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Abstract. The aim is to study the set of subsets of grids of Waterloo automaton 
and the set of covering automata defined by the grid subsets. The study was carried 
out using the library for working with nondeterministic finite automata NFALib 
implemented by one of authors (M. Abramyan) in C#. The results are regularities 
obtained when considering semilattices of covering automata for Waterloo 
automaton. A complete description of the obtained semilattices from the point of 
view of equivalence of the covering automata to the original Waterloo automaton 
is given, the criterion of equivalence of the covering automaton to Waterloo 
automaton in terms of properties of the subset of grids defining the covering 
automaton is formulated. The relevance of the subject area under consideration is 
due to the need to research of a set of regular languages and, in particular, 
description of their various subclasses. Also relevant are the problems that may 
arise in some subclasses. This will give, among other things, the possibility of 
describing new algorithms for the equivalent transformation of nondeterministic 
finite automata. 
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1. Introduction 

The paper continues the study of semilattices arising in the analysis of regular 

languages and related finite automata. The papers [1-3] are devoted to similar problems. 

There are different complete invariants for describing a regular language: not only 

well-known canonical automata [4-6], but also basis automata [7] and universal 

automata [8]. When constructing basis automata and universal automata, we need to 

construct canonical automata both for a given regular language and for its mirror image. 

In the process of such a construction, we can obtain, among other objects, a special 

binary relation # defined on the state pairs of these two canonical automata. This 

relation is also invariant (but incomplete) for the language under consideration. 

The Waterloo language and the associated Waterloo automaton are currently the 

most interesting for the study. The universal automaton constructed for this language 

has the following property: among its covering automata [8-9], there exists a non-
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equivalent one (see Section 2). This fact is directly related to the development of 

efficient state minimization algorithms for nondeterministic finite automata. 

For any automaton, the set of covering automata associated with it forms a 

semilattice by union, but it can be shown that, in general, it does not form a semilattice 

by intersection (see Section 3). More concretely, instead of a single semilattice by 

intersection, it forms a union of several such semilattices. The present paper is devoted 

to the consideration of such a construction for Waterloo automaton and continues the 

study of Waterloo automaton semilattices begun in [10-11]. 

Section 2 of the paper contains preliminary information; terminology related to 

finite automata is given, mainly those terms related to a universal automaton and to 

grids, which can be considered as states of this automaton. All the concepts are 

illustrated on the example of Waterloo automaton; at the same time, a general approach 

to the program study of automata for Waterloo-like languages is demonstrated using 

the NFALib library implemented by M. Abramyan in C# [12]. 

Section 3 discusses the properties of semilattices of covering automata and gives 

general properties of semilattices for Waterloo automaton. Sections 4 and 5 contain a 

more detailed study of various semilattices, connected, first of all, with the presence of 

covering automata which are not equivalent to the original Waterloo automaton. 

Section 6 gives and justifies the criterion of equivalence of the covering automaton to 

Waterloo automaton in terms of grids defining the covering automaton. 

2. Basic concepts and related examples forWaterloo automaton 

In this section, we give the necessary notions related to finite automata and illustrate 

them on the example of Waterloo automaton W (Figure 1). The interest in this 

automaton is due, in particular, to the fact that it allows us to identify important 

features of the state minimization algorithm of nondeterministic finite automata. 

Waterloo automaton was first described in [13]. It is the objects related to Waterloo 

automaton that will be the main subject of consideration in the following sections. 

 

Figure 1. Waterloo automaton W. 

Since the paper describes the results of the program study of automata based on the 

application of the NFALib library, when describing each object, the library method that 

allows to obtain this object is specified. 

The analyzed automaton K (defining some regular language L) is created as an 

object of NFA type on the basis of information from a text file. Figure 2 shows the 
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contents of the file corresponding to Waterloo automaton. The meaning of the notations 

should be clear from comparing this figure with Figure 1. 

 

Figure 2. Text description of the automaton W. 

The state minimization algorithm is based on the analysis of a binary relation [6, 

Sec. 3.3] connected with the sets of states X and Y of two canonical automata, which 

are based on the analyzed nondeterministic finite automaton K and its mirror 

automaton KR. Waterloo automaton is a deterministic automaton that does not change 

after its canonicalization. The canonical automaton for the mirror automaton takes the 

form given in Figure 3. To obtain mirror and canonical automata, the NFALib library 

provides the GetMirror and GetCanonicalDFA methods and CurrentCanonicalDFA and 

CurrentMirrorCanonicalDFA properties. 

 

Figure 3. Canonical automaton for the automaton WR. 

