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Abstract. Small and medium-sized enterprises (SMEs) have developed rapidly in 
China, bringing enormous opportunities and challenges. In this study, we aim to 
investigate methods that can accurately assess credit risks of SMEs, using machine 
learning algorithms, focus on explainability, customer default forecasting, and 
delinquency. This study focused on the enterprises’ performance data and used the 
authorized invoice data of 425 SMEs in Chongqing. Machine learning algorithms, 
such as logistic regression, random forest, support vector machine, and soft voting 
ensemble learning methods, were used to establish a prediction classifier that was 
combined with the SHAP value to explain the feature contribution of a specific 
output. Therefore, Our study presented a strong correlation between the derived 
features and future delinquencies, which will enable in forecasting enterprises’ 
business performance. 

Keywords. Credit risk model, SMEs lending, explainability, data mining, machine 
learning. 

1. Introduction 

Credit is at the heart of not only banking but also the business as a whole. The history of 
several financial crises has made people realize that systematic risk is not independent; 
it can be transferred from other individual risks, such as credit, market, and liquidity risks. 
Thus, credit risk assessment is a critical issue in financial risk management. 

Small and medium-sized enterprises (SMEs) have developed rapidly in the People’s 
Republic of China (PRC) in recent years, accounting for over half of the gross domestic 
product (GDP) since 2019. However, it is almost impossible for most SMEs to apply for 
operational loans without sufficient assets, mortgages, and related guarantees. Credit 
loans have gradually become a vital channel for meeting an SMEs’ financial demands. 
In addition, the available online information is ineffective in evaluating credit 
performance because most SMEs have insufficient historical records, and consequently 
posing difficulties in loan approval. Hence, the majority of financial institutions conduct 
due diligence for loan approving, resulting in human and time costs. In the traditional 
method, the final credit line is based on the risk appetite and historical experience of the 
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investigator. Although the artificial method considerably avoids bad debt risks, financial 
institutions are limited in time and space. Furthermore, it affects high-quality SME 
development. 

To solve the problem of information asymmetry, Yin et al. combined financial and 
judicial information to evaluate the potential credit risk [1]. With the rapid development 
and improvement of computing power and artificial intelligence technology, machine 
learning (ML) algorithms, such as support vector machine (SVM) [2], decision trees [3], 
and XGBoost [4], have become popular in modeling SMEs’ credit risk, especially in 
detecting default probability [5]. Liu et al. applied KNN and SVM models to predict the 
default probability of online loan borrowers [6]. Chen et al. focused on resampling and 
cost-sensitive mechanisms to process imbalanced datasets by avoiding information 
asymmetry in the predicted model, and improving model performance [7]. Individual 
and ensemble ML methods are used in predict SME credit risk in supply chain finance 
[8]. However, owing to lack of transparency in traditional ML algorithms, measuring 
credit risk in an interpretable manner has become a challenge. Previous studies applied 
ML techniques and rule-based methods for better explanation of model results [9]. 
Besides, researches focused on explainable ML methods developed in the last three years 
to help stakeholders comprehend the main drivers of model-driven decisions [10-11]. 
The Local Interpretable Model-agnostic Explanation (LIME) identifies sparse 
explanations and fits a simple interpretable surrogate model that is locally consistent with 
the black box model [12-13]. Model-independent methods, such as Shapley’s Additive 
Explanations (SHAP value) from cooperative game theory, attribute the marginal effects 
of individual variables to model predictions and reveal the dispersion, nonlinearity, and 
structural breaks between each feature and the target variable [14-15]. 

