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Abstract. Deep manifold learning has achieved significant success in handling 
visual tasks by using Symmetric Positive Definite (SPD) matrices, particularly 
within multi-scale submanifold networks (MSNet). This network is capable of 
extracting a series of main diagonal submatrices from SPD matrices. However, these 
submanifolds do not take into account the distribution of the submanifolds 
themselves. To address this limitation and introduce batch normalization tailored to 
submanifolds, we devise a submanifold-specific normalization approach that 
incorporates submanifold distribution information. Additionally, for submanifolds 
mapped into Euclidean space, considering the weight relationships between 
different submanifolds, we propose an attention mechanism tailored for log mapped 
submanifolds, termed submanifold attention. Submanifold attention is decomposed 
into multiple 1D feature encodings. This approach enables the capture of 
dependencies between different submanifolds, thus promoting a more 
comprehensive understanding of the data structure. To demonstrate the 
effectiveness of this method, we conducted experiments on various visual databases. 
Our results indicate that this approach outperforms the MSNet. 

Keywords. Manifold Learning, attention mechanism, symmetric positive definite 
matrices, batch normalization 

1. Introduction 

In the studies of visual classification, the natural second-order statistic of covariance 
matrix has been proven to be successful in describing the visual feature. The non-singular 
covariance matrices known as the Symmetric Positive Definite (SPD) matrices which 
can form the SPD Riemannian manifold. Classification tasks with SPD manifold for 
video data have received increasing attention in recent years, such as video-based facial 
emotion recognition [1-4],dynamic scene classification [5-7],action recognition [8-12], 
and video-based face recognition [13-16]. 

Huang et al. introduced a deep network structure for SPD manifold [1], which 
reduces the dimensionality of the input data through bilinear mapping and maintains the 
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manifold's positive definiteness through a rectification module. Influenced by the 
Euclidean Batch Normalization [17] network, Brooks et al. utilized parallel transmission  
to design the Riemannian normalization network [18] for SPDNet. In contrast to SPDNet, 
Zhang et al. proposed a 2D convolution network for SPD matrices [19], requiring the 
convolution kernels to be SPD matrices. Inspired from U-Net [20], Wang et al. 
redesigned the covariance matrix to create the U-SPDNet [12] network, allowing the 
feature extraction component to learn more informative low-dimensional mappings. 
DreamNet [11] addressed the problem of poor performance in deepening the SPDNet by 
using a stacked U-SPDNet  approach and reconstructing SPD matrices.  

Chen [21] et al. proposed a method that utilizes SPD matrices by extracting sub-
SPD matrices, thereby preserving the regularity and symmetry of SPD matrices while 
fully exploiting their intrinsic information. Features from SPD matrices of different scale 
sizes are extracted and classified using the softmax loss function. The multi-scale 
submanifold network involves extracting small submanifolds of different scales from the 
SPD manifold and then concatenating the upper triangular parts of these submanifolds 
into column vectors for classification. We found that the submanifolds extracted from 
the SPD matrix should be normalized, and different attention should be given to different 
submanifolds. 

 Inspired by the concept of Riemannian Batch Normalization (BN) for SPD neural 
networks [18], we proposed a novel form of BN tailored specifically for SPD 
submanifolds, termed “group batch normalization”. Unlike conventional SPD BN, our 
designed group BN is applied individually to each submanifold.  

In the realm of deep learning neural networks, attention mechanisms have played a 
pivotal role in enhancing the capacity to model complex relationships within data. 
Coordinate Attention (CA) [22] is an attention mechanism that embeds positional 
information into channel attention. It takes into account the spatial coordinates and 
positions of elements in a data structure, granting varying importance to different 
positions. CA has proven to be effectiveness in computer vision and spatial reasoning 
tasks. We draw inspiration from the CA [22] and devise an attention mechanism to cater 
to different submanifolds.  

