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Abstract. Ship shaking can cause cargo PWP (pore water pressure) increasing, the 
prediction of PWP is helpful for navigation safety. This paper presents a machine 
learning method for PWP time series prediction learning. Source data of iron 
concentrate are collected from scaled model test, they are used to train a time series 
prediction model and test the accuracy and effective of our method. The proposed 
method is based on PSR (phase space reconstruction) and LSTM (Long Short-Term 
Memory) Network. A input matrix is constructed by phase space reconstruction 
technology and the prediction model can be learned by a specific Long Short-Term 
Memory Network. The single-step pore water pressure prediction model is achieved, 
when MSE loss function value is minimum, the R value 0.98 is maximum is better 
than the baseline R value 0.93. This result suggests that this PSR-LSTM is more 
effective than LSTM, it can be a complement for physical test and numerical 
simulation. 

Keywords. navigation safety; machine learning; phase space reconstruction; LSTM; 

time series prediction 

1. Introduction 

The granular bulk cargo is mainly transported by ship. Because of shaking of ship motion, 

the risk of liquefaction during shipping is increasing. From 2010 to 2020, cargo 

liquefication caused many accidents, the number of it is more than 32 in China [1]. 

Many researches give evidence that liquefaction of cargo is accompanied by an 

increase in PWP [2]. So, the PWP in granular bulk cargo is often used to predict the cargo 

liquefaction [3]. Therefore, an accurate prediction of shaking-induced PWP is significant 

for navigation safety. Numerous numerical studies for ship–cargo interactions have been 

reported. Based on UBC3D-PLM constitutive model, [4] assess cargo liquefication 
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potential. Reference [5] discussed the application of another constitutive model named 

UBCSAND. Experimental studies [6] mainly include scaled cargo hold model tests and 

[7] one-dimensional material column tests. However, these physical and numerical 

prediction models are not adoptable to quickly and conveniently make prediction. 

Increasing data volumes are driving new technologies, it helps us directly extract 

prediction models from raw data [8]. Machine learning is increasingly used in 

engineering [9]. Reference [10] used an RNN-based model to predict the hydrodynamic 

load generated by liquid storage tanks, and compared with the test results. Reference [11] 

predicted the dynamic mooring line response in real time through the LSTM neural 

network model. 

This article will try to make a prediction model for PWP based on the actual 

experimental measurements. The proposed machine learning method including PSR 

technology and LSTM. The next content includes three parts: Section 2 introduces the 

steps of the PSR-LSTM method. Next, Section 3 show, compare and discuss the 

prediction result of LSTM and PSR-LSTM. Finally, Section 4 summarizes the 

conclusions. 

2. Methodology 

This section shows the steps for constructing prediction model of PWP. They are PWP 

collection, time series reconstruction, and Long Short-Term Memory Network. 

2.1. Step 1: PWP collection 

Vibrating Wire Piezometer were used to measure the PWP change in scaled model. The 

experimental facility and scaled model are shown in Fig. 1. The iron samples were 

collected from the Laotangshan, Zhejiang province. Acceleration, frequency of shaking 

table and the percentage of water content of iron concentrate are considered. x(t) is the 

PWP value at time t . The purpose for collecting different time x(t)  is to make a 

prediction model, the prediction model can be written (1) as following: f is the objective 

prediction model for (x
1
,…,xn). y(t) is the time series of PWP. 

y�t�=f�x1,…,x
n-1

,xn� (1) 

 

Figure. 1 Six degrees of freedom shaking table and cargo hold model. 
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2.2. Step 2: Time Series Reconstruction 

According to Takens embedding theorem, PWP includes some hidden information, such 

as strain-stress response of cargo. To better model the collected time series, we consider 

the application of phase space reconstruction expressed in (2), structuring data dimension 

by stacking the state variable vector at fixed time instances: 

X�t� = �xt,x(t+τ),…,x(t+�d-1�τ)� (2) 

X�t� is the collection result in step 1, where τ is the delay step controlling the time 

interval, d represents embedding dimension controlling number of columns of X�t�. The 

selection of τ  and d is important, the reconstruction accuracy is related to these 

parameters. In this paper, both the mutual information (MI) and the false nearest 

neighbors (FNNs) method will be used to determine these two parameters. 

