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Abstract. In this paper we study the prefix codes and application of prefix codes for 
problem of machine learning for deterministic finite state automaton. We give an 
example for the problem of constructing an inverse morphism, also parameterized 
by the number of transitions of automata. We investigate the factorization of prefix 
codes can give more simple structure of DFA for understanding his behaviors. To 
verify the correctness of the proposed approach, we implemented a system computer 
algebra GAP that accurately performs the logical flow of algorithm cycle by cycle. 
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1. Introduction 

The codes have many applications in theory of formal languages, data processing and 
data classification. In this article we continue the topics of our previous works [1-5] but 
we can see the problem of other point of view. We study the problem of identifying 
(learning) a deterministic finite state automaton (DFA). The application codes are based 
on the representation of the codes as a sequence of words in specific order. Problems in 
grammatical inference [6] is to find a (non-unique) smallest DFA that is consistent with 
a set of given positive 𝑆ା  and negative 𝑆ି  examples of the finite set of words. The 
smallest size DFA is defined by the amount of states it contains. 

2. Basic definition: words, codes and automata 

In this section, we give the necessary notions related to words, codes and finite automata 
and provide an overview of existing machine learning methods for building finite 
automata. 

Let consider a finite set of letters Σ =  {𝑎, 𝑏, 𝑐 … } which we call an alphabet  Σ. A 
word or string 𝑤 is finite length sequence of letters over alphabet Σ. The set Σ∗ is the set 
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of all finite words over Σ with the concatenation operation. Free monoid Σ∗ contains the 
empty word 𝜀. Semigroup Σା =  Σ∗ \𝜀 is monoid Σ∗ without empty word  . 

The formal language 𝐿 is the subset 𝐿 ⊂ Σ∗  of monoid Σ∗. The words 𝑤, 𝑣 ∈  𝐿 are 
an element of Σ∗, |𝑤| is the length of word 𝑤 and if the language 𝐿 is finite language, 
then |𝐿| is the number of words in language 𝐿. A basic operation of formal languages is 
concatenation of two words 𝑤 =  𝑢𝑣. The concatenation can be expanded to the formal 
languages = 𝐿1 ∙ 𝐿2 . 

The word 𝑢 is a prefix of a word 𝑣, denoted as 𝑢 ≤ 𝑣, if 𝑣 =  𝑢𝑤, for some 𝑤 ∈ ∑∗ . We say that 𝑢 and 𝑣 are prefix comparable if either 𝑣 ≤ 𝑢, or 𝑢 ≤ 𝑣. 
A set 𝑋  is a code if any word in 𝑋 ା can be written uniquely as a product of words 

in 𝑋. To say other words, word 𝑤 ∈ 𝑋 ା has a unique factorization in words from  . A 
code 𝑋 never contains the empty word 𝜀, because in this case word 𝑤 =  𝜀𝑤 = 𝑤𝜀 has 
different presentation. It is easy to see that any subset words from a code 𝑋 is a code. 

In order to determine whether the set 𝑋 is a code, there are criteria characterizing 
this property. One of these properties [6-7] is consisted in following: 

If a subset 𝑋 of Σ∗  is a code, then any morphism 𝛽 ∶  Δ∗  →  Σ∗ which induces a 
bijection of some alphabet Δ onto 𝑋 is injective. 

An injective inverse morphism preserves the property of being a code [7-8]. Let 𝛽 ∶ Δ∗  →  Σ∗ be an injective morphism. If 𝑋 is a code over Δ∗, then 𝛽(𝑋) is a code over Σ∗. 
If 𝑌 is a code over Σ∗, then 𝛽ିଵ(Y)  is a code over Δ∗. 

The set 𝑋 =  {𝑎, 𝑎𝑏, 𝑎𝑏𝑎} is not a code since the word 𝑤 = 𝑎𝑎𝑏𝑎 has two distinct 
factorizations 𝑤 = 𝑎(𝑎𝑏𝑎) = (𝑎)(𝑎𝑏)(𝑎). 

Let's define the relation 𝑢 ≤ 𝑣 a word 𝑢 is the left divisor of another word 𝑣. The 
infinite tree may present the free monoid ∑∗ . In this case the root of tree of relation ≤ 
over ∑∗  is draw at Figure 1 as node 1. The root of tree presents empty word 𝜀. Each node 
of the tree represents a word 𝑤 in  ∑∗. 

 
Figure 1. Infinite tree present of monoid ∑∗. 