The States column in Figure 3 shows the sets of states before their renaming; each 

such state corresponds to the set of states of the original mirror automaton obtained as a 

result of determinization of this automaton. 

On the basis of the canonical automata, we construct a matrix of relation #. Rows 

of this matrix correspond to the states of the canonical automaton for the automaton K, 

and the columns correspond to the states of the canonical automaton for the mirror 

automaton KR. A view of the matrix of relation # for the automaton W is given in 

Figure 4. To get the matrix of relation # of some automaton in the NFALib library, it is 

enough to refer to its CurrentSharpRelation property. 

The elements of the matrix labeled with # are defined as follows: in the row 

corresponding to some states of the canonical automaton for the original automaton (in 

our case, for the automaton W), the elements for those states of the canonical 

automaton for the mirror automaton that contain the states in the column States are 

labeled. For example, for the row A, the columns Y and Q are marked, because the 
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state Y corresponds to the set of states {A, B}, and the state Q corresponds to the set of 

states {A} (see Figure 3). 

 

Figure 4. Matrix of relation # for automaton W. 

A set of grids is associated with the relation # [6, Section 3.4]. Each grid is defined 

by a pair of subsets X0  X and Y0  Y, where X is the set of rows of the matrix of 

relation # (coinciding with the set of states of the canonical automaton for the 

automaton K), and Y is the set of columns of the matrix of relation # (coinciding with 

the set of states of the canonical automaton for the automaton KR). The subsets X0 and 

Y0 must satisfy two conditions: (1) for any states x  X0 and y  Y0, the relation x # y is 

satisfied; (2) the subsets X0 and Y0 cannot be expanded while preserving condition (1). 

We denote such a grid by X0 × Y0. 

A set M of grids is called a covering set if for any elements x  X, y  Y such that 

x # y, there exists a grid X0 × Y0 of M for which x  X0 and y  Y0. Clearly, the 

complete set of grids constructed by the relation # is a covering set. In Figure 5, we 

give the complete set of 14 grids for the relation # corresponding to the automaton W. 

To get the complete set of grids, the NFALib library provides the GetCompleteGrids 

method based on the brute force method. 

 

Figure 5. Complete set of grids for the automaton W. 

In [8], an algorithm is described which allows to construct a universal automaton 

COM(K), which defines the same regular language L as the original automaton K, and 

each grid corresponds to some state of the automaton COM(K). The automaton 

COM(W) is shown in Figure 6. The method GetCOM(completeGrids) of the NFALib 

library is intended for obtaining it. 
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The constructed automaton COM(W) is equivalent to the original automaton W, 

which can be shown by canonization it using the GetCanonicalDFA method and 

appropriate renaming its states. 

 

Figure 6. Automaton COM(W). 

Based on the COM(K) automaton, one can define a family of covering automata, 

each of which is obtained by removing some states of the COM(K) automaton, with the 

remaining states corresponding to the grids forming the covering set. 

The algorithm for minimizing the original automaton K consists in choosing a 

covering set of grids M0 of minimal size for which the covering automaton built on its 

basis is equivalent to the automaton K, i. e., defines the same regular language L. 

Unfortunately, not every covering set of grids yields a covering automaton 

equivalent to the original one. An example is Waterloo automaton. The minimal 

covering set for it is the set M0 of 7 elements containing the following grids from the 

complete set: 1, 3, 5, 6, 8, 10, 12 (the GetMinGridCovers method is provided for 

finding minimal covering sets). 

Figure 7 shows the covering automaton W0 constructed from the minimal covering 

set M0 using the GetCovering method applied to the automaton COM(W). 

 

Figure 7. Minimal covering automaton W0 for the automaton COM(W). 

After the procedure of canonization and renaming of states, the automaton W0 

takes the form shown in Figure 8. This automaton is not equivalent to the original 
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Waterloo automaton (compare with Figure 2; the different line corresponds to the 

state F). 

 

Figure 8. Canonical automaton for a minimal covering automaton with renamed states. 

3. Semilattices of covering automata 

Since the minimal covering automaton, as the example of Waterloo automaton shows, 

will not necessarily be equivalent to the original automaton, it is of interest to 

investigate the entire set of covering automata that can be derived from the COM 

automaton for different covering sets of grids. 

Note that all covering sets of grids, according to the definitions given in the 

previous section, form a semilattice by union. This is obvious since the union of any 

two covering sets is also a covering set. In this sense, we can also speak of a semilattice 

by union for all covering automata, understanding by the union operation the union of 

subsets of grids on the basis of which these covering automata are constructed. 