The main contributions of this paper can be summarized as follows: 
• We devised a group normalization approach tailored for submanifold, where 

each distinct submanifold undergoes Riemannian normalization. 
• We devised an attention mechanism inspired by CA, assigning different weights 

to different submanifolds by learning. 
• We demonstrated the effectiveness of our method by extensive experimentation 

with different datasets. 
The rest of this paper is organized as follows: we provide an overview of essential 

basic knowledge about Riemannian manifolds in Section 2. The proposed method is 
presented in Section 3. The validations of the proposed method are presented in Section 
4. Section 5 concludes this paper. 
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2. Preliminaries 

2.1. SPD manifold 

The SPD manifold is a concept of significant relevance in differential geometry and 
manifold theory. For all non-zero vectors dv R∈ , a real-valued matrix M is termed an 
SPD matrix if and only if 0Tv Mv > . The SPD manifold comprises a collection of d d×
matrices that satisfy this property, forming a commutative Lie group structure denoted 
as dS + + . The inherent properties of this manifold contribute to its widespread 
applications in fields such as differential geometry and data analysis. 

2.2. Covariance matrix 

The covariance matrix is used to describe the correlation information between features 
of classes within a dataset, given a set of images 1 2 ,  ,  ...,  

ii nX x x x=    ,The 
corresponding covariance is represented as 

1

1 ( )( )
1

in
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i k i k i
ki

M x u x u
n =

= − −
− 
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where iu is the mean of iX  and the formula is given by:
1

in
i kk

u x
=

=  , where iM  is 
symmetric and potentially non-singular. By introducing elements on the diagonal, 

i iM M Iα= + , where α is a regularization coefficient, and I is an identity matrix. iM  
can be rendered non-singular, making it represents an element of the SPD manifold. 

2.3 Parallel transport 

Theorem 1 [23]: Let , ,A B P M∈  and let log ( ) M
B BS P T= ∈ , then, 

( ( )) T
A B AExp S EPE→Γ =  (2) 

where 
1 1/2( )E AB−=  

Theorem 1 defines the parallel transport of points on a manifold. For a point P  on 
a point manifold, it involves mapping the tangent space at point P  to the tangent space 
at point B , then parallelly transporting it to the tangent space at point A , and finally 
mapping it back to the manifold space using the exponential function. 
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3. The proposed method 

3.1. Riemannian local mechanism network 

The Riemannian Local Mechanism Network (RLMN) is a classification network that 
operates as follows: It begins by employing a sequence of BiMap-ReEig layers for 
dimensionality reduction, which are subsequently connected in a series. Then, parallel 
BiMap-ReEig layers generate multiple SPD matrices of the same size. Each SPD matrix 
undergoes processing through a Subsec layer, yielding corresponding submanifold 
groups. The primary objective of this process is to extract submanifold groups of 
different scales. Following this, the LogEig layer maps these submanifold groups to the 
tangent space. Subsequently, the TrilCon layer extracts the upper triangular matrix 
elements from each submanifold group, assembling them into column vectors. These 
obtained column vectors are concatenated using the Concat layer, and a softmax 
classifier is employed for classification.  

The BiMap layer transforms the input SPD matrices by using a bilinear mapping, 
enhancing their distinctiveness and compactness. 

( ) ( 1)L L TX WX W−=  (3) 

where ( 1)LX −  represents the input SPD matrix, ( )LX is the output SPD matrix, and 
W  denotes the transformation matrix W  is an orthogonal matrix and possesses full 
column rank. The ReEig layer is similar to the activation function in CNN networks, the 
obtained eigenvalues are subject to an activation function following their decomposition. 
Afterward, they are reassembled as follows: 

( ) ( 1) ( 1) ( 1)( , )L L L L TX U max I U− − −= Σò  (4) 

( ) ( 1) ( 1) ( 1)L L L L TX U U− − −= Σ  (5) 

where ( 1)LU − represents the matrix obtained from eigenvalue decomposition of the 
input SPD matrix ( )LX , ( 1)L −Σ  denotes the eigenvalue matrix obtained from the SPD 
matrix decomposition, and ò  is the activation threshold. 

The LogEig layer shares a similar structure to the ReEig layer. It is used to map the 
SPD matrices to the tangent space, enabling the use of classifiers from Euclidean space 
for classification purposes. This is achieved by applying a logarithm operation to the 
eigenvalues through eigenvalue decomposition. 