However, research on SMEs’ credit risk is still under development. Owing to 
privacy considerations, existing literature primarily focused on conventional data to train 
models, and with limited explanation of the model results. In this work, we focus on 
enterprise performance data and use the authorized invoice data of 425 SMEs in 
Chongqing as the data source, and form the final invoice data set after a series of 
operations such as data masking, label selection and data cleaning. For a better feature 
performance, Decision Tree (DT) is used for segmentation, and the predictive ability of 
each feature on the target variable is measured by Weight of Evidence (WOE) and 
Information value (IV). Finally, the features are classified by machine learning 
algorithms such as logistic regression, random forest, support vector machine, and soft-
voting integrated learning methods to achieve corporate credit risk prediction. For the 
performance comparison, we used a confusion matrix, KS value, and AUC value to 
choose the model with higher performance. For interpretability comparison, we applied 
the explainable ML method SHAP value to estimate the marginal contribution of each 
feature, either positively or negatively, to the target variable. Furthermore, to improve 
the transparency, auditability, and explainability of the forecast results, we determined 
the contribution of important features. Figure 1 illustrates the entire operational 
procedure of this research, from data preprocessing and feature selection to model 
training, ensembling, evaluation, and explanation. 
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2. Materials and methods 

2.1. Date source 

We randomly sampled and collected data from 425 enterprises in Chongqing, China. The 
authorized private invoice data contains 728,822 annually input valued added tax (VAT) 
data and 561,428 output VAT data from 2018 to 2020. Credit performance is defined as 
the label data that distinguishes an enterprise’s creditworthiness. To protect the security 
of these SMEs’ private information, all data are processed using Data Masking 
technology. 

 

 
Figure 1. Operational framework. 

Table 1 intuitively explains the business performance of SMEs based on annual sales 
and procurement data from 2016 to 2020. The performance data for 2020 are deficient 
due to the difficulties in data collection. 

Table 1. Distribution of purchasing and selling for 425 companies from 2016-2020. 

Data Source 
Observations 

2016 2017 2018 2019 2020 

Sales Data 106K 3,054K 3,543K 3,438K 219K 

Procurement Data 54K 1,995K 4,798K 5,575K 300K 

The data were divided into training and test sets in the proportion of 7:3. Thus, 
invoice data of 327 enterprises were used for model training, while the remaining 98 
enterprises were used for model evaluation. 

2.2. Data preprocessing 

2.2.1. Data cleansing 

Several steps were taken to ensure data accuracy and integrity. Irrelevant content and 
superfluous information were removed, such as company names and addresses. 
Furthermore, all missing data were replaced with 0, while rows with more than a 50% 
default rate were deleted. 
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2.2.2. Feature engineering 

The collected invoice data illustrate enterprises’ performance during different periods. 
This data reflects invoice quantity, amount, and ratio, which helps in determination of 
reliable statistical and empirical relationship between certain features and the target 
variable. 

From 2018 to 2020, 238 alternative features, including volatility-related features, 
development rate, concentration rate were acquired through the feature engineering 
process. Owing to the problem of data deficiency, 18 procurement-related indicators and 
17 sales-related indicators from 2019 were obtained through the feature engineering 
process. 

2.2.3. Feature selection 

To include more characteristic values of invoice data and compensate for sample 
deficiency as well as calculation procedure, all discrete and continuous fields after 
feature engineering are binned through classification and regression tree methods 
generated by the Gini index. 

Subsequent to the binning process, and based on the binning results, the Weight of 
Evidence (WOE) value and IV (Information Value) are calculated to measure the 
predictive power of each feature to the target variable [16] for further feature selection 
[17-18]. The mapping of variables from the original value to binned value can be 
completed by calculating WOE value of each group after binning process, with the 
mapping formula shown in Equation 1: 

𝑊𝑂𝐸௜ = ln ቌ ೤೔భ೤భ೤೔బ೤బ ቍ = ln ൬௬೔భ௬೔బ൰ − ln ቀ௬భ௬బቁ (1) 

where 𝑦௜ଵ and 𝑦௜଴ represent the number of default and nondefault enterprises in the 
ith bin, while 𝑦ଵ and 𝑦଴ represent the number of default and non-default companies in 
the total sample, respectively. 

Accordingly, the IV value is obtained based on the WOE calculation, which is then 
used to measure the information value of a certain variable, that is, its forecasting ability. 
Assuming that the sample set is divided into N groups, the formula for calculating the IV 
value is given by Equation 2. 

𝐼𝑉 =  ∑ 𝑊𝑂𝐸௜ ∗ ቀ௬೔భ௬భ − ௬೔బ௬బቁே௜ୀଵ  (2) 

Besides, features with high correlation (Pearson correlation >0.7) and relatively low 
IV were deleted to avoid overfitting. Subsequent to the feature selection process, 27 
variables remained for further modeling. Figure 2 shows the strongly correlated features 
and Table 2 illustrates theses 27 features. 
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Figure 2. Correlation scatter plot of highly correlated features. 

Table 2. Indicator description. 

Order Variable Indicator 
1 all_in_fp_y Number of valid input invoices.
2 all_out_js Number of output counter-parties.
3 2019_in_avg_sd Average input tax rate in 2019.
4 all_out_fp_y Number of valid output invoices.
5 2019_out_jshj Amount of output invoices in 2019.

6 2019_in_jshj_zb_all The amount of input invoices in 2019 compared with total sales 
amount from 2018 to 2020.

7 2019_out_bdx_se Volatility of output invoices tax amount in 2019.
8 2019_out_se Tax amount of output invoices in 2019.
9 all_out_fp_w Number of invalid output invoices.
10 2019_in_bdx_se Volatility of input invoices tax amount in 2019.
11 2019_out_czl_bs Growth rate of output invoices in 2019.
12 2019_out_avg_sd Average output tax rate in 2019.
13 2019_out_bdx_js Volatility of counter-party numbers of output data in 2019. 

14 2019_out_se_zb_all The tax amount of sales data in 2019 compared with total input 
amount from 2018 to 2020.

15 2019_out_bdx_jshj Volatility of output invoices amount in 2019.
16 2019_in_czl_bs Growth rate of input invoices in 2019.

17 2019_out_top_n_jshjzb The output invoices amount of top 5 counter-parties compared with 
total output amount in 2019.

18 2019_in_jshj Amount of input invoices in 2019.

19 2019_out_jshj_zb_all The amount of output invoices in 2019 compared with total sales 
amount from 2018 to 2020.

20 2019_in_se_zb_all The tax amount of procurement data in 2019 compared with total 
input amount from 2018 to 2020.

21 2019_in_top_n_bszb The input invoices number of top 5 counter-parties compared with 
total output number in 2019.

22 2019_out_js Number of output counter-parties in 2019.
23 all_in_fp_w Number of invalid input invoices.
24 all_in_js Number of input counter-parties.
25 2019_out_bs Number of output invoices in 2019.
26 2019_in_js Number of input invoices in 2019.
27 2019_in_bdx_js Volatility of counter-party numbers of input data in 2019. 
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2.3. Machine learning (ML) algorithm 

Logistic regression, decision tree, and support vector machine are frequently used for 
classification. Logistic regression, as one of the most basic and widely used generalised 
linear regression models, can map the outcome of the classification problem y ∈ (−∞, 
∞)  to (0,1) using the Sigmoid function. SVM can map vectors to a high-dimensional 
space and build an optimal decision hyperplane in that space so that the samples between 
the two classes on either side of the closest plane distance is maximised, thus providing 
a good generalisation capability for the classification problem of whether or not to default. 
The DT algorithm is one of the most popular classification models in recent years, 
classifying invoice data by a series of visual rules to produce a final prediction. 

However, with the development of machine learning algorithms, a single prediction 
model can no longer meet the accuracy requirements of prediction effectively. As a result, 
integrated models have emerged, such as Random Forest, which is an integrated model 
composed of multiple decision tree models. Due to the randomness, it has a good 
tolerance to outliers and noise, and thus can effectively avoid the overfitting problem in 
the DT algorithm, but its underlying model is still a single model, which is not obvious 
for the improvement of accuracy. We hope that the integrated learning underlay is not a 
single ML algorithm, but an ML method that uses a series of algorithms for learning, 
while using certain rules to integrate all the learning results to obtain better prediction 
results [19]. Thus even if a weak classifier obtains an incorrect prediction, other weak 
classifiers can correct these errors [20].  

In this study, soft voting method is used for model integration, four common 
machine learning algorithms include logistic regression, decision tree, support vector 
machine, and random forest are used as the underlying model. The output weights of 
each individual classifier are combined with the prediction results to form the final 
integrated model prediction conclusions. 

2.4. Performance evaluation 

2.4.1. Traditional evaluation methods 

The accuracy, precision, recall, and F1 score calculated from the confusion matrix [21], 
the Kolmogorov–Smirnov(KS) value obtained from the KS curve [22], and the area 
under curve (AUC) value obtained from the receiver operating characteristic (ROC) 
curve were used to evaluate the predictive performance of the models [23]. 

Table 3. Confusion matrix. 

Confusion Matrix 
Predict 

0(-) 1(+) 

Actual 
0(-) True Negative(TN) False Positive(FP) 

1(+) False Negative(FN) True Positive(TP) 

The main parameters of the confusion matrix are listed in Table 3. Six derivative 
indicators are calculated from the confusion matrix. The precision considers the forecast 
sample that evaluates the proportion of all samples predicted to be positive (class 1) as 
actually positive (class 1), thus focusing more on the correct prediction of the positive 
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sample results. However, a test can cheat and maximize this by only returning a positive 
result. 

Recall considers the original sample and evaluates the proportion of samples that are 
predicted to be positive among all the samples that are actually positive (class 1). 
However, a test can cheat and maximize this by returning a positive result. 

Owing to the drawback and trade-off between precision and recall rate, Fβ-score, the 
weighted harmonic mean of the precision and recall, is employed to balance these two 
indicators. β represents the different emphasis on the recall and precision rates. As in the 
default prediction aspect, the recall rate and precision rate are as important as each other; 
therefore, β=1 is chosen in the F-score calculation. 

The data were divided into ten intervals to calculate KS and ROC values. The KS 
curve was obtained from the cumulative difference between the default and non-default 
percentages in each interval; the larger the KS value, the stronger the risk discrimination 
ability of the model. The AUC value is the area under the ROC curve, which was 
obtained with the FPR as the horizontal axis and TPR as the vertical axis, the better the 
discrimination ability.  

2.4.2. Explainable ML method 

Traditional ML algorithms provide accurate prediction performance but usually lack 
explanatory power, which makes reluctance of financial institutions to use ML 
algorithms. Explainability tools, such as the SHAP value, help to increase the 
transparency of models, revealing that the ML algorithm is superior in terms of both 
classification performance and  explainability. 

The Shapley value, which assumes that each variable in the model is a player in a 
game, explains the prediction result through the marginal contribution of each feature. 
The Shapley value is the average marginal contribution of the features in all possible 
coalitions, which is an agnostic model independent tool that can interpret how each 
feature affects the final prediction in a technologically neutral manner.  

Lundberg and Lee developed the Shapley Additive Explanations (SHAP) value, 
which aims to interpret the prediction by calculating the contribution of each feature to 
the target variable. Specifically, it calculates the Shapley value of each feature to measure 
its influence on the final output. SHAP specifies the interpretation of Equation 3. 𝑔(𝑧ᇱ) =  𝜙଴ + ∑ 𝜙௝𝑧௝ᇱெ௝ୀଵ  (3) 

The explanation model g(z′) of prediction f(x) is constructed by an additive feature 
attribution method, which decomposes the prediction into a linear function of the binary 
variables z ′ ∈ {0, 1} M, where z ′

j representing whether a feature exists in the decision-
making process, while z ′

j =1 for observed. M is the number of input variables, and ϕj is 
the characteristic attributed Shapley value for feature j. For feature j, the Shapley value 
is the weighted sum of a single Shapley value for all possible combinations of features, 
including different orders. 𝜙௝(𝑣𝑎𝑙) = ∑ |ௌ|!(௣ି|ௌ|ିଵ)!௉!ௌ⊆{௫భ,…,௫೛}\{௫ೕ} (𝑣𝑎𝑙൫𝑆⋃൛𝑥௝ൟ൯ − 𝑣𝑎𝑙(𝑆)) (4) 

Equation 4 illustrates the calculation process for the Shapley value of feature j, 
where S is the subset of features used in the prediction model, x is the vector of features 
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in the explainable sample, p is the number of features, and val(S) represents the model 
prediction with feature combination S. 

3. Results and discussions 

Experiment materials consist of computers with Inter(R) UHD Graphics 620 and Python 
(Version 3.9.13). The involved libraries includes pandas, numpy, sklearn, calendar, 
seaborn, matplotlib, random and shap. 

