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Abstract. This study investigates the feasibility and efficacy of decoding lower
limb movement speed through the examination of differences between motor im-
agery and relaxation states. Electroencephalography (EEG) signals are utilized as
the input data source, and commonly used machine learning approaches are em-
ployed for classifying imagined lower limb movement speed. Healthy individu-
als without lower limb motor impairments participate in the experiment, and their
EEG signals are recorded using Emotive’s 32-channel gel electrode EEG cap EPOC
FLEX. Preprocessing and feature extraction techniques are applied to the collected
EEG data to develop a specialized classification model. Results indicate signifi-
cant differences in EEG signals between imagined lower limb movement speed and
relaxation states. Ten-fold cross-validation confirms the reliability and accuracy
of the classification model, achieving above-chance classification accuracies. The
findings provide valuable insights for the development of brain-computer interface
systems, rehabilitation therapies, and applications related to lower limb movement.
This study establishes a foundation for further exploration in decoding lower limb
movement speed.
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1. Introduction

Brain-Computer Interface (BCI) is a cutting-edge field of research that aims to establish
a direct communication pathway between the human brain and external devices or com-
puter systems. By interpreting neural signals recorded from the brain, BCI technology
enables individuals to control devices, communicate, or interact with their environment
using only their thoughts[1].

BCI systems typically involve the acquisition and analysis of electroencephalog-
raphy (EEG) signals, which capture the electrical activity of the brain. EEG is a non-
invasive and cost-effective neuroimaging technique that offers high temporal resolution
and multi-channel recording capabilities. These advantages make EEG a valuable tool
for studying brain function and cognition. Its non-invasive nature ensures participant
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safety and facilitates research with diverse populations. The high temporal resolution
of EEG allows for the precise measurement of rapid neural events, providing insights
into the timing and dynamics of cognitive processes. Additionally, EEG’s multi-channel
recording capability enables the examination of neural activity across different brain re-
gions, shedding light on functional connectivity and brain networks. Moreover, EEG’s
suitability for real-world settings allows for the study of brain responses in ecologically
valid situations. Overall, EEG’s unique advantages make it a widely used method for
investigating brain activity and advancing our understanding of various neurological and
psychiatric conditions[2]. EEG signals are processed using advanced signal processing
techniques, such as feature extraction and classification algorithms, to decode the user’s
intentions or cognitive states[3–7].

Motor imagery, the mental simulation of movement without physical execution[8,
9], is a fundamental aspect of many brain-computer interface (BCI) systems. How-
ever, achieving accurate classification of lower limb motor imagery poses significant
challenges[10]. One of the main difficulties in decoding lower limb motor imagery
lies in the complex neural representations involved in the generation of imagined
movements[11]. The neural patterns associated with lower limb motor imagery are rela-
tively weaker and more distributed compared to those observed in upper limb motor im-
agery tasks. This makes the extraction of informative features from electroencephalog-
raphy (EEG) signals more challenging.

Despite this challenge, advancements in signal processing techniques, machine
learning algorithms, and feature extraction methods have shown promising results in de-
coding lower limb motor imagery[12–14]. Efforts are being made to develop more robust
and accurate BCI systems for lower limb motor control and rehabilitation applications.
In this study, we employed a commonly used machine learning approach for detecting
lower limb movement speed imagery[15], utilizing a binary classification model. Our aim
was to provide insights into the generation of imagined lower limb movement speeds.
Through our analysis, we observed distinct differences in the EEG signals between the
resting state and the imagined lower limb movement conditions.

2. Methods

2.1. Data collection

Two right-handed participants, aged 25, without any lower limb motor dysfunction, were
recruited for this experiment. EEG data were recorded using Emotive’s 32-channel gel
electrode EEG cap EPOC FLEX, with an EEG sampling rate of 128 Hz. Based on the
high incidence area of motor imagery, a specific set of 15 channels was selected for
collecting the EEG data. These channels included FC3, FC1, FCz, FC2, FC4, C3, C1,
Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4. In addition to these 15 channels, two ref-
erence electrodes were placed on the earlobes. The electrode placement is illustrated in
Figure 1. This specific channel selection aimed to capture neural activity predominantly
associated with lower limb motor imagery, allowing us to focus on the relevant brain
regions involved in our investigation. By targeting these specific channels, we aimed to
enhance the sensitivity and specificity of our EEG data analysis, enabling a more precise
examination of the neural correlates related to lower limb motor imagery.
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Figure 1. Location of electrodes according to
the 10-20 system.

Figure 2. Participant in the experiment.

The use of the Emotive EEG cap and the selected channel configuration ensured op-
timal data acquisition, providing us with high-quality EEG signals for subsequent analy-
sis. Figure 2 demonstrates a participant sitting with EEG caps on his head and following
a video guide to imagine lower limb movements. After completing the experiment, for
each participant, we collected a total of 120 trials, each lasting 2 seconds. These trials
were labelled as relaxation or motor imagery.

2.2. Signal preprocessing

MNE is a comprehensive open-source package widely used for processing EEG signals
within the Python environment. It offers a broad range of functions and tools for vari-
ous aspects of EEG data analysis, including preprocessing, visualization, time-frequency
analysis, source localization, and other processing and analysis techniques for EEG and
MRI data. Consequently, in this study, we utilized the MNE package to analyze the ac-
quired EEG data in a Python 3.9 environment.