However, the complete set of covering sets of grids does not form a semi-lattice by 

intersection. To prove this fact, it is enough to note that there is a covering set of grids 

{1, 2, 4, 5, 6, 8, 10, 12} whose intersection with the minimal covering set M0 gives a 

set {1, 5, 6, 8, 10, 12} which is not a covering set (since its size is smaller than the size 

of the minimal covering set M0). 

Although the complete set of covering sets of grids does not, in general, form a 

semilattice by intersection, it is possible to obtain subsets of covering sets which do 

form such a semilattice. Each such semilattice by intersection will include some base 

covering set of grids, the complete set, and all intermediate sets, with the property that 

any pairwise intersection of them also belongs to this semilattice. We will consider 

only such semilattices by intersection that cannot be extended. It should be noted that 

each such semilattice can be interpreted as a hypercube of the corresponding dimension. 

In what follows, we will only consider semilattices by intersection that cannot be 

extended. 

For most automata, it is not of interest to consider sets of covering automata and 

associated semilattices, since all these automata are equivalent. A different situation 

arises in the study of Waterloo automaton W. As it was shown in the previous section, 

for the matrix of relation # associated with this automaton, 14 grids can be constructed, 

from which we can select a single minimal covering set M0 of size 7. The covering 

automaton W0 constructed on the basis of the set M0 is not equivalent to the original 

automaton W. 

The study of the grids of the matrix of relation # for Waterloo automaton shows 

that there are 260 different covering sets of grids, the sizes of which vary from 7 to 14. 

The distribution of sizes of covering sets is given in Table 1. 
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Based on different covering sets of grids, 8 different semilattices can be 

constructed (recall that we consider semilattices by intersection that cannot be 

extended). The characteristics of these semilattices are given in Table 2. 

Table 1. Distribution of covering sets by the number of grids for automaton W. 

Number of grids in 

the covering set 
7 8 9 10 11 12 13 14 

Number of covering 

sets 
1 11 43 79 76 39 10 1 

Table 2. Semilattices for Waterloo automaton. 

Semilattice Base covering set of grids 
Number of elements 

(covering automata) 

Number of covering 

automata  

not equivalent to W 

A {1, 3, 5, 6, 8, 10, 12} 128 48 
B {1, 2, 4, 5, 6, 8, 10, 12} 64 0 
C {1, 3, 5, 6, 7, 9, 10, 12} 64 0 
D {1, 3, 5, 6, 7, 9, 11, 12} 64 0 
E {1, 3, 5, 6, 8, 9, 11, 12} 64 0 
F {1, 2, 4, 5, 6, 7, 9, 10, 12} 32 8 
G {1, 2, 4, 5, 6, 7, 9, 11, 12} 32 12 
H {1, 2, 4, 5, 6, 8, 9, 11, 12} 32 8 

Of particular interest is the last column of Table 2, which shows the number of 

covering automata from a given semilattice that are not equivalent to the original 

Waterloo automaton. In the following sections, we will discuss the peculiarities of 

different semilattices related to the presence of non-equivalent covering automata in 

them. 

4. Study of the maximal semilattice for Waterloo automaton 

This section describes additional properties of the semilattice A from Table 2. This 

semilattice, first, has maximal size (128 elements), second, its basic element is a 

covering automaton W0 constructed by the minimal covering set of grids and, third, it 

contains the largest number of covering automata which are not equivalent to Waterloo 

automaton. 

Further investigation of the semilattice A shows that it contains four sets of 

pairwise equivalent automata, including three sets of automata that are not equivalent 

to Waterloo automaton: 

 the set N1 that contains the covering automaton corresponding to the set  

M0 = {1, 3, 5, 6, 8, 10, 12}, 

 the set N2 that contains the covering automaton corresponding to the set  

M1 = {1, 2, 3, 5, 6, 8, 10, 12}, 

 the set N3 that contains the covering automaton corresponding to the set  

M2 = {1, 3, 4, 5, 6, 8, 10, 12}. 

Each of them contains 16 elements forming 4-dimensional hypercube. The set of 

covering automata equivalent to Waterloo automaton will be denoted by N0. 

Each of the eight 4-dimensional hypercubes into which the original semilattice (7-

dimensional hypercube) decomposes is characterized by a special combination of three 

additional grids with numbers 2, 4, and 9. Namely, if the basic covering set M0 = {1, 3, 
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5, 6, 8, 10, 12}, complemented by grids from the additional ordered2 set D0 = (2, 4, 7, 9, 

11, 13, 14), does not include any of grids 2, 4, 9, we obtain the covering automaton 

from set N1; if only grid 2 is included, we obtain the covering automaton from set N2, if 

only grid 4 is included, we obtain the covering automaton from set N3. The presence of 

grid 9 or the simultaneous presence of grids 2 and 4 guarantees that the resulting 

covering automaton is equivalent to the original Waterloo automaton and thus belongs 

to N0. 