( ) ( 1) 1 ( 1)( )L L L L TX U log U− − −= Σ  (6) 

( ) ( 1) ( 1) ( 1)L L L L TX U U− − −= Σ  (7) 

The Subsec layer extracts principal submatrices along the diagonal direction, 
resulting in multiple SPD matrices corresponding to distinct submanifolds. 
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In the TrilCon layer, the upper triangular of the SPD matrices from each submanifold 
are extracted to form column vectors. Valuable information can be effectively captured 
by extracting all elements of upper triangular of SPD matrix. 

The Concat layer combines column vectors from different scales into a single 
column vector, facilitating linear dimension reduction for subsequent Fully Connected 
(FC) layers. 

The FC layer performs linear dimension reduction by transforming the input matrix 
( 1)LX −  into the output matrix ( )LX  by using the transformation matrix W .   

( ) ( 1)L LX WX −=  (8) 

The Softmax layer is utilized at the end, and the chosen objective function is the 
cross-entropy loss, serving as the final loss function. 

( )
k

j

z

k z

j

ef z
e

=


 (9) 

0
( , ) log( ( ))
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k k
k

l y z y f z
=

= −
 (10) 

where ( )kf z represents the output value of the softmax function, and ky denotes the 
actual class label. 

 
Figure 1. The architecture of the proposed method. 

The architecture of the RLMN (also known as the Multi-scale Submanifold Network 
(MSNet) [19]) can be summarized as follows: 

0 b r b r b rX f f f f multiplef f Subsec LogEig TrilCon→ → → → → → → →

c softmaxConcat f f→ → →  

where 0X represents the input SPD matrix, bf denotes the BiMap layer, rf  denotes 
the ReEig layer, multiple bf  refers to the parallel application of BiMap layers on the 
same SPD matrix, Subsec indicates the extraction of multiple submanifolds from a single 
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SPD matrix, LogEig represents the mapping of submanifolds to Euclidean space, 
TrilCon involves extracting upper triangular elements from SPD matrices and forming 
column vectors, Concat signifies the concatenation of column vectors extracted from the 
previous layer into a single column vector, cf  is the FC layer, softmaxf applies the softmax 
function. 

In this study, we modify the MSNet by adding the submanifold batch normalization 
behind the Subsec layer, and the submanifold-specific attention is placed before the 
TrilCon layer. Figure 1 shows the architecture of the proposed network. 

3.2. Submanifold-specific batch normalization 

For the submanifold groups extracted from the SPD matrices in the aforementioned 
MSNet network, optimal results are challenging to be obtained due to the lack of 
knowledge about the data distribution within each submanifold group. Therefore, it is 
beneficial to apply separate batch normalization to each submanifold group. This allows 
the network to learn the data distribution information specific to each submanifold group. 

Algorithm 1 Algorithm for computing the Karcher mean of multiple SPD matrix [24] 

Require: Set of k SPD matrix { } 1Mc c

K

=   
Ensure:Karcher mean μ  

The arithmetic mean of a set of SPD matrices as inital estimate 1μ  

1
1

1 K

c
c

M
K

μ
=

=   

Compute logarithmic map 
1

log ( ), 1, ,c cv M c kμ= ∀ =   

Compute average tangent vector  

1

1ˆ c

K

cK
v v

=

=   

Compute exponential map 
1

ˆexp ( )vμμ =  

Algorithm 2 Submanifold group normalization on { } 1, ,

1, ,

mk n

jk j m
M

=

=




 ,training and testing phase 

TRAINING PHASE 

Require: A group of submanifold { } 1, ,

1, ,

mk n

jk j m
M

=

=




 , mean 1 2, , , mG G G , bias 1 2, , , mG G G  

Ensure:  Normalized submanifold M jk  

1 2( , , , ) 1,2, ,
jj j jnKarcher M M M j m= = jG  

where m  is the number of submanifold group 
( , ),j sj jBarμ=G G G  

sjG represents the center of the j-th submanifold group 

for 1j m= → do 
for 1 mk n= → do 

( )
j djk I jkM M→= ΓG  

 ( )
d jjk I G jkM M→= Γ  

End for 
End for 
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return normalized  jkM  
TESTING PHASE 