2.3. Step 3: LSTM Network 

The conditions of the Takens embedding theorem are satisfied, the result (3) of time 

series reconstruction consisting of reconstructed state vector as following, where each 

row in this matrix called state vector, each vector is d dimension, comparing with single 

1-dinmension pore water pressure value, the state vector represents more information. 

� x� x(1+τ)

x(1+τ) x�1+2τ�
⋯

x(1+�d-1�τ)

x(�1+τ�+�d-1�τ)

⋮ ⋱ ⋮

x(1+qτ) x(�+(q+�)τ) ⋯ x((1+qτ)+�d-1�τ)

� (3) 

The prediction model will be constructed, considering the time feature of pore water 

pressure, we will develop a LSTM Memory Network to learn a prediction model. 

Because of the extended memory block with a storage unit, LSTM has strong time 

awareness ability in time series processing, it can learn how long to retain state 

information. A stacked LSTM structure in Fig. 2 is defined as a deep learning model 

composed of multiple LSTM layers, every input time steps correspond to one output 

value. Hidden layers of stacking LSTM give the model more depth, it can better fit the 

change law of sequence data. 

Figure. 2 Structure of stacking Long Short-Term Memory Network. 

3. Results and Discussion 

The calculating processing is in Fig. 3. 
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Figure. 3 The training process of proposed method. 

3.1. Data Collection Result 

Ship rolling is simulated by horizontal motion of shaking table. The selected motion 

frequency is 1Hz and acceleration is 0.5g. Cargo hold model is partially filled with iron 

concentrate ore sample with 10% water content, the load depth is 0.25 m. A pore-water 

pressure sensors (PDCR81) located in the middle of the model at a distance of 0.1cm 

from the iron surface to track the evolution of the pore-water pressure increasing. A PWP 

is recorded in Fig. 4. On the first stage, the signal is transient back and forth fluctuations, 

pore water pressure is not accumulation, soil is mainly elastic deformation. On the second 

stage, the signal is not only transient back and forth fluctuations, but also average 

monotonic cumulative increasing, soil is elastoplastic deformation. On the third stage, 

the signal is undulating change in the time domain. Without external load, the signal falls 

to initial value, excess water pore pressure is dissipation. 

 

Figure. 4 The pore water pressure sequence collection result. 
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3.2. Time Series Reconstruction Result 

The delay step τ is defined by the AMI value. First, probabilities p(xt), p(xt+τ) and p(xt, 

xt+τ) in the computation of AMI for different τ=∆t, 2∆t,…,20∆t have been estimated. 

Fig.5 shows the computed AMI values. The first minimum AMI value occurs at τ=5∆t. 

Therefore, the delay step is 5. Fig. 6 shows the selection result for d. when d is17, 

percentage drop exceeds 90%, indicating the dimension can smoothly unfold the PWP. 

After defining the above two parameters, we can assemble the input matrix as (3), 

as input for machine learning. The reconstructed result is plotted in three-dimensional in 

Fig. 7. 

 

Figure. 5 Selection result of delay step τ. 

 

Figure. 6 Selection result of embedding dimension d. 

 

Figure 7 Reconstructed result in three-dimension space. 
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Figure. 8 Learned result based on PSR-LSTM. 

3.3. PSR-LSTM Learning Results 

LSTM and PSR-LSTM are respectively used to compared with the prediction 

performance. 70% data is training data, this part is used to calculated the parameters of 

a prediction model and get a convergent model, 15% data is validated data, this part of 

the data is used to calculate the generalization of the network. 15% data is test data, these 

are independent of the training data and are used to evaluate the performance of the 

trained predictive model. Shown in Fig. 8, learned result from the PSR-LSTM is closer 

to real data change, back and forth fluctuations have been well predicted, in comparison 

with Fig. 9, as a result, the feature of soil deformation can be learned by the PSR-LSTM 

prediction model. The input matrix can provide the LSTM with more information that is 

hidden in initial time sequence. In conclusion, