1] is about integrating human and machine intelligence for
the purpose of expanding human intellect instead of replacing it. Effective HI requires
human-agent collaboration at its core, where a human and a computational agent partner,
working together, complement each other’s abilities to create fruitful partnerships.

One of the capabilities that help humans successfully maintain their social interac-
tions with other humans is called Theory of Mind (ToM) reasoning [2,3]. Put simply,
ToM refers to the human capacity to reason about the mental content of others such as
their beliefs, desires, values, and goals. Possessing a functioning ToM is critical to un-
derstand and predict others’ behaviour [4] and can provide further benefits to the posses-
sor when used recursively. Recently, many computational ToM models have been devel-
oped to understand its effectiveness in competitive, cooperative, and mixed motive set-
tings [5,6,7,8,9,10,11,12]. The results are mostly positive, suggesting that utilizing ToM
leads to enhanced performance in the studied tasks.

HHAI 2024: Hybrid Human AI Systems for the Social Good
F. Lorig et al. (Eds.)
© 2024 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA240188

114



Developing a practical computational ToM for human-agent interaction is valuable
but challenging. Many existing ToM-using agent models begin by representing indi-
vidual beliefs about others and constructing a ToM model from these. In contextually
rich settings that feature continuous interaction, the agent accumulates numerous beliefs
about others over time, some of which are applicable only in specific contexts and others
are useful in different situations. This makes developing a comprehensive ToM model
infeasible since computationally tracking all individual mental attitudes of all others is a
costly approach. To continue being effective in its interactions with human partners over
time, the agent should be efficient in keeping, maintaining, and utilizing these beliefs.

One candidate solution to this problem comes from human behaviour, called ab-
stracting. As a problem solving technique, abstracting enables humans to form a broad
understanding of the problem and its potential solutions, rather than focusing on spe-
cific details [13]. In complex social settings, this approach helps us approximate what we
should look for in the interaction to reach our goals and make our decisions accordingly.
Consider trust as an abstraction, which serves as a backbone in collaboration and mainly
captures agents’ confidence in each other’s abilities, reliability, and commitment [14]. A
human being, by using the abstracting technique, can efficiently utilize the relevant in-
formation about their partner to decide whether to trust the partner or not. Coupled with
ToM reasoning, the human being can further understand if the partner trusts them back
and correspondingly decide which actions they need to perform in their interactions.

This paper proposes a computational ToM mechanism based on abstracting beliefs
and knowledge into higher-level abstractions that serve as practical approximations. We
design a formal agent architecture based on epistemic logic [15] that provides a modu-
lar structure for storage and maintenance of individual beliefs, knowledge, and abstrac-
tions. For this agent to work with humans collaboratively, we need to address a challenge
regarding abstraction consistency: Since an agent’s beliefs and knowledge change over
time, it is necessary to devise methods to revise abstractions from time to time in an effi-
cient manner. We propose different mechanisms to study this challenge in the context of
a scenario inspired from a medical domain and provide evaluation over simulations.

The rest of this paper is organized as follows. Section 2 sets up our motivating
human-agent collaboration example. Section 3 describes how we formalize abstractions
and computational ToM reasoning with epistemic logic for computational agents. Sec-
tion 4 illustrates the use of the formal agent design, addresses our solutions to the chal-
lenge given above, and evaluates our solutions over agent simulations. Section 5 dis-
cusses our work in relation to related work and provides pointers for future directions.

2. Motivating Example

We consider a motivating example from the medical domain, featuring a collaboration
between a computational agent doctor X and a human doctor Y for diagnosing a patient
Z (inspired by the work of Erdogan et al. [16]). In this scenario, the computational agent
doctor X is designed to complement the capabilities of the human doctor Y to improve the
efficiency of the diagnostic process. They can distribute the tasks based on their respec-
tive strengths throughout the diagnostic procedure [17]. For instance, Y can handle tasks
that require human traits such as conducting patient interviews and performing physical
examinations, while X can focus on tasks that are computationally more viable [18,19]
such as diagnostic testing (e.g., medical imaging [20]). In this setup, which can be seen
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as a collective decision-making process, both doctors can share their results with each
other and discuss the diagnosis together.

We are particularly interested in situations where there is a conflict between de-
cisions of X and Y and social skills are being used to resolve such conflicts through
different techniques [21,22]. We particularly focus on trust. By aggregating beliefs and
knowledge that are contextually relevant, X can determine whether it should trust Y or
not. What makes it more interesting is that X can also reason about how Y abstracts her
knowledge and beliefs to decide whether to trust X or not (i.e., how Y does her own
approximation for trust) with the help of its computational ToM of Y . These abstractions
can help X in choosing the best response to go with when a dispute occurs.

In this setting, X needs to explicitly have the contextually relevant beliefs and knowl-
edge that are necessary to create and maintain its trust-related abstractions. These knowl-
edge and beliefs can be generated and revised internally (e.g., by different processes of
the agent) or acquired from external sources. X also needs a mechanism to do the re-
quired approximations properly. In our scenario, we assume that for X to trust Y , it needs
to know that Y is a doctor, and believe that Y communicates well with X , and believe
that Y is an expert in her field. Moreover, as part of ToM reasoning, X should also be
able to capture Y ’s understanding of trust as that can be different than itself. We assume
that X’s ToM model for Y depicts that for Y to trust X , she needs to believe that X has
good diagnostic capabilities and good communication skills.

3. Formal Design

3.1. Abstraction Elements

We define agent as an entity that has beliefs and knowledge about other agents, main-
tains its beliefs and knowledge over time, and uses them when interacting with other
agents. Our formalization is based on epistemic logic [15] where propositions can be
created from propositional atoms, together with negation and conjunction operators and
knowledge and belief modalities per agent.

Knowledge and Beliefs: To formally represent knowledge and beliefs of a set of agents
X , we use the following language L X

KB given by the Backus-Naur form:

ϕ := p | ¬ϕ | ϕ ∧ϕ | KX ϕ | LX ϕ

Here, p are propositional atoms and X ∈ X . Given p1 = “Y is a doctor”, KX p1 and
LX p1 can be read as “the agent X knows that Y is a doctor” and “the agent X believes that
Y is a doctor”, respectively. Notice that LY KX p1, which states that “the agent Y believes
that the agent X knows that Y is a doctor”, is a member of L X

KB . Formulas with nested
epistemic operators are useful in expressing agents’ higher-order knowledge and beliefs.

Abstractions: An abstract concept A is a human-inspired, abstract decision-making
heuristic which can guide agents in their interactions. A denotes the set of abstract con-
cepts in our framework. Essentially, these abstract concepts are meaningful when de-
fined in a relational manner. Thus, we define an abstraction as a proposition structured
as A(X ,Y ), where A ∈ A and X ,Y ∈ X .

Our formalization allows agents to hold (higher-order) knowledge and beliefs about
abstractions in a nested manner. For example, given p2 = Trust(X ,Y ), KY p2 and LX LY p2
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can be read as “the agent Y knows that X trusts Y ” and “the agent X believes that the
agent Y believes that X trusts Y ”, respectively. We refer to such (higher-order) knowledge
and beliefs (about abstractions) simply as abstractions.

Abstractions can come about in different ways. For example, there is a vast litera-
ture on how one agent can learn if it should trust another agent using machine learning
techniques [23,24]. The use of machine learning techniques necessitates to have a large
number of interactions before a decision can be obtained. However, in real life, usually
one needs to decide to trust another agent without the opportunity to interact with her
too many times. Social cues and organizational constructs help in determining a quick
decision. For example, you might trust someone because they are a doctor in a reputable
hospital, even though you had no previous interactions with her. At the same time, it is
important to be able to identify the reasons that led to trust [25], which is difficult to ex-
plain with machine learning techniques. Since our focus is on enabling agents to create
abstractions quickly and reason on them effectively, we formalize abstraction through
predefined rules, rather than data-driven techniques.

Abstraction Rules: An abstraction rule is a derivation rule in the form of ϕ → φ such
that φ is an abstraction. For instance, p1 → p2 (i.e., “Y is a doctor” implies that “X trusts
Y ”) and KX p1 → LX KY p2 (i.e., “X knows that Y is a doctor” implies that “X believes that
Y knows that X trusts Y ”) are both regarded as abstraction rules. ϕ could refer to various
roles as described above as well as external information (e.g., my friend trusts Y ).