These relations are presented in Table 3. Grid combinations are specified by a 7-

character string, which defines the presence or absence of each of the grids included in 

D0 = (2, 4, 7, 9, 11, 13, 14) as follows: if some grid from D0 is included in all elements 

of the set, then its position in the string is indicated by 1, if the grid is not included, 

then 0 is indicated, if the grid can be both included and not included in the set, then an 

asterisk * is indicated at its position. For example, the notation 01*0*** for the set N2 

means that this set includes covering sets of grids that include grid 4 and do not include 

grids 2 and 9 (grids 7, 11, 13, 14 may or may not be included in the covering set). 

Table 3. Subsets of the semilattice A. 

A set that includes 

the elements  

of a subset 

Description of the subset 

(presence or absence of grids 

2, 4, 7, 9, 11, 13, 14) 

Subset 

size 

Are the elements 

equivalent to the 

automaton W? 

N1 (the whole set) 00*0*** 16 no 
N2 (the whole set) 01*0*** 16 no 
N3 (the whole set) 10*0*** 16 no 

N0 11*0*** 16 yes 
N0 ***1*** 64 yes 

Thus, a necessary and sufficient condition for a covering automaton from a 

semilattice A to be equivalent to Waterloo automaton is that there exists a grid 9 or 

simultaneously grids 2 and 4 in the corresponding covering set. 

5. Study of other semilattices for Waterloo automaton 

Let us turn to the remaining semilattices given in Table 2. They can be divided into two 

groups. The first group includes semilattices B, C, D, E, for which the basic covering 

automaton is equivalent to the automaton W. Therefore, all other elements of these 

semilattices are equivalent to the automaton W, and no additional study of these 

semilattices is required. 

Unlike semilattices B, C, D, E, semilattices F, G, H contain covering automata 

which are not equivalent to the automaton W. Additional analysis shows that these 

automata can be divided into 5 sets: N4, N5, N6, N7, N8, each of which contains automata 

equivalent to each other and not equivalent to automata from other sets (as well as to 

automata from sets N0, N1, N2, N3 described in the previous section). Sets N4 and N5 are 

completely contained in semilattice F, set N6 is completely contained in semilattice G, 

and sets N7 and N8 are completely contained in semilattice H. Moreover, the semilattice 

G includes half of the elements included in each of the sets N4, N5, N7, and N8. 

A more detailed analysis of the semilattices F, G, H and the associated sets of 

covering automata not equivalent to the automaton W is convenient to perform together, 

since the sets N4, N5, N7, and N8 are parts of several semilattices. 

 
2We fix the order of the elements of the set D0, as this will allow us to easily define its different subsets, 

as will be described later. 
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Once again, we show the base covering sets of grids for semilattices F, G, and H: 

F: {1, 2, 4, 5, 6, 7, 9, 10, 12},  

G: {1, 2, 4, 5, 6, 7, 9, 11, 12},  

H: {1, 2, 4, 5, 6, 8, 9, 11, 12}. 

Since all these sets contain grids from the set M = {1, 2, 4, 5, 6, 9, 12}, we can 

exclude these grids from further consideration and restrict ourselves to analyzing the 

grids included in the ordered set D1 = (3, 7, 8, 10, 11, 13, 14). For different subsets of 

the set D1, we will use notations similar to those previously used for subsets of the set 

D0 (see Table 3): a subset is defined by a string of 7 characters; if some grid from D1 is 

included in all elements of the subset, then its position in the string is indicated by 1, if 

the grid is not included, then 0 is indicated, if the grid can both be included and not 

included in the elements of the subset, then its position is indicated by an asterisk *. 

Given such notations, the semilattice F can be described as follows: *1*1***. This 

means that, in addition to the grids from set M, all its elements include grids 7 and 10, 

and other grids from D1 may or may not be included. 

The description of semilattices F, G, H is given in Table 4, the description of sets 

N4, N5, N6, N7, N8 is given in Table 5. 

Table 4. Semilattices F, G, H. 

Semilattice 

Description (presence  

or absence of grids  

3, 7, 8, 10, 11, 13, 14) 

Size 
Contains elements  

of the following sets 

F *1*1*** 32 
N0, N4 (the whole set),  

N5 (the whole set) 

G *1**1** 32 
N0, N6 (the whole set),  

N4, N5, N7, N8 

H **1*1** 32 
N0, N7 (the whole set),  

N8 (the whole set) 

Table 5. Sets N4, N5, N6, N7, N8. 