Require: A group of submanifold  { } 1, ,

1, ,

mk n

jk j m
M

=

=




 , mean 1 2, , , ,mG G G  bias 1 2, , , mG G G  

for 1j m= → do 
for 1 mk n= → do 

( )
j djk I jkM M→= ΓG  

 ( )
d jjk I G jkM M→= Γ  

End for 
End for 
return normalized  jkM  

First, compute the Riemannian barycenter for a batch of data using the Karcher flow, 
the specific algorithm is illustrated in Algorithm 1. After obtaining the centroid for this 
batch, in order to achieve a more accurate centroid, the center of this batch's centroid and 
the previous centroid's position are used as the centroid points for this iteration. The 
specific formula for calculating the centroids of two SPD matrices is as follows: 

1/2 1/2 1/2 1/2
( ,1 ) 1 2 2 2 1 2 2( , ) ( )w
w wBar P P P P PP P− −

− =  (11) 

Assuming there are j  submanifold groups, each containing k  submanifolds, the 
symbol corresponding to each submanifold can be denoted as { } 1, ,

1, ,

mk n

jk j m
M

=

=




,  m represents 

the number of submanifold groups, and mn  represents the number of submanifolds 
contained within the m-th submanifold group. The mean for each submanifold group 
through Algorithm 1 can be denoteds: 1 2, , , mG G G . 

The submanifold jkM  of each submanifold group is first projected onto the tangent 
space of the corresponding group’s center point jG  . Then, they are parallelly transported 
to the tangent space of the identity matrix, and subsequently mapped back to the 
submanifold to obtain the new submanifold  jkM . The formula for this process is as 
follows: 

1/ 2 1/ 2( )
j djk I jk j jk jM M M− −
→= Γ =G G G

 (12) 

The process described above involves moving the submanifolds of each submanifold 
group to their respective center points by using parallel transport. Subsequently, they are 
transported to the bias by using parallel transport. The formula for this process is as 
follows: 

 1/2 1/2( )
d jjk I G jk j jk jM M G M G→= Γ =  (13) 

The above process can be charactered by using Algorithm 2. 
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3.3. Submanifold-specific group attention menachim 

The global pooling operation in SENet indeed captures global information. However, 
when it is applied individually to each submanifold group, it can only capture 
relationships within each specific group and may not capture interactions between 
different submanifold groups. Therefore, it is essential to capture information between 
different submanifold groups. To achieve this, we perform separate global average 
pooling (Avgpool) operations on submanifold groups of different scales. 

The Avgpool formula for obtaining the average value of each submanifold can be 
described as: 

,
,

,

1( , ) ( , , , )j k
w h

w hjk

Z j k M j k w h
N

= 
 (14) 

where ( , , , )M j k w h represents the value of the k-th submanifold in the j-th 
submanifold group, jkN  denotes the total number of submanifold elements in the j-th 
submanifold group, and w  and h  correspond to the dimensions (length and width) of 
the submanifold. 

Through the aforementioned steps, we can obtain attention information for different 
submanifold groups. To make full use of the resulting representation information, we 
need to perform a second transformation, referred to as “submanifold group attention 
generation.” Our design objectives for this transformation are threefold: firstly, it should 
be computationally efficient; secondly, it should capture information between different 
submanifold groups; and finally, it should capture relationships between submanifolds 
within the same submanifold group. 

The feature maps generated by Equation 14 are first subjected to an aggregation 
operation. Subsequently, a 1 1×  shared convolution transformation denoted as 1F  is 
applied. 

1 ( , )(1, )(1,1) (1,2) ( ,1)
1( ([ , , , , , , ])), mm nn mf F z z z z zσ=     (15) 

where m  represents the index of submanifold groups, and mn represents the number 
of submanifolds in the m-th submanifold group, the feature aggregation operation is 
represented by using the symbol "[,]". σ  is the activation function.

( )1 1
, m mq

k kk k
f q n n rR

= =
∈ =   is the lower dimensional feature map that reduced by 

the  transformation 1F , r is the reduced dimension. 
We partition the tensor f  into m  tensors by: 

1 2, , , ( )n n nmf f f split f=  (16) 
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The dimensions of 1 2, , ,n n nmf f f are 1 2r , r , r,n n nm respectively, it can be seen 

that the dimensions are satisfied
1

m
nkk

r r
=

= . 1 21 1 11 1, , ,n n nmr r rn n nmf R f R f R× × ×∈ ∈ ∈ ,

1 2, , ,n n nmF F F are used to restore the tensor to the dimensions of the corresponding 
submanifolds. 