Epistemic logic is useful for formally exploiting the implications of various epis-
temic principles such as KX p → p (i.e., what is known is true) and KX p → KX KX p (i.e.,
what is known is known to be known). We use the following prominent epistemological
principles PJ , PK and PL in tandem with abstraction rules to derive abstractions:

PJ : KX ϕ → LX ϕ (i.e., knowledge implies belief)
PK : KX (ϕ → φ)→ (KX ϕ → KX φ) (i.e., knowledge is closed under implication)
PL: LX (ϕ → φ)→ (LX ϕ → LX φ) (i.e., belief is closed under implication)

For example, say we have the knowledge KX (p1 → p2) (i.e., X knows that “Y is a
doctor implies that X trusts Y ”) and KX p1 (i.e., X knows that Y is a doctor). By using PK
and modus ponens, we can derive that KX p1 → KX p2 and hence, KX p2.

3.2. Agent Architecture

Our proposed agent architecture consists of three modules. The knowledge and belief

module keeps the agent’s knowledge and beliefs. At certain times, the agent derives
abstractions from these, which are stored in the abstraction module. The deliberation

module uses the abstractions to make decisions on how to interact with other agents.

Knowledge and Belief Module: For an agent X , XKL =(M,N) represents X’s knowledge
and belief module such that:

• M is the knowledge set of X such that every member of the set is either of the form
KX p (first-order knowledge), KX KY p, or KX LY p (second-order knowledge) where
p is a proposition and Y ∈ X , and

• N is the belief set of X such that every member of the set is either of the form LX p
(first-order belief), LX KY p, or LX LY p (second-order belief) where p is a proposi-
tion and Y ∈ X .
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Whenever the agent interacts with others, the information that reaches the agent is
stored in this module. M is a dynamic set such that new knowledge can be added to it. As
generally understood in the literature, we assume that knowledge is always true. Hence,
new knowledge would not conflict with existing knowledge, making M conflict-free by
definition. On the other hand, N contains beliefs, which may or may not be true. Thus, a
new belief can easily conflict with an existing one. For simplicity, we ensure that a newly
created belief overrides the older conflicting belief, making the set conflict-free.

Abstraction Module: For an agent X , XAbs = (O,P,Q) represents X’s abstraction mod-
ule such that:

• O is X’s abstract concepts where O ⊆ A ,
• P is X’s abstraction rules such that every member of the set is of the form KX (ϕ →

φ) or LX (ϕ → φ) where ϕ → φ is an abstraction rule, and
• Q is X’s (current) abstractions.

We assume that O is a static set that contains all possible abstract concepts the agent
can have over time. Note that this set might be large but that does not mean that the agent
will have abstraction rules in P or existing instances of abstractions in Q related to them.
Each agent has a set of abstraction rules in P, which can be different for each agent.
While we do not necessarily focus on the rules themselves, it is possible that this set is
dynamic such that new rules are added as the agent sees fit or some rules are removed
if not seen fit. Q holds the abstractions which the agent derives by using PJ , PK , PL, and
modus ponens on its beliefs and knowledge. Similar to N, it is conflict-free: newer values
of abstractions override the older values.

Deliberation Module: For an agent X , XDel = (R,S,T ) represents X’s deliberation mod-
ule such that:

• R is the set of actions that X can do when interacting with other agents,
• S is action deliberation rules of X such that every member of the set is of the form

φ action−−−→ r where φ is an abstraction or a conjunction of abstractions and r ∈ R, and
• T is X’s (current) action where T ∈ R.

We assume R is a static set, such that possible actions cannot change during execu-
tion. S defines how the agent will deliberate with others based on its abstractions. For this
paper, we assume these are given for each agent but essentially these rules can evolve
over time based on interactions with others. For simplicity, we assume deliberation rules
clearly identify which action will be taken in a given situation. T keeps the current action.

We represent X as X = 〈XKL,XAbs,XDel〉 = 〈(M,N),(O,P,Q),(R,S,T )〉. Although
separated conceptually, the modules are connected to each other functionally. For exam-
ple, for the agent to maintain its abstractions in P, it needs to check the content of XKL.
Also, for the agent to decide on its next action, it uses the action deliberation rules in S in
combination with P. The next section illustrates this flow within our motivating example.