3.1. Model results 

The performance indicators after the model fitting and prediction are listed in Table 4. 
F1-score, KS value, and AUC value are considered in the model evaluation. The logistic 
regression algorithm shows the lowest discrimination power, whereas RF has the best 
performance amongst the four single classifiers. However, the ensemble model 
integrated from the soft voting method improved the model performance significantly. 

Table 4. Model results for classifiers. 

 P R F1 KS AUC 
RF 0.9545 0.9130 0.9333 0.916/0.2577 0.9847 
DT 0.9545 0.9130 0.9333 0.9445/0.2577 0.9730 
LR 0.6129 0.8261 0.7037 0.7421/0.2165 0.9104 

SVM 0.9474 0.7526 0.8571 0.859/0.2577 0.9630 
Ensemble 1.0 0.9565 0.9778 0.973/0.2577 1.0 

Historical credit data usually have many missing values owing to operational risk, 
and class-imbalanced problems caused by the few defaulted samples. Thereby making it 
difficult to effectively train the forecast model [24]. The soft voting ensemble method 
for heterogeneous classifiers considers different weights for each model, provides higher 
weights for models with better performance, and helps correct errors with each single 
classifier, and thus improving the discrimination ability of the ensemble learning model. 
The model results illustrate that higher the proportion of RF and DT, better the 
performance of ensemble models. 

3.2. Model explanation 

The trade-off between model complexity and model transparency, and the need to 
balance the high predictive accuracy brought by sophisticated ML models and 
inexplicable black boxes has motivated us to introduce explainable methods for further 
discussion [25]. Previous studies have rarely focused on explaining invoice fields. In this 
study, invoice related features are considered in the prediction model. SHAP value and 
the combination of their financial meanings, helps exploit the inherent relationship 
between default risk and invoice performance, and thereby providing an innovative 
aspect for credit risk evaluation and prediction. 

For model explanation, we select the ensemble soft weighting model with the best 
performance for further discussion. The summary plot which focuses on the 
interpretation of the total samples’ prediction and the decomposition plot for a single 
sample’s forecast were both considered. 

Figure 3 shows the overall impact of features, that is, the importance level of each 
feature to the target result, which is calculated by the absolute average effects of different 
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features in the model for each sample. According to the mean SHAP value results, the 
2019_out_jshj, 2019_out_bs, 2019_out_se, all_out_fp_y, and all_out_fp_w features rank 
in the top five important positions that represent the total sales amount for 2019, the total 
number of sales invoices for 2019, the total tax amount of output invoices in 2019, the 
number of all valid sales invoices, and the number of all invalid sales invoices, 
respectively. The 2019 total sales amount ranks as the most critical situation for default 
prediction, with an impact significantly higher than those of the other features.  

 
Figure 3. Overall impact of features to model 
output by SHAP value. 

Figure 4. Decomposition plot for SHAP value. 

The first two features in Figure 3 represent the sales amount and number in 2019, 
whereas the third feature represents the actual tax payment. From a financial perspective, 
the sales performance and tax payment in recent years reflect a company’s income and 
operational conditions, as well as the cash flow and earning ability. Evaluates enterprises’ 
credit capacity based on the company’s liquid assets for debt repayment. The number of 
valid and invalid sales invoices reflects the frequency of transactions; for example, the 
same sales revenue received in one month or consequently received in several months 
may affect the cash flow condition significantly. In addition, the percentage of sales in a 
recent year against the preceding three years and the development rate of invoice 
numbers help reflect the trend of operational conditions. Furthermore, the amount of 
procurement invoice data reflects the concentration degree of the enterprise’s upstream 
and downstream trading partners. If transaction counterparties are too concentrated, the 
enterprise has no upstream bargaining power, especially for the manufacturing enterprise. 
If the price of upstream materials rise significantly, low bargain power means it may be 
difficult to strive for a lower cost, thereby affecting the production and operation chains. 
When a large enterprise has problems, its downstream will be significantly affected and 
may even lead to a break in the capital chain, and consequently increasing the credit risk 
of the target enterprise. 

