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Abstract. This article proposes a method for building reduced-order models (ROMs) 
to address the issue of long solving time in traditional ANSYS finite element models, 
which can provide fast simulation results based on different loading conditions. 
Firstly, an orthogonal experiment is designed to obtain simulation results from the 
ANSYS model as training data. Secondly, the singular value decomposition (SVD) 
is combined with neural network regression to establish the reduced-order model. 
Then, the ROM generator software is built based on MATLAB. Finally, a stress 
reduced-order model of a specific finite element model is constructed, and the 
accuracy and efficiency of the proposed method are verified by comparing the 
simulation results with the results calculated by the reduced-order model, which can 
improve the solving efficiency while ensuring the accuracy of the solution. 
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1. Introduction 

In recent years, the development of digital twin technology has placed higher demands 

on the computational speed of models. Some complex finite element models have large 

datasets, leading to long computational cycles [1]. In this context, this article focuses on 

developing reduced-order models (ROMs) [2] by refining full-order finite element models 

into low-order models. ROMs can describe the system with quantitative accuracy and 

achieve almost real-time computing effects at a much lower computational cost than 

numerical simulations. 

Singular value decomposition (SVD) [3] is a widely used algorithm in reduced-order 

models. The principle of SVD is to use linear transformation to find the main components 

of high-dimensional vectors in the data and project them onto a low-dimensional vector 

space to reduce the dimensionality of the data. This set of feature vectors retains the main 

features of the original high-order vector and can be used to reconstruct the original high-

order vector. Based on the principle of SVD, this article proposes a fast method for 

building reduced-order models, significantly improving computational efficiency. 

Neural networks [4] can implement complex nonlinear mapping and theoretically fit 

any curve. The MATLAB neural network regression model [5] provides a 
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backpropagation (BP) [6] neural network that is trained by error backpropagation. It can 

easily create, train, evaluate, predict, and apply neural network models, learning and 

storing many input-output pattern mapping relationships without revealing a 

mathematical equation that describes this mapping relationship beforehand [7]. 

This paper studies the construction of reduced-order models (ROMs) that can 

quickly compute results based on working conditions using the principles of SVD 

decomposition and neural network regression. A universal ROM generator is developed 

based on MATLAB. Finally, an example of a stress field reduction model of a finite 

element model is constructed. 

2. Acquiring Training Data for Reduced-order Model 

This chapter introduces obtaining training data through the established finite element 

model. In this paper, the training data mainly refers to two parts, input data, and output 

data. The input data refers to working conditions like load, boundary, and contact 

conditions. The output data is the result data at each node, such as stress, strain, 

displacement, etc. 

2.1 Orthogonal Experimental Design 

The purpose of conducting orthogonal experimental design is to obtain equivalent results 

of a comprehensive large number of simulations with a minimum number of simulations, 

approximating the original finite element full-order model [8]. This paper uses the CCD 

sampling method in Latin hypercube design to design orthogonal experiments for a 

simple finite element model with 20 loads and temperatures, as shown in Table 1. 

2.2 Training Data Set Construction 

According to the designed 20 sets of orthogonal experiments, opposite loads were 

applied to the two loading holes of the model, as shown in Figure 1, and the temperature 

was applied to the whole model for numerical simulation. The stresses under 20 working 

conditions were obtained, as shown in Table 2. 20 working conditions were the input 

data. The stresses of all nodes under 20 sets of working conditions were the output data, 

collectively called the training data, which were later used to train the model to obtain 

the mapping relationship between working conditions and stresses. 

 

Figure 1. Finite element model loading method 
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Table 1. Work conditions for orthogonal test design 

Solutions c1 c2 c3 c4 c5 c6 c7 c8 c9 
c10 

…

… 
c20 

Force (MPa)  
135 405 525 15 285 225 345 255 555 75 

…

… 
585 

Temperature 

(℃)  

531.

25 

581.

25 

406.

25 

556.

25 

431.

25 

643.

75 

543.

75 

631.

25 

481.

25 

468.

75 

…

… 

418.

75 

Table 2. Stress obtained from finite element simulation 

Soluti

ons 

Nodes 

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 
…

… 
c20 

n1 
55.329 88.227 44.699 50.98 81.566 41.134 46.827 75.239 37.825 42.921 

…

… 
239.79 

n2 
166 264.65 134.14 152.96 244.67 123.45 140.5 225.7 113.52 128.78 

…

… 
382.51 

…… …… …… …… …… …… …… …… …… …… …… 
…

… 
…… 

n2344

22 
14.91 44.502 59.06 1.6524 31.68 24.55 38.054 27.863 63.765 8.3222 

…

… 
69.247 

3. Order Reduction of Result Data 

This chapter introduces how to lightweight the result data. Due to the fine mesh division 

of the finite element model and a large number of data points, it is cumbersome to directly 

establish the mapping relationship between working conditions and results, which cannot 

achieve real-time calculation. To establish a model for fast calculation, it is necessary to 

reduce the order of the result data and extract the main information of the result data. 

3.1 Eigenvalue Decomposition and Order Reduction of Field Data 

SVD decomposes the result data to obtain eigenvalues and eigenvectors. SVD can help 

us find the main components of the data by linear transformation and map high-

dimensional data to low-dimensional space, thereby reducing the dimensionality of the 

data. As shown in Figure 1, assuming an m×n matrix A composed of result vectors 

(original data), it can be decomposed into U, S, and V matrices by SVD, also known as 

singular value decomposition. S is the singular value matrix, a diagonal matrix composed 

of the singular values of A. U is the left singular matrix, V is the right singular matrix, 

and they are composed of the left/right singular vectors of A, respectively [9]. Both U and 

V are unitary matrices [10]. In many cases, the sum of the first 10% or even 1% of singular 

values accounts for more than 99% of the total sum of singular values. We can also 

approximate the matrix using the first k singular values and corresponding left and right 

singular vectors. In this way, A is approximately decomposed into an eigenvector matrix 

U and a coefficient matrix C [11], as shown in Equation (1) and Figure 2. 
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Figure 2. SVD Decomposition and Truncation of the First k-order Feature Vector Matrix 
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3.2 Reduced-order Error Analysis 

Root Mean Square Error (RMSE), or Standard Error, is a commonly used indicator to 

measure the difference between actual and predicted values. It is the deviation between 

the predicted and actual values in a finite number of measurement times i=1, 2, 3, ...n [12]. 

RMSE is commonly expressed in the following Equation (2). 

RMSE= nyy
i
/)

i




（  (2) 

where n is the number of measurements, that is, the number of samples; yᵢ is the true 

value, ŷᵢ is the predicted value, and Σ denotes summing over all samples. (ŷᵢ-yᵢ) is the 

deviation of each set of predicted values from the true values. 

The smaller the value of RMSE, the better the model's predictive performance. 

Moreover, RMSE can consider both the deviation and the dispersion between the 

predicted and true values, so it is commonly used to measure the prediction accuracy of 

a model. 

Using this method, the RMSE of Um×kCk×n and Am×n at each order can be calculated, 

which helps us find the optimal order for dimension reduction that meets high accuracy 

and fast computation requirements. 

4. Prediction of Result Data 

This chapter introduces how to establish the relationship between working conditions 

and feature vectors. After the dimension reduction in Chapter 3, the result matrix A has 

been simplified into a matrix of feature vectors and a coefficient matrix. Therefore, the 

problem of establishing the mapping relationship between working conditions and results 

has changed to establish the mapping relationship between working conditions and 

feature vectors. 

4.1 Training Neural Network for Predicting Feature Vectors 

Firstly, the structure of the neural network is defined, including the number of nodes, 

layers, activation functions, etc., for the input layer, hidden layer, and output layer. Then, 

a neural network object is created using a neural network configurator. 

The data were divided into training, validation, and testing sets. The training set was 

used to train the data. The validation set was used to check if the network was 

generalizing and to stop training before overfitting. The testing set was used to test the 

network's generalization independently. Then, a training method was chosen, and the 

model training was initiated. The predictor variables were mapped to continuous 

responses by training the neural network.  

We feed all the operating conditions from the orthogonal experimental design into 

the trained network for feature vector prediction. Then we multiply the resulting vectors 

by the matrix Ck×n to obtain the predicted result data. 