4. Abstraction Consistency

To illustrate use of abstractions in human-agent collaboration, we formalize the con-
flict resolution scenario given in Section 2 in which X needs to decide on the ac-
tion to take next depending on the set of abstractions that X has about Y . For the
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sake of simplicity, we limit the number of possible abstractions that X can use to two,
namely LX (Trust(X ,Y )) and LX (Trust(Y,X)) (i.e., X’s trust towards Y and Y ’s trust to-
wards X , respectively) and the number of possible actions to four, namely Converse(Y ),
Agree(Y ), Persuade(Y ), and Consult(Y ). Table 1 describes the content of all modules
of X = 〈(M,N),(O,P,Q),(R,S,T )〉 and shows how X can use them.

Table 1. Design in use: X decides on its next action according to its abstractions.

M KX (Doctor(Y ))
N LX (Expert(Y ))

LX (GoodCommunication(Y ))
LX LY (GoodCommunication(X))

LX LY (GoodCapabilities(X))

O {Trust}
P LX (Doctor(Y )∧Expert(Y )∧GoodCommunication(Y )→ Trust(X ,Y ))

LX (LY (GoodCommunication(X))∧LY (GoodCapabilities(X))→ Trust(Y,X))

Q LX (Trust(X ,Y ))
LX (Trust(Y,X))

R {Converse, Agree, Persuade, Consult}
S LX (Trust(X ,Y ))∧LX (Trust(Y,X))

Action−−−→ Converse(Y )

LX (Trust(X ,Y ))∧¬LX (Trust(Y,X))
Action−−−→ Agree(Y )

¬LX (Trust(X ,Y ))∧LX (Trust(Y,X))
Action−−−→ Persuade(Y )

¬LX (Trust(X ,Y ))∧¬LX (Trust(Y,X))
Action−−−→ Consult(Y )

T Converse(Y)

The goal of X is to interact with Y according to the abstractions that it has about Y .
To do that, it first derives the abstractions in Q by using M, N, P, and epistemological
principles PJ , PK , and PL. Then, by using Q and S, it decides on the action to take next.
Table 1 shows that both LX (Trust(X ,Y )) and LX (Trust(Y,X)) hold at the beginning; so,
X chooses to resolve the conflict by conversing with Y to arrive at a joint resolution.

X may need to resolve many other conflicts during its partnership with Y . Thus,
X needs to choose the correct actions through its abstractions that are consistent with
its current knowledge and beliefs. To do that, X needs to update Q in accordance with
the changes in M and N. Furthermore, the update mechanism should be as efficient as
possible for X to be effective in its action-decision process: X should update Q as much as
needed, but also, only when necessary. Since M and N can also change with knowledge
and beliefs that do not affect the derivation of abstractions, X should be careful not
to do any unnecessary update-checks for its abstractions. Thus, X requires a concrete
procedure for deciding when to revise its abstractions and the accompanying actions.

4.1. Update Methods

In order to realize abstraction consistency, an agent needs to check and update its ab-
stractions.There are a number of factors that are important to consider, such as frequency
(of updates), change (in the knowledge and beliefs), and engagement (with others). Con-
sidering these factors, we formulate the following update strategies (in bold):
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• Frequent updates its abstractions after every change in N, without considering
engagement.

• Infrequent updates its abstractions after every 10 rounds, without considering if
there are changes or engagement.

• Revision updates its abstractions after every belief revision in N, but does not
consider belief addition or engagement.

• Deliberation updates its abstractions only before deliberation without considering
changes or frequency.

• Change updates its abstractions only before deliberation and only if there is a
change in N, without considering frequency.

• Selective-Change updates its abstractions only before deliberation and only if
there is an abstraction-related change in N.

Hypothesis 1 An agent X = 〈XKL,XAbs,XDel〉 with Selective-Change Strategy is the
most effective (among all six strategies) in obtaining abstraction consistency.

4.2. Evaluation

We evaluate the performance of these strategies over simulations. We have designed a
computational agent to simulate the behaviour of X = 〈(M,N),(O,P,Q),(R,S,T )〉 for
the human-agent collaboration scenario. X is capable of adding beliefs to and revising
beliefs in N, updating its abstractions in Q, and doing deliberations. We do not simulate
human doctor Y ’s behaviour explicitly in the simulations.