Then subset 𝑋 is a prefix code if no element of 𝑋 is a proper prefix of another 
element in 𝑋. 
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This is equivalent to the fact that there are no comparable words 𝑢 ≤ 𝑣  of the 
relation ≤ in the set. That is for all words , 𝑣 ∈ 𝑋 , if 𝑢 ≤ 𝑣 then 𝑢 = 𝑣 . The set 𝑋 = {𝑏𝑏, 𝑎𝑏𝑎} is prefix code. 

A convenient representation for the prefix code is a tree view. Each word of the code 𝑢 ∈ 𝑋 represents a path from the root of the tree marked with letters on the branches of 
this tree. 

The prefix code 𝑋 is called maximal prefix code if it is prefix and if it is properly 
contained in no other prefix code 𝑌 of ∑∗ , that is, if 𝑋 ⊂  𝑌 ⊂  ∑∗ and 𝑌 prefix code 
implies 𝑋 =  𝑌 . 

The prefix code 𝑋 =  {𝑏𝑏, 𝑎𝑏𝑎} is not maximal prefix code because we added 
words {𝑎𝑎, 𝑎𝑏, 𝑎𝑏𝑏, } to code. These words are no comparable by relation ≤ with words {𝑏𝑏, 𝑎𝑏𝑎}. 

We will call the code both a previously defined morphism 𝛽 ∶  Δ∗  →  Σ∗ and the 
corresponding finite language 𝑋 . At the same time, in the case of injective of this 
morphism 𝛽, according to [9], we should call the code (as a set, a language) as well as 
coding (as a process) – unambiguous. 

A finite state automaton is a well-known model that can be used to recognize a 
regular language [10]. 

An automaton 𝐴 over alphabet  Σ consists of a set of states 𝑄 , the initial states 𝐼 ⊂ 𝑄 , the terminal states 𝑇 ⊂  𝑄 , and a set 𝐹 ⊂  𝑄 ×  𝐴 ×  𝑄 called the set of edges. 
Here 𝑄 and 𝛴 are finite sets called the state set and, respectively, the input alphabet 

of automaton 𝐴. 
The automaton is denoted by 𝐴 =  (𝑄, 𝐼, 𝑇). The DFA is said to be deterministic 

automaton if 𝐹 is a function (may be partial function on 𝑄 ×  𝐴) from 𝐹: 𝑄 ×  𝐴 →  𝑄 
and to be complete if 𝐹 is a total function from 𝐹: 𝑄 ×  𝐴 →  𝑄. 

The automaton is finite when the set Q is finite. 
An automaton 𝐴 =  (𝑄, 𝐼, 𝑇) over Σ is unambiguous if for all 𝑝, 𝑞 ∈  𝑄 and  𝑤 ∈ ∑∗ , there is at most one path from 𝑝 to 𝑞 with label 𝑤 in automaton 𝐴. 
Figure 2 shows the automaton 𝐴  with five states, the set of initial states 𝐼 = {1}, the 

set of terminal states 𝑇 = {1} , the set of edges 𝑇 ={(1, 𝑎, 3), (1, 𝑏, 2), (3, 𝑏, 4), (2, 𝑏, 1), (2, 𝑎, 5)} . This automaton 𝐴  defines the regular 
language  = (𝑏𝑏)∗ . 

An algorithm is a machine learning algorithm if it improves its behavior as 
experience accumulates. This means that the algorithm adjusts the parameters of the 
model either on pre-prepared test cases or on its own mistakes, and over time solves the 
task better and better. Some machine learning algorithms are capable of noticing 
previously unknown patterns in data, highlighting knowledge that did not exist before. 

Usually, in machine learning, finite automata are considered as recognizers of 
regular languages or as converters of words of one regular language into words of another 
language. The class of languages recognized by DFA is called regular languages. It is 
known that it coincides with the class of languages described by regular expressions and 
automatic grammars 

The one of the old problems in grammatical inference is the problem of learning a 
deterministic finite state automaton [11]. The problem of DFA identification is to find a 
may be non-unique smallest DFA that is consistent with a set of given positive 𝑆ା ={ 𝑣ଵ ,  𝑣ଶ …  𝑣௡} and negative 𝑆ି = { 𝑤ଵ,  𝑤ଶ, …  𝑤௠ } examples of the finite set of words. 
The size of a DFA is measured by the amount of states it contains. An identified DFA 
has to be as small as possible because the simplest is to be preferred in practical usage. 

N. Krainiukov et al. / On Some Properties of Maximal Prefix Codes and Machine Learning152



 
Figure 2. The automaton 𝐴 with five states. 