4.2 Prediction Error Analysis 

According to the root mean square error (RMSE) calculation method in Section 3.3, the 
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error between the predicted results calculated by the prediction model and those 

calculated by the finite element model can be calculated for each set of operating 

conditions. This error includes the k-order reduction error from the previous chapter and 

the prediction error from this chapter. 

5. Reduced-order Model Generator 

The application platform of this system is developed based on MATLAB App Designer 

(R2022a) platform. Using MATLAB and the SVD principle and neural network 

regression technology described in the previous chapters, an application interface 

capable of generating reduced-order models is built, consisting of four parts: 

Check module: It imports training data, validates the consistency of the project data 

and displays information on the interface. 

Build module: It generates the reduced-order model and calculates and displays the 

reduced-order error under different orders. 

Validate module: It analyzes the error between the reduced-order and full-order 

models, displays the cloud map under different working conditions, and the specific 

values of each data point. 

Evaluate module: It exports and saves the reduced order model and displays the 

result cloud map based on the input working condition parameters. 

This chapter demonstrates the entire operation of the software by generating a 

reduced-order model of the stress field of a simple finite element model as an example. 

5.1 Check Module 

The check module imports the training data required to generate the reduced-order model 

and the mesh information related to the image display. The training data includes input 

and output data. In this example, the input data refers to the operating conditions, mainly 

two parameters, load, and temperature. The output data is the stress field under each 

operating condition. The mesh information includes element information and node 

information. The element information contains the element type and the node numbers 

corresponding to each element, and the node information refers to the node coordinates, 

as shown in Figure 3. 

 
Figure 3. Input and output data and grid information 
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5.2 Build Module 

In the Build module, the result matrix is subjected to SVD decomposition. Based on the 

root mean square error curve and the specific root mean square errors displayed in the 

table for different orders and singular values, an appropriate reduction order is selected 

to reduce the original result matrix. The corresponding U, S, and V matrices are truncated 

to the selected order. A MATLAB neural network regression model establishes the 

relationship between the input (operating conditions) and output (feature vectors), 

resulting in a reduced-order model, as shown in Figure 4. 

For this example, the root mean square error curve stabilizes after the ninth-order 

model. Increasing the order further does not significantly improve accuracy but greatly 

increases computational complexity. 

 

Figure 4. SVD decomposes the compressed field data as well as generates reduced-order models 

5.3 Validate Module 

In the Validate module, different working conditions can be selected to view the result 

contour plots and specific values of all nodes for both the full-order and reduced-order 

models and to compare the errors between them under different working conditions. The 

interface also displays the root-mean-square errors of the calculation results for the full-

order and reduced-order models under each working condition, as shown in Figure 5. For 

the model presented in this paper, the errors of the calculation results for the nine-order 

reduced-order model under each working condition are acceptable, which verifies the 

feasibility and accuracy of the proposed reduced-order method. 

 

Figure 5. The error between the reduced-order model and the simulation model 
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5.4 Evaluate Module 

In the Evaluate module, users can quickly predict results by dragging the slider to change 

the working condition parameters and are not limited to the working conditions in the 

previous training data. The results cloud map is displayed in real-time, as shown in 

Figure 6. 

 

Figure 6. A rapidly calculated visual reduced-order model 

6. Conclusion 

This paper investigates a model order reduction method based on singular value 

decomposition (SVD) and neural network regression. An orthogonal experimental 

design was conducted, and training data was obtained through ANSYS finite element 

numerical simulation. Secondly, the principle of SVD reduction was explained, the result 

data was reduced, the feature vector was extracted, and the calculation method of each 

order error was analyzed. Then, the relationship between the working conditions and the 

feature vector was fitted, the trained regression model was applied to input the working 

conditions and obtain the predicted results, and the prediction error was analyzed and 

compared. Finally, a model order reduction generator was successfully built based on 

MATLAB, which can construct a reduced-order model using SVD decomposition and 

neural network regression technology by importing input-output data and mesh 

information of the finite element model, achieving the goal of quickly calculating results 

based on working conditions. The effectiveness and accuracy of the reduced-order model 

were demonstrated through a specific case. 
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