1 1
1( ( ))n n

ng F fδ=  (17) 

2 2
2( ( ))n n

ng F fδ=  (18) 

( ( ))nm nm
nmg F fδ=  (19) 

whereδ represents the sigmod function. To reduce to the appropriate dimension, it 
is necessary to choose the suitable value of r . The output tensor njg  represents the 
weight of the j-th submanifold group, and it is multiplied with the corresponding 
submanifold group. Finally, the weighted submanifold can be expressed as: 

1, ,nj
nj njy x g j m= ⋅ =   (20) 

where njx  is the input of the j-th submanifold group. 
Ultimately, this procedure enables the acquisition of weighted submanifolds that 

encapsulate enhanced expressive power for the extracted submanifold features, the 
architecture of the submanifold-specific attention mechanism is shown in Figure 2. And 
we call the proposed multi-scale submanifold-specific batch normalization and attention 
method as MSNet-bn-attention. 

 
Figure 2. The submanifold-specific attention mechanism. 
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4. Experiments 

In this section, we evaluated the proposed method on visual recognition tasks. Three 
datasets are utilized to our experiments, they are the CG dataset [25], the FPHA dataset 
[26], and the UAV dataset [27]. For the final classification, we employ fully connected 
layers and the softmax as the loss function. The experiments were conducted on an i7 
CPU with 16GB of memory with Python. Extensive comparative methods are used for 
comparisons. 

 
(a) (b)

(c)
Figure 3. Performance comparison with different epochs on different datasets. 

4.1. CG dataset 

Cambridge-Gesture (CG) Dataset [25] comprises 900 image sequences, encompassing 9 
gesture categories. These categories are defined by 3 fundamental gesture shapes and 3 
fundamental actions. Thus, the objective of this dataset is to simultaneously classify 
different shapes and actions. To utilize the CG database, each frame's image was 
dimensionally reduced to 100 by PCA, yielding a 100×100 covariance matrix. 

In this task, the sizes of BiMap weights are 100×80 and 80×50. To obtain 
submanifolds at different scales, the sizes of Bimap weights are 50×25, the multi-scale 
submanifolds result in submanifolds with length and width of 2, 3, 4, and 5, respectively, 
and the multi-scale submanifold extraction yields four groups of submanifolds, each with 
a respective count of 16, 9, 4, and 1, the dimension reduction ratios for the submanifolds 
in each submanifold group are 16/8, 9/6, 4/2, and 1/2 respectively. 

We have rewritten the MSNet in Python and conducted comparative experiments 
with the proposed network MSNet-bn-attention. As depicted in Figure 3(a), comparing 
to the original MSNet, the proposed method always outperforms the MSNet in most of 
the 5000 epochs. As shown in the second column of Table 1, the MSNet with different 
scales [19] are also inferior to our method. Comparing to other methods, the proposed 
method achieves the best recognition rate. 
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4.2. FPHA dataset 

First-Person Hand Action (FPHA) benchmark dataset [26] is a collection of RGB-D 
video sequences comprised of more than 100K frames of 45 daily hand action categories. 
FPHA involves 26 different objects in several hand configurations. To utilize the FPHA 
database, the image of each frame was dimensionally reduced to 63 by PCA, yielding a 
63x63 covariance matrix. 

Table 1. Recognition rates (%) comparison on different datasets. 

Method CG FPHA UAV 
GDA [28] 88.68 N/A 28.13 
CDL [15] 90.56 N/A 31.11 
PML [14] 84.32 N/A 10.66 
LEML [2] 71.15 N/A N/A 

SPDML-Stein [13] 82.62 N/A N/A 
SPDML-AIM [13] 88.61 76.20 N/A 

HERML [29] 88.94 76.17 N/A 
MMML [16] 89.92 75.05 N/A 

GrNet [3] 85.69 77.57 35.23 
SPDNet [1] 89.03 85.57 N/A 

SymNet [30] 89.81 82.96 N/A 
MSNet-H [21] 89.30 85.74 N/A 

MSNet-PS [21] 90.14 80.52 N/A 
MSNet-AS [21] N/A 82.26 N/A 

MSNet-S [21] 90.14 86.61 N/A 
MSNet-MS [21] 91.25 87.13 N/A 

Lie Group [31] N/A 82.69 N/A 
HBRNN [32] N/A 77.4 N/A 
JOULE [33] N/A 78.78 N/A 

Two stream [34] N/A 75.30 N/A 
Novel View [35] N/A 69.21 N/A 

TF [36] N/A 80.69 N/A 
TCN [37] N/A 78.57 N/A 

LSTM [26] N/A 80.14 N/A 
H+O [38] N/A 82.43 N/A 

DARTS [39] N/A 74.26 36.13 
FairDARTS [40] N/A 76.87 40.01 
MSNet (Python) 90.5 88.6 31.11 

MRMML [41] N/A N/A N/A 
SPDML [13] N/A N/A 22.69 

GEMKML [4] N/A N/A N/A 
ManifoldNet [42] N/A N/A N/A 

DeepO2P [43] N/A N/A N/A 
MSNet-bn-attention 91.8 89.04 41.44 

In this task, the sizes of Bimap weights are 63×56 and 56×46. To obtain 
submanifolds at different scales, the sizes of Bimap weights are 46×36, the multi-scale 
submanifolds result in submanifolds with length and width of 5 and 6, respectively. The 
multi-scale submanifold extraction yields four groups of submanifolds, each with a 
respective count of 4 and 1. The dimension reduction ratios for the submanifolds in each 
submanifold group are 4/2, and 2/2 respectively. 

We compared our method with the MSNet in Python as depicted in Figure 3(b). 
10,000 epochs are evaluated in this experiment, the performance of MSNet is slightly 
higher than our MSNet-bn-attention before 2000 epochs, however our method 
outperforms MSNet in the epochs larger than 2000.  This result demonstrates the 
effectiveness of the submanifold-specific batch normalization and attention mechanism. 

E. Lv et al. / Learning Submanifold-Specific Normalization and Attention 31



Moreover, as shown in the third column of Table 1, our approach outperforms other 
methods. 

4.3. UAV dataset 

The UAV-Human (UAV) dataset [27] is designed for the understanding and analysis of 
human behavior in unmanned aerial vehicle imagery. It comprises a total of 67,428 
multimodal video sequences and 119 targets for action recognition. Among these 
sequences, 22,476 frames are dedicated to pose estimation, 41,290 frames and 1,144 
identities are used for person re-identification, and an additional 22,263 frames are 
allocated for attribute recognition. 

In this scenario, each action video is described by an SPD matrix of size 51×51. 
Finally, the seventy-thirty-ratio (STR) protocol is applied to construct the gallery and 
probes from the randomly picked 16,724 SPD matrices. On this dataset, the sizes of the 
connection weights are set to (51×43, 43×36). To obtain submanifolds at different scales, 
the sizes of Bimap weights are 36×25 and 50x25. The multi-scale submanifolds result in 
submanifolds with length and width of 2, 3, 4, and 5, respectively. The multi-scale 
submanifold extraction yields four groups of submanifolds, each with a respective count 
of 16, 9, 4, and 1. The dimension reduction ratios for the submanifolds in each 
submanifold group are 16/8, 9/6, 4/2, and 1/2 respectively. 

The rewritten algorithm of MSNet in Python is compared to the proposed method as 
depicted in Figure 3(c). From the result, we can see that our method achieves significant 
improvement comparing to the original MSNet. The reason maybe that the human action 
in UAV dataset is complicated, and the different shape of hand or leg should be paid 
different attention for classification. The experimental result with other methods is 
presented in the fourth column of Table 1, the proposed MSNet-bn-attention still 
achieves the best result. 

5. Conclusion 

In this paper, we successfully introduced a batch normalization technique for analyzing 
the distribution of submanifolds extracted by the multi-scale submanifold network. And 
then, we innovatively designed an attention mechanism specifically tailored to 
submanifolds mapped to Euclidean space. Experimental results on visual classification 
of gesture and human action recognition demonstrate the superiority of our approach. 
Compared to the recent MSNet, the proposed method usually has better performance on 
various datasets, especially on the human action recognition dataset of UAV. These 
results illustrate the signification of manifold normalization and the submanifolds 
attention model. To the best of our knowledge, this work is the first to integrate the multi-
scale submanifold network with the submanifold normalization and submanifold 
attention mechanism. 
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