The problem of constructing an automaton that recognizes a certain language from 
a variety of examples is relevant. The task can be strengthened to build an automaton 
with a minimum number of states. 

However, in [6] it is shown that this problem is NP-hard. 

3. Factorization of codes and constructing an automaton 

This section we discuss application codes to construct an automaton that recognizes a 
language from a variety of examples. 

The automaton recognizes those words formed by the labels of transitions on paths 
from a specific start state to a final state. We use 𝐿(𝐴) to denote the language of a DFA 𝐴 

Given a pair of finite sets of positive sample strings 𝑆ା = { 𝑣ଵ ,  𝑣ଶ …  𝑣௡}  and 
negative sample strings 𝑆ି = { 𝑤ଵ,  𝑤ଶ, …  𝑤௠ } called the input sample. The problem of 
identification DFA is to find a smallest DFA 𝐴 that is consistent with 𝑆 =  {𝑆ା, 𝑆ି}. 
That means 𝑆ା ⊆ 𝐿(𝐴) and 𝑆ି ⊆ Σ∗\𝐿(𝐴). 

We use input sample 𝑆 for construct the so-called prefix tree for sample. 
How can you store a lot of strings 𝑆 at all? Firstly, in the form of a list. If the list 

contains 𝑛 +m strings of length less than max { |𝑣ଵ |, | 𝑣ଶ| … | 𝑣௡|, … ,  |𝑤ଵ|, | 𝑤ଶ, | … | 𝑤௠|   }. 
Using prefix relation ≤ order on a set of strings, prefix trees can be specified. Figure 

3 shows the prefix tree for input sample 𝑆ା  =  {𝑎𝑏𝑎𝑎, 𝑎𝑏𝑏𝑏} and 𝑆ି  =  {𝑎𝑎, 𝑎𝑏𝑎}. 
Each node corresponds to some string that is stored implicitly, in the form of a 

sequence of edge on the way to it. Also, each node may store one bit of information that 
determines whether this word belongs to the input sample 𝑆 for positive sample 𝑆ା or 
for negative sample 𝑆ି. Any additional values associated with this word can be stored in 
some labels. The root corresponds to an empty word 𝜀. If a node corresponds to the string 
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𝑤, and the edge coming from it is marked with the symbol 𝑎 ∈  𝛴, then this edge goes 
to the node corresponding to the string 𝑤𝑎. 

The node 1 is a start state; the nodes 5, 7 are the terminal nodes for positive example 𝑆ା ; the nodes 8, 9 are the terminal nodes for negative example 𝑆ି . The prefix tree has 
reserved less memory than the list, repeated prefixes of words allow to save memory for 
the presented input sample 𝑆. The prefix tree is a schema of automaton 𝐴 which is called 
tree-shaped DFA. The other name of automaton 𝐴 is an augmented prefix tree acceptor. 
This tree-shaped DFA contended states that can be divided to same different kind of state. 
A DFA is called augmented because it contains (is augmented with) states for which it 
is yet unknown whether they are accepting or rejecting. These states are 4 and 9 on Figure 
3. 

Next it applied a state-merging algorithm to first construct a tree-shaped DFA 𝐴 
from this input, and then to minimized size of DFA 𝐴 to merge the states of DFA. The 
authors wrote in [12] “A merge of two states 𝑞 and 𝑞 ᇱ combines the states into one: it 
creates a new state 𝑞ᇱᇱ that has the same incoming and outgoing transitions of both 𝑞 and 𝑞 ᇱ. Such a merge is only allowed if the states are consistent, i.e., it is not the case that 𝑞 
is accepting while 𝑞 ᇱ is rejecting, or vice versa.” 

Now we suppose that input sample 𝑆ା  and 𝑆ି are the prefix codes. Tree-shaped 
DFA 𝐴 from this input 𝑆 will be unambiguity automaton because 𝑆ା  and 𝑆ି  are the 
prefix codes. In these cases there are the maximal prefix code 𝐶ା which include the 
positive example 𝑆ା  ⊂   𝐶ା and corresponded maximal prefix code 𝐶ି which include 
the negative example 𝑆ି  ⊂   𝐶ି . This imply that there are inverse injective morphisms 𝛽ଵି ଵ: Σ∗  → Δଵ∗  and 𝛽ଶି ଵ: Σ∗  → Δଶ∗  (Δଵ , Δଶ  - corresponding alphabets). The letters of 
alphabets Δଵ , Δଶ  - corresponding are coding the words of maximal prefix codes 𝐶ା and 𝐶ି . We can choice the injective morphisms 𝛽ଵ , 𝛽ଶ that they are coding each letter of 
alphabets  Δଵ , Δଶ  the corresponded words of codes 𝐶ା and 𝐶ି. 

