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Abstract. Evaluating the similarity of smart homes is the basis for selecting the 
most suitable daily activity recognition model for migration and a key step in 
achieving model transfer in heterogeneous smart home environments. In this 
paper, we propose an improved DTW-based method for calculating the similarity 
of smart homes, which is used to select source smart homes that are similar to the 
target smart home. Firstly, the method standardizes the sensor mapping space and 
the daily activity space. Then the spatial features of the sensors are combined to 
calculate the similarity between the source smart home and the target smart home 
using an improved Dynamic Time Warping (DTW) algorithm. As a result, the set 
of candidates with similar source smart homes is obtained. Finally, fine-tuning is 
performed to evaluate the model transfer effect of similar source smart homes. The 
experimental results show that the daily activity recognition model selected by the 
proposed method can obtain the optimal transfer effect. 
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1. Introduction 

Smart homes are designed to detect the daily activities of residents through non-
invasive sensors deployed in smart homes. Daily activity recognition enables early 
diagnosis of residents’ cognitive health conditions, such as mild cognitive impairment 
and Alzheimer’s disease, facilitating timely medical interventions for affected 
individuals. 

Diagnosing cognitive impairments is challenging and requires long-term tracking 
of residents’ daily trajectories to identify abnormal patterns. On the other hand, the 
global population of individuals with Alzheimer’s disease is estimated to be around 47 
million and is projected to reach 132 million by 2050. The caregiving costs for global 
cognitive impairment patients amount to a staggering $800 billion, posing a significant 
burden on countries worldwide. Research on daily activity recognition based on smart 
homes can contribute to the early detection of residents’ cognitive impairments, 
enabling individuals to take effective measures for early prevention or slowing down 
the progression of the disease, thus reducing society’s caregiving costs. 
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Therefore, the research on the resident’s daily activity recognition in smart homes 
holds profound economic and societal significance 

2. Related Work 

Cook et al. identified the variations in smart homes, residents’ habits of daily activities, 
and the diversity in the spatial distribution of daily activity categories as the root causes 
of challenges in transferring daily activity recognition models [1]. Overcoming these 
differences has become a primary concern in addressing the transferability of daily 
activity recognition models. 

Currently, research on the transfer of daily activity recognition models is still in 
the exploratory stage and lacks influential research outcomes. And precision and recall 
on public datasets remain relatively low. The limited research achievements in this area 
can be summarized in the following three aspects: 

(1) Mapping of daily activity categories between the source and target smart 
homes  

Hu et al. conducted a web search to find relevant web pages by using daily activity 
categories as keywords. By assigning weights to different pages and calculating the 
similarity of web pages, they determined the similarity of daily activity categories 
between the source and target smart homes. Finally, a similarity threshold was used to 
annotate the daily activities in the target smart home [2]. 

(2) Mapping of daily activity features between the source and target smart homes  
Samarah et al. proposed a fog computing-based framework for daily activity 

recognition, where the mapping of daily activity features was achieved by calculating 
the similarity of sensor environments between the source and target smart homes [3]. 
Chiang et al. argue that the key to daily activity recognition in heterogeneous smart 
home environments lies in the representation of daily activity features and the feature 
alignment strategy between the source smart home and the target smart home. Based on 
this perspective, they proposed a mapping algorithm for daily activity feature 
decomposition, combination, and alignment for daily activity recognition [4].  

(3) Transfer of daily activity recognition models 
Wemlinger et al. initially defined a semantic feature space model shared between 

the source and target smart homes [5]. They calculated the parameters of the semantic 
feature space based on the distribution of daily activity samples in both homes [6]. 
Subsequently, they applied a model-based transfer learning method for daily activity 
recognition using this feature space [7]. Hu et al. proposed a transfer learning-based 
approach for daily activity recognition. Their method involved computing the sensor 
probability distributions for each daily activity in the source and target smart homes. 
The labels of the nearest daily activities in the source smart home were assigned as the 
labels for the target smart home’s daily activities. This method relaxed the assumptions 
of the same feature space, label space, and underlying distribution and facilitated model 
transfer across different daily activity recognition tasks [8].  