Set 

Description (presence  

or absence of grids  

3, 7, 8, 10, 11, 13, 14) 

Size 
Included in the following 

semilattices 

N4 0101**0 4 
F (all elements of the set),  
G (elements with grid 11) 

N5 0101**1 4 
F (all elements of the set),  
G (elements with grid 11) 

N6 01001** 4 G (all elements of the set) 

N7 0*1010* 4 
H (all elements of the set),  
G (elements with grid 7) 

N8 0*1011* 4 
H (all elements of the set),  
G (elements with grid 7) 

The analysis of Table 5 shows that a necessary and sufficient condition for a 

covering automaton of semilattices F, G, H to be equivalent to Waterloo automaton is 

the presence of grid 3 or simultaneously grids 8 and 10 in the corresponding covering 

set. 

6. Criterion of equivalence of covering automata to Waterloo automaton 

In the study of the semilattice A in Section 4 and of the semilattices F, G, H in Section 

5, a special role of grids 3 and 9, as well as combinations of grids 2, 4 and 8, 10 was 
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revealed. Recall that the presence of grid 9 or simultaneously grids 2 and 4 in the 

covering set guarantees that the covering automaton included in the semilattice A is 

equivalent to the automaton W, and, for the semilattices F, G, H, the similar fact is true 

if grid 3 or simultaneously grids 8 and 10 are included in the covering set. 

These results can be generalized to the whole set of covering automata for 

Waterloo automaton if we additionally analyze the presence of these special grids in 

the base covering sets for all semilattices. The corresponding data are summarized in 

Table 6. In it, for brevity, we denote the simultaneous presence of two grids using the 

"+" operation: 2+4 or 8+10. 

Table 6. Additional characteristics of semilattices for Waterloo automaton. 

Semilattice Base covering set of grids 
Special grids  

in the base set 

Additional grids 

providing equivalence 

to Waterloo automaton 

A {1, 3, 5, 6, 8, 10, 12} 3, 8+10 2+4 or 9 
B {1, 2, 4, 5, 6, 8, 10, 12} 2+4, 8+10 – 
C {1, 3, 5, 6, 7, 9, 10, 12} 3, 9 – 
D {1, 3, 5, 6, 7, 9, 11, 12} 3, 9 – 
E {1, 3, 5, 6, 8, 9, 11, 12} 3, 9 – 
F {1, 2, 4, 5, 6, 7, 9, 10, 12} 2+4, 9 3 or 8+10 
G {1, 2, 4, 5, 6, 7, 9, 11, 12} 2+4, 9 3 or 8+10 
H {1, 2, 4, 5, 6, 8, 9, 11, 12} 2+4, 9 3 or 8+10 

It follows from Table 6 that in order for the covering automaton constructed by the 

COM(W) automaton to be equivalent to Waterloo automaton W, it is necessary and 

sufficient that the corresponding covering set contains either grids 3 and 9 or grids 2, 4, 

8, and 10. If this condition is violated, we obtain covering automata that are not 

equivalent to Waterloo automaton. There are 8 sets of such automata; each set contains 

automata equivalent to each other. 

The obtained results can be presented in the form of Table7, where the grids from 

the set {2, 3, 4} that are included in the covering set are indicated vertically, and the 

grids from the set {8, 9, 10} that are included in the covering set are indicated 

horizontally. The table has 5 rows and 5 columns, because there are no covering sets 

that do not contain any grids from sets {2, 3, 4} and {8, 9, 10} or contain only one grid 

2 or 4 from set {2, 3, 4} or only one grid 8 or 10 from set {8, 9, 10}. The cells of the 

table indicate properties of automata with the given set of grids, namely: to which set 

of pairwise equivalent covering automata they belong and, in parentheses, the number 

of them. Recall that the covering automata equivalent to Waterloo automaton belong to 

the set N0; for clarity, the cells with the set N0 are additionally marked with the 

asterisk *. 

Table 7. Distribution of sets of equivalent covering automata depending on grids 2, 3, 4, 8, 9, 10 included in 
the covering sets. 

 9 8, 9 8, 10 9, 10 8, 9, 10 

3 * N0 (4) * N0 (8) N1 (16) * N0 (8) * N0 (16) 
2, 3 * N0 (4) * N0 (8) N2 (16) * N0 (8) * N0 (16) 
2, 4 N6 (4) N7 (4), N8 (4) * N0 (16) N4 (4), N5 (4) * N0 (16) 
3, 4 * N0 (4) * N0 (8) N3 (16) * N0 (8) * N0 (16) 

2, 3, 4 * N0 (4) * N0 (8) * N0 (16) * N0 (8) * N0 (16) 
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