Suppose that codes 𝑆ା = 𝑋1 ⋅ 𝑋2  and 𝑆ି = 𝑌1 ∙ 𝑌2  . According to theorem of 
prefix codes that the set of all prefix code over Σ∗ is formed the free monoid [7-8]. We 
can factorization prefix code to the prime codes. 

For prefix codes on Figure 3 the factories codes are 𝑆ା = {𝑎𝑏} ⋅ {𝑎𝑎, 𝑏𝑏} and 𝑆ି ={𝑎} ⋅ {𝑎, 𝑏𝑎} i.e. 𝑋1 = {𝑎𝑏}, 𝑋2 =  {𝑎𝑎, 𝑏𝑏}, 𝑌1 ∙= {𝑎} and 𝑌2 = {𝑎, 𝑏𝑎} 

 
Figure 3. Prefix tree for 𝑆ା  =  {𝑎𝑏𝑎𝑎, 𝑎𝑏𝑏𝑏} and 𝑆ି  =  {𝑎𝑎, 𝑎𝑏𝑎}. 

Let the code 𝑋 is the product of two codes 𝑋1, 𝑋2 𝑋 =  𝑋1 ∙ 𝑋2 = {𝑤ଵ , 𝑤ଶ, … , 𝑤௟ } , 
where the words is lexicographically ordered.  

Choose a word 𝑤௠௜௡ of minimum length from 𝑋 = {𝑤ଵ , 𝑤ଶ, … , 𝑤௟ }  and words 𝐴ଵ = {𝑤ଵଵ , 𝑤ଵଶ, … , 𝑤ଵ௞ } from code 𝑋 starting with the same (first, second and so on) 
letters as the word 𝑤௠௜௡  of minimum length. After this we can find the second factors 
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of code  . The uniqueness of the factorization follows from the construction of the 
solution and the uniqueness of the word of minimum length. 

The algorithm has complexity O(n), where n the number of words code X because 
it is necessary to search among all the words of the source code X. Thus, it is possible to 
obtain a factor decomposition of the code in linear time from the sum of the lengths of 
all the words of the source code. 

Factorization of prefix codes and inverse morphism using encoding of letters of 
another alphabet can make it possible to simplify the structure of the automaton and 
reduce the number of its states. Combining the use of forward and reverse morphisms 
for prefix codes and encoding using a new/different alphabet makes it possible to flexibly 
select the number of states of the automaton and letters in the alphabet. There is an 
additional possibility to choose between the complexity of the automaton (the number of 
states) and coding (forward and reverse morphism) 

An example of this approach is shown in Figures 4 and 5 for 𝑆ା  =  {𝑎𝑏𝑎𝑎, 𝑎𝑏𝑏𝑏} 
and 𝑆ି  =  {𝑎𝑎, 𝑎𝑏𝑎} . The constructed automata have code words at the transitions 
between states. The automaton obtained after factorization of codes has the structure of 
a simple product of code words on transitions between states. 

In this paper, a method for identifying (learning) a DFA is proposed for finite 
automata with factorization of prefix codes. This method is based on reducing the 
specified problem of the coding (forward and reverse morphism). 

The efficiency of the method has been tested on both manually generated and 
randomly generated examples. 

 
Figure 4. Automaton for 𝑆ା  =  {𝑎𝑏𝑎𝑎, 𝑎𝑏𝑏𝑏} with code’s words {𝑎𝑏} ⋅ {𝑎𝑎, 𝑏𝑏}. 

4. Conclusion 

The results of the experiments allow us to speak about the possibility of the proposed 
method in comparison with existing methods for solving the problem under 
consideration. 

We implemented a system computer algebra GAP that accurately performs the 
logical flow of algorithm cycle by cycle [13]. 

This part of package “automata” to make it useful to finite automata (deterministic 
and non-deterministic) and formal languages theorists, since monoids are already 
implemented in GAP and we can take advantage of this fact. 

The results of the present paper suggest several directions for further research. Here 
we briefly outline two such directions: the problem about optimal choice inverse 
morphisms [14] and algorithm of factorization of codes, not only prefix codes.  
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Figure 5. Automaton for 𝑆ି  =  {𝑎𝑎, 𝑎𝑏𝑎} with code’s words {𝑎} ⋅ {𝑎, 𝑏𝑎}. 
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