Figure 4 shows the SHAP values of each feature for each sample through a scatter 
plot. The relationship between the size of the feature value and the predicted impact can 
be seen through color, as well as the distribution of its feature value. A large area 
indicates a large cluster of samples. The Colors indicate the size of the feature value, 
with red indicating high feature values, while blue indicating low feature values. For 
feature 2019_out_jshj, the higher the value of 2019_out_jshj, the more likely it is that 
the model will predict the company to default (with a positive SHAP value). Similarly, 
the lower the 2019_out_jshj value, the more likely it is to have a smaller model output 
value, meaning that the related company is less likely to default (negative SHAP value). 
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In Figure 4, a large number of 2019_out_jshj samples were clustered in the area with a 
negative SHAP value. 

For a better understanding of the decision-making process, Figure 5 shows the 
decomposition of a single predicted output with two defaulted and non-defaulted 
companies. The data for all features were equally divided into ten intervals to determine 
the contribution of features and their values to the results. The redder the color, the higher 
the positive importance, and the bluer the color, the higher the negative importance. The 
figure clearly shows the advantages of the explainable model. This indicates the feature 
attribution to the target output, not only in a summarized view for the total sample but 
also differently and specifically for every single company in the test set. 

 
Figure 5. Contribution of each explanatory variable to the Shapley decomposition of four predicted output. 

The top three important features for the two non-default companies are both located 
in the medium interval. The sales amount for the recent year is located in the first four 
intervals, the total number of valid sales invoices before the eighth interval, and invalid 
sales invoices number before the sixth interval, are common to both companies. Some 
social intermediaries who understand the loan access conditions and risk control process 
of commercial banks provide funds to many SMEs and defraud bank loans by falsely 
increasing the transaction volume of accounts and fake transactions. As a result, many 
fake invoices form part of the large number of invoices. Thus, the appropriate distribution 
of invoice amounts and numbers, which is neither too low nor too high, represents a 
relatively excellent operating condition and credit quality.  

However, Figure 5 shows the most important features of the two defaulted 
companies differently. The 2019 total sales amount is larger than the fifth interval, and 
the percentage of the 2019 sales amount against the total sales amount from 2018 to 2021 
for both enterprises. The total number of valid sales invoices and the number of 2019 
sales invoices is smaller than the sixth interval, and the recent year’s tax amount for 
company 2. 

In other words, higher sales amounts in recent years with a lower percentage than 
the total sales amount from 2018 to 2020 may indicate the fake transactions mentioned 
before and poor recent business conditions, thus increasing the probability of default of 
these two companies. For Company 2, the small amount and number of sales invoices 
also indicate poor business performance, thereby increasing the company’s credit risk. 
As for company 3, except for the common features, the relatively higher invalid number 
of procurement invoices and the higher volatility of counterparty numbers illustrate the 
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potential operational risk and unstable business performance; this reduces the company’s 
credit willingness and capacity, and consequently increases credit risk. 

4. Conclusions 

This study chose invoice data for 425 enterprises in Chongqing. Four ML algorithms and 
one ensemble method were developed to establish a prediction classifier, and then 
combined with the SHAP value to explain the feature contribution of a specific output. 
Our study shows a strong correlation between the derived features and future 
delinquencies. More importantly, we provided new explainable aspects and related 
features, such as the invoice field, to forecast enterprises’ business performance for 
further analysis. 

However, only invoice data from limited SMEs were considered in this research. 
This may cause insufficient data problems and thus decrease the model generalization 
ability. Future research should not only focus on the invoice data but also increase the 
dimension of data sources. Furthermore, more samples should be collected to identify 
important features of target variables. For the integrated model part, ensemble learning 
modeling based on sequential approaches for precise prediction combined with 
interpretable ML methods should be considered. This helps humans understand the 
decision-making process of ML algorithms, reduce the black-box part, and increase 
model transparency. In addition, the effects of extreme events, such as green swan events 
in a climate disaster, should be considered while modeling credit risk, as they may 
provide different data patterns and business performances compared with historical ones. 
It will be interesting to see future solutions to these aforementioned challenges, and the 
increase in the ability of SME credit risk assessment. 
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