3. The Proposed Approach  

When the daily activity recognition model built in the source smart home is transferred 
to the target smart home, there are usually multiple daily activity recognition models 
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built based on the source smart home that can be used as candidate models for 
transferring to the target smart home [9]. How to select the most suitable one from 
multiple candidate daily activity recognition models to transfer is the primary problem 
of transferring daily activity recognition models in heterogeneous smart home 
environments. Since the daily activity recognition model is generated based on the 
sensor event streams triggered by daily activities in the smart home, calculating the 
similarity of sensor distributions and sensor event streams in the smart homes becomes 
crucial for selecting the most appropriate model for transfer. The more similar the sensor 
distributions and sensor event streams are, the better the transfer effect will be. 
Otherwise, it may lead to a negative transfer. Combining the spatial characteristics of 
smart homes, this chapter proposes a method to calculate the similarity of smart homes 
based on the improved DTW and Fine-Tune algorithms, as shown in Figure 1. 
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Figure 1. Smart home similarity calculation method 

3.1 Data Preprocessing 

The first step in data preprocessing is to map multiple sensors of the same type and in 
the same location from different smart homes to a single sensor. 
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Figure 2. Data processing flow chart 

After unifying the sensor space, the sensor event streams are segmented using a 
segmentation method based on instances of daily activities. Then, the extracted 
sequences of sensor names are used as samples for daily activities. Since the cut daily 
activity samples are of different lengths, a fixed window size is set in this paper, to 
ensure that each input daily activity sample is of the same length to facilitate network 
training. If a daily activity sample is smaller than the fixed window size, it is padded 
with the word “no”. After that, the Word2Vec algorithm is applied to convert the daily 
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activity samples into numerical vectors. The entire data processing flow is illustrated in 
Figure 2. Here, “sn” represents the original sensor names, “resn” denotes the renamed 

sensor names after sensor mapping, “ ” represents the numerical vectors of “resn”, 

and “ ” represents the numerical vectors of daily activity samples, composed of 

multiple numerical vectors of sensor names triggered by the daily activity [10]. 

3.2 Smart Home Similarity Calculation Based on Spatial Features 

The method for calculating smart home similarity based on spatial features is shown in 

Algorithm 1. We let SH = {sh1, sh2, ..., shn} be a set of smart homes. For sh  SH, 
sh.FA represents its functional area set, and sh.SC is the sensor category set of sh. 

SH.FS = sh1.FA  sh2.FA    shn.FA  sh1.SC  sh2.SC    shn. SC represents 
the feature space of the smart home set. Given a set of source smart homes, SH = {sh1, 
sh2, ..., shn}, and a target smart home sh*, the sensors of each smart home are divided 

into several categories according to the feature space of SH{sh*}. Then, the number 
of sensors belonging to the same category in each smart home, denoted as q, is 
calculated. Based on this, the sh.L feature vector is calculated, which consists of the 
number of sensors under all categories in a particular smart home environment. The 
feature vectors of the source smart home are used for training a classifier, which yields 
the classification of the feature vector for the target smart home. Afterward, the source 
smart homes corresponding to the classified label are removed from the SH set for the 
next classification. The source smart homes that belong to the top three classifications 
are selected as the candidate set of similar source smart homes for the target smart 
home. 

Algorithm 1  Similar source smart home selection algorithm based on spatial 
features 

Input： SH={sh1, sh2, …, shn},  the set of source smart home 

sh*,                                    Target Smart Home 

Output：  sh#SH,  candidate similar source smart homes for the target 

domain 

1.   sh# 

2.   for each sh in SH{sh*} 

3.     sh.L  

4.     for each f in SH{sh*}.FS 

5.       qgetQuantity(sh, f) 

6.       sh.Lsh.L{(f, q)} 

7.     end for 

8.   end for 

9.   for each sh in SH 

10.     if similarity(sh.L, sh*
.L) then    //Classification 

11.       sh#sh 

12.       delete(sh,SH) 

13.     end if 

14.   end for 

15.   return sh# 
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3.3 Smart Home Similarity Calculation based on Improved DTW Algorithm 

After obtaining three candidate source smart homes that are similar to the target smart 
home based on spatial features, we propose an improved DTW algorithm to further 
calculate the similarity of the data distribution in the daily activity sample sets between 
the candidate source smart homes and the target smart home. The aim is to identify the 
most similar source smart home in the candidate set to the target smart home in terms 
of data distribution. The higher the similarity of data distribution between two smart 
homes is, the more transferable components there are, and the daily activity recognition 
model trained on the source smart home with similar data distribution is also the most 
suitable for the target smart home.[11] 

The schematic diagram of the improved DTW algorithm is shown in Figure 3 and 
consists of two steps: DTW Barycenter Averaging (DBA) compression [12] and DTW 
distance calculation [13]. 
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Figure 3.  Smart home similarity calculation based on the improved DTW algorithm 

Firstly, since the DTW algorithm is primarily used for distance calculation 
between two time series and is not suitable for computing distances between sets of 
daily activity samples, we employ the DBA method to calculate the average sequences 
of the candidate source smart home’s and target smart home’s daily activity sample 
sets, respectively. Based on this method, multiple daily activity samples are 
compressed into one average daily activity sample. The DBA algorithm is an iterative 
process that performs the following two steps in each iteration: 

(1) We calculate the DTW distance between each daily activity sample and the 
refined temporary average daily activity sample to determine the relationship between 
the coordinates of the average daily activity sample and the coordinates of the daily 
activity sample set.  

(2) In the first step, each coordinate of the average daily activity sample is updated 
to the coordinates of the center of gravity associated with it.  

Next, the compressed average daily activity samples of the source smart home and 
the target smart home are denoted as seq1 = {x0, x1, …, xa-1, xa} and seq2 = {y0, y1, …, 
yb-1, yb} respectively. The DTW method is used to calculate the pairwise distance 
between them. A smaller distance indicates higher similarity, while a larger distance 
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indicates lower similarity. In addition, the DTW method used in this study is an 
optimized approach that handles distance calculation for periodic sequences better, 
especially when two-time series have common subsequences. The optimized DTW 
algorithm mainly consists of the following three steps: 

In the first step, we calculate the original DTW distance, denoted as DTW1, 
between the average daily activity samples of the source smart home and the target 
smart home. The main idea of DTW is to compute the shortest distance path between 
two average daily activity samples using dynamic programming, which measures the 
similarity between them. Calculating the DTW distance requires satisfying the 
following three conditions: 

(1) Boundary Constraint: The selected path must start from the bottom left corner 
and end at the top right corner, meaning that the starting and ending points of the two 
average daily activity samples should correspond to each other. 

(2) Continuity: Each data point in the average daily activity samples has a 
corresponding data point. 

(3) Monotonicity: The data points of all average daily activity samples should not 
cross-correspond with each other. 

To calculate the DTW distance for the given source and target smart home average 
daily activity samples seq1 and seq2, the cumulative average daily activity sample 
distance matrix D needs to be computed. For the leftmost column of the matrix, the 
cumulative distance calculation is performed as shown in Equation (1); for the bottom 
row of the matrix, the cumulative distance calculation is performed as shown in 
Equation (2); for the remaining values in the matrix, the cumulative distance 
calculation is performed as shown in Equation (3); when i=0 and j=0, the matrix value 
is calculated, as shown in Equation (4). An example of DTW alignment is shown in 
Figure 4. 
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Figure 4. Diagram of an example of DTW alignment 
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The process of calculating the DTW distance starts from the first data point of both 
average daily activity samples and continues until the last data point. The alignment of 
each data point is determined using the minimum value decision method, which 
transforms the calculation of DTW distance into a calculation of subsequence distance 
for the average daily activity samples. The original DTW calculation equation is shown 
in Equation (5). 

In the second step, the lengths of seq1 and seq2, as well as the length of the longest 
common subsequence, denoted as Len(seq1), Len(seq2), and L, respectively, are 

obtained. A penalty factor  is calculated, using the penalty factor equation shown in 
Equation (6). 

In the third step,  is multiplied by the original DTW distance to obtain the 
optimized DTW distance between the average daily activity samples of the source smart 
home and the target smart home. This optimized DTW distance is denoted as DTW2, and 
the equation for DTW2 is shown in Equation (7). 

4. Results 

4.1 Dataset Introduction 

The datasets used in this experiment are the HH101 to HH109 datasets provided by 
CASAS [14]. Among them, the HH101, HH102, and HH103 datasets are selected as 
the target smart homes. All datasets except for the target smart homes are considered as 
candidate source smart homes, from which the top three candidates with similarity are 
chosen for knowledge transfer.  

4.2 Smart Home Similarity Calculation  

When HH101 is chosen as the target smart home, the HH102 to HH109 datasets are 
considered as the candidate source smart home collection. When HH102 is chosen as 
the target smart home, the HH101, HH103 to HH109 datasets are considered as the 
candidate source smart home collection. When HH103 is chosen as the target smart 
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home, the HH101, HH102, and HH104 to HH109 datasets are considered as the 
candidate source smart home collection. 

We employ two classifiers, K-Nearest Neighbor (KNN) and Naive Bayes (NB), to 
calculate the spatial feature similarity between the candidate source smart homes and 
the target smart home. The top three candidate source smart home datasets that exhibit 
the most similar sensor spatial distribution to the target smart home are selected. The 
KNN classifier is chosen for its mature theory and high accuracy, while the NB 
classifier performs well in training with small-scale data.  

Next, the DTW method is employed along with the DBA method to calculate the 
data distribution similarity. Firstly, the DBA method is used to compress the collection 
of daily activity sample sequences into a single vector representation, enabling time 
series similarity measurement. Then, the DTW method is used to calculate the distance 
between vectors, and the candidate source smart home datasets are sorted in ascending 
order based on the distances. The top three source smart home datasets are selected as 
the candidate similar source smart home set for the target smart home. 

4.3 Experimental setup and results analysis 

During the fine-tuning process, similar source smart homes are used as the training set, 
and 20% of the data from the target smart home is randomly selected as the fine-tuning 
training set, while the remaining 80% of the data from the target smart home is used as 
the testing set. Additionally, the KNN classifier and NB classifier are separately used to 
calculate the spatial feature similarity, enhancing the generalizability of this method. 
Finally, the top three source smart homes ranked by similarity to the target smart home 
are used for knowledge transfer, and the patterns of dataset similarity and transfer 
effects are obtained.  

When the DTW distance difference is less than 1, as shown in experiments 1 to 3 
when KNN is used as the classifier, HH101 is the target smart home, and HH105, 
HH102, and HH103 are selected as the transfer source smart homes. The DTW 
distance differences range from 0.52 to 0.95. The accuracy is almost equal, with slight 
anomalies in accuracy when HH102 and HH103 are the source smart homes. However, 
this phenomenon is reasonable as it occurs when the DTW distances are close, and it 
confirms the conclusion of this study, which is that the similarity between datasets can 
reflect the transfer effects of source smart homes to some extent. Similar situations can 
be observed in experiments 13 to 14. When NB is used as the classifier, HH102 is the 
target smart home, and HH109 and HH105 are selected as the transfer source smart 
homes. The DTW distance difference is 0.27, and the accuracy difference is only 
0.40%. There are slight anomalies in precision and F1-score, with differences of 0.45% 
and 1.24% respectively. The transfer effects are not significantly different. In 
experiments 7 to 8 (same as experiments 16 to 17), when KNN (NB) is used as the 
classifier, HH103 is the target smart home, and HH101 and HH102 are selected as the 
transfer source smart homes. The DTW distance difference is 0.56. There is a slight 
anomaly in the recall, with a difference of 0.48%, while the other indicators follow the 
negative correlation pattern. 

Additionally, in most cases where the target smart home is the same, the most 
similar source smart home (the one with the smallest DTW distance among the 
candidate similar source smart homes) and the least similar source smart home (the one 
with the largest DTW distance) have DTW distance differences greater than 1, 
resulting in significantly different transfer effects. As shown in experiments 7 and 9 
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(same as experiments 16 and 18), when KNN (DB) is used as the classifier, HH103 is 
the target smart home, and HH101 and HH105 are selected as the transfer source smart 
homes, the DTW distance difference is 1.62, with an accuracy difference of 6.37%, 
precision difference of 8.85%, recall difference of 8.07%, and F1-score difference of 
9.32%. Similarly, in experiments 10 and 12, when NB is used as the classifier, HH101 
is the target smart home, and HH109 and HH102 are selected as the transfer source 
smart homes, the DTW distance difference is 5.55, with an accuracy difference of 
3.56%, precision difference of 5.54%, recall difference of 3.95%, and F1-score 
difference of 4.74%. In experiments 13 and 15, when NB is used as the classifier, 
HH102 is the target smart home, and HH109 and HH106 are selected as the transfer 
source smart homes. The DTW distance difference is 3.14, with an accuracy difference 
of 3.20%, precision difference of 10.61%, recall difference of 2.91%, and F1-score 
difference of 4.29%. 

From the overall analysis of the experimental results, the proposed similarity 
calculation method for smart homes allows the selection of source smart homes with 
better transfer effects from a large number of datasets for fine-tuning. The study 
provides distance metrics, and most of the data sets are consistent with the pattern that 
DTW distance is negatively correlated with migration effects. Moreover, when the 
target smart home is the same, a DTW distance difference greater than 1 leads to more 
pronounced differences in transfer effects. 

5. Conclusions 

We propose a smart home similarity calculation method based on an improved DTW 
and fine-tuning. The method first finds the first three candidate source smart homes with 
similar spatial characteristics by the spatial characteristics of the sensor layout in the 
smart home. Then, an improved DTW algorithm is used to calculate the similarity 
between the daily activity sample sets of the target smart home and the candidate source 
smart homes. Subsequently, a fine-tuning approach is employed to evaluate the transfer 
effects of the selected candidate similar source smart homes’ models. Finally, 
experimental results in Table1 and Table2 demonstrate that the daily activity recognition 
models selected using the smart home similarity calculation method achieve optimal 
transfer effects in the task of daily activity recognition for the target smart home. 

Table 1. Results of the experiments based on the KNN classifier 

Number Target Source Accuracy Precision Recall F1-score DTW 

Experiment 1 HH101 HH105 0.7060 0.6158 0.6081 0.5962 11.80 

Experiment 2 HH101 HH102 0.7024 0.6047 0.5791 0.5780 12.23 

Experiment 3 HH101 HH103 0.7042 0.5803 0.5616 0.5488 12.75 

Experiment 4 HH102 HH101 0.8299 0.6047 0.6102 0.6000 12.23 

Experiment 5 HH102 HH103 0.7900 0.5773 0.5643 0.5611 13.30 

Experiment 6 HH102 HH105 0.7480 0.5553 0.5015 0.5116 16.02 

Experiment 7 HH103 HH101 0.7539 0.6848 0.6583 0.6678 12.75 

Experiment 8 HH103 HH102 0.7380 0.6596 0.6631 0.6458 13.31 

Experiment 9 HH103 HH105 0.6902 0.5963 0.5776 0.5746 14.37 
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Table 2. Results of the experiments based on the NB classifier 

Number Target Source Accuracy Precision Recall F1-score DTW 

Experiment I0 HH101 HH109 0.7380 0.6601 0.6186 0.6254 6.68 

Experiment 11 HH101 HH105 0.7060 0.6158 0.6081 0.5962 11.80 

Experiment 12 HH101 HH102 0.7024 0.6047 0.5791 0.5780 12.23 

Experiment 13 HH102 HH109 0.7520 0.5508 0.5053 0.4992 15.76 

Experiment 14 HH102 HH105 0.7480 0.5553 0.5015 0.5116 16.03 

Experiment 15 HH102 HH106 0.7200 0.4447 0.4762 0.4563 18.90 

Experiment 16 HH103 HH101 0.7539 0.6848 0.6583 0.6678 12.75 

Experiment 17 HH103 HH102 0.7380 0.6596 0.6631 0.6458 13.31 

Experiment 18 HH103 HH105 0.6902 0.5963 0.5776 0.5746 14.37 
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