One crucial component of EEG analysis is Independent Component Analysis (ICA),
a statistical signal processing technique that aims to separate independent source signals
from mixed observations. ICA assumes linearity and independence in the mixing pro-
cess, and by applying linear transformations, it allows for the decomposition of signals
into independent components.

In the context of EEG analysis, ICA plays a crucial role in removing artifacts such as
eye blinks, muscle activity, and other unwanted sources, thereby revealing the underly-
ing brain signals of interest. Hence, we employed the ICA function provided by MNE to
perform decomposition of the EEG signals, effectively eliminating any non-EEG com-
ponents that could potentially confound our analysis.

The use of MNE’s ICA functionality in our study enabled us to enhance the quality
and reliability of the EEG data, facilitating a more accurate investigation of the neural
activity associated with our research objectives. By eliminating artifacts and isolating
the relevant brain signals, we were able to gain valuable insights into the underlying
cognitive processes and neural mechanisms that contribute to our research inquiry.

2.3. Model decoding

EEGNet is a deep learning-based neural network specifically designed for feature extrac-
tion from EEG signals. Figure 3 shows the overview structure of EEGNet. It takes multi-
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channel EEG signals as input, that each channel at each time point forms the input data
dimension[16]. The first step of EEGNet is a one-dimensional convolutional layer. This
layer performs a sliding window convolution operation on the input signal using a set of
convolution kernels. It helps to extract local features and temporal patterns of the signal.
And second step of EEGNet is a depth-separable convolutional layer. This layer applies
depth convolution and point-by-point convolution operations on each channel separately
to further capture correlation and timing features between channels.

Figure 3. Overview of EEGNet.

After the convolutional layer, EEGNet uses mean pooling operations to reduce the
dimensionality and extract higher-level features. Mean pooling reduces the dimensional-
ity of each channel’s time series data to a fixed-length vector. However, EEGNet utilizes
a combination of multiple depth-separable convolutional layers and mean pooling. This
layered structure enables the network to progressively extract increasingly abstract and
high-level features from the input EEG signals. At the end of the network, EEGNet uses
global mean pooling to aggregate the feature vectors of all channels into a fixed-length
feature representation.

With such a layer structure and feature extraction process, EEGNet is able to extract
features with higher levels of abstraction from raw EEG signals. Therefore, we used
EEGNet for the binary classification tasks of relaxation and motor imagery. Ten-fold
cross-validation with randomly divided training and test sets is used here, in order to
ensure that the classification results of the models we use are plausible[17].

3. Result

The results obtained from our experiments provide valuable insights into the effective-
ness and performance of our proposed approach. In this section, we present a compre-
hensive analysis and discussion of the key findings, comparing them to existing methods
and addressing the research questions posed earlier.

After experiencing ICA, we removed all non-EEG components. As shown in Figure
4, it shows the brain components obtained from our post-ICA analysis, in which there is
a significant power increase at the Cz electrode location.
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Figure 4. Brain component.

The increase in power indicates that stimulus events were generated in this corre-
sponding brain region, i.e., the participant invoked the relevant region for the motor im-
agery task. The power increase in the Cz region is also consistent with the correspond-
ing region in Hardwick’s work[18] for the lower limb motor imagery, so the participant
were actively involved in the imagery task and stimulation was well generated in the
corresponding brain region when they performed the lower limb motor imagery task.

(a) Relaxation Signal

(b) MI Signal

Figure 5. A is Relaxation EEG signal on 15 channels, b is MI EEG signal on 15 channels. The top left
corner shows the topology of each channel according to colour. In subfigures a,b are shown the average EEG
time-power plots for relaxed and MI states.
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For the clean data obtained, the EEG data of relaxation and MI were averaged sep-
arately. From the Figure 5, we can observe the signal waveforms in the last 1 s on dif-
ferent channels, and intuitively there is a difference between relaxation and lower limb
movement MI.

There is a ten-fold cross-validation to ensure the reliability of the classification re-
sults of the model. After ten-fold cross-validation, we obtained ten validation results and
the mean value of the validation results was 1.00, p<0.05, the result confusion matrix
was shown in Figure 6. This result suggests that the classification results obtained by our
model are reliable. Therefore, we verified that there is a difference between the lower
limb movement motor imagery signals and relaxation signals. Furthermore, our model
can accurately detect the generation of MI.

Figure 6. Confusion matrix for validation results.

In summary, we demonstrate that there is a difference between lower limb move-
ment speed motor imagery and relaxation. This finding suggests that the brain can also
generate unique signals for lower limb movement speed motor imagery control. This
finding fills a gap in the lower limb motor imagery region and enriches the scope of lower
limb functional design in the field of brain-computer interfaces.

4. Conclusion

The results of our study contribute to the growing body of knowledge regarding the neu-
ral correlates of lower limb motor imagery. By utilizing machine learning techniques, we
were able to discern patterns in the EEG signals associated with the mental simulation of
lower limb movement speeds. These findings highlight the potential for developing more
accurate and reliable methods for decoding lower limb motor imagery in brain-computer
interface (BCI) systems. Furthermore, the observed differences between the resting state
and lower limb movement imagery provide valuable insights into the underlying neural
mechanisms involved in motor imagery processes. These findings can inform the devel-
opment of targeted interventions for motor rehabilitation, assistive devices, and neuro-
feedback training to improve motor function and control.

Overall, our study contributes to the understanding of lower limb motor imagery
and its potential applications in BCI systems. Further research in this area can build
upon these findings to advance the field and enhance the usability and efficacy of BCI
technologies for lower limb motor control and rehabilitation.
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