A simulation lasts 10000 rounds. There are three types of events that can occur with
the same probability (1/3) during the simulation: i) an ordinary (i.e., non-abstraction-
related) belief is created and X adds it to N (or revises it in N); ii) an abstraction-related
(e.g., LX (Expert(Y ))) belief is created and X adds it to N (or revises it in N); or iii) a
deliberation moment comes (i.e., conflict occurs) and X decides on the action to take.

The experiment provides two basic metrics to measure agent performance. One is
the number of abstraction updates an agent does throughout the simulation. The second
one is the number of consistent abstractions that it has at the time of deliberations, where
an abstraction is considered consistent at the time of deliberation if current knowledge
and belief base of the agent would also infer the same abstraction. For example, suppose
X chooses Converse(Y ) because of having LX (Trust(X ,Y )) and LX (Trust(Y,X)) in Q but
in fact LX (Expert(Y )) is recently removed from N. This implies LX (Trust(X ,Y )) should
not be in Q as well, implying a mistake; hence, makes it an inconsistent abstraction. We
measure abstraction-effectiveness by combining these two metrics, which is equal to the
number of consistent abstractions used in deliberations per abstraction update.

We have run the simulation 10 times with 10 different seeds for randomization pur-
poses and averaged the results. Table 2 shows the number of times abstractions are up-
dated as well as the number of times correct abstractions are used in deliberations (for
each agent type). As expected, Frequent agent performs the most updates as it does so
with every change in its belief set and thus has zero errors (e.g., its abstractions are al-
ways up-to-date). Infrequent agent, on the other hand, performs the fewest updates but
because of this it had the most errors in its abstractions. Revision agent is less efficient
than Infrequent agent, yet it also has a lower usage of inconsistent abstractions. Delib-

eration agent and Change agent do not create inconsistent abstractions but they are also
not as economical as Infrequent agent in their abstraction updates. Selective-Change,
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Table 2. Abstraction-effectiveness of 6 strategies over 10 simulations. Average number of deliberations: 3305

Agent #Abstraction #Consistent Abstraction-

Type Updates Abstractions Effectiveness

Frequent 3401.1 3305 0.97
Infrequent 1000 2584.7 2.58
Revision 3296.1 3302.1 1.00
Deliberation 3305 3305 1.00
Change 1668.2 3305 1.98
Selective-Change 1110.1 3305 2.98

on the other hand, excels in the task. It does not make mistakes when using abstractions
in deliberation moments and is nearly as effective as Infrequent agent in updating its
abstractions. Among all, Selective-Change agent illustrates the best use of abstractions
in deliberations, being the most abstraction-effective; this corroborates Hypothesis 1.

5. Discussion

There exist recent agent models that use various forms of computational ToM reasoning
for human-agent collaboration. Piazza and Behzadan [26] design a ToM-based technique
to differentiate agents based on cooperativeness where communication plays a crucial
role. Wu, Sequeria, and Pynadath [27] focus on understanding how humans interact in
collaborative teaming settings where they know little about others’ goals and intentions.
Bara et al. [28] introduce the concept of collaborative plan acquisition, where humans
and AI agents work together to learn and communicate to acquire a complete plan for
joint tasks. Their results highlight the importance of modeling a partner’s mental states
explicitly. Montes et al. [12] introduce an agent model that combines ToM reasoning
with abductive reasoning capabilities and demonstrate their computational ToM model’s
performance in the context of the Hanabi game [29]. Erdogan et al. [16] provide an
outline of a computational ToM framework based on abstracting individual beliefs into
higher-level concepts such as social roles, norms, and human values.

Our work provides a novel approach in ToM-based agent modeling with explicit use
and maintenance of abstractions, yet it is also constrained by several limitations. Firstly,
an abstraction-using agent should model that different people can build and maintain
their abstractions in different manners (e.g., their trust [30]), which our examples do not
feature. Thus, to be more flexible in collaborations, such an agent should be capable
of properly updating its abstractions when they are not working well (e.g., changing its
abstraction rules concerning others’ abstractions such as their trust in itself). Moreover,
we only include the concept of trust in our examples and evaluation so that we suffi-
ciently focus on the mechanics of the abstraction use and maintenance. Including other
abstractions, such as respect or affinity, can enable us to create more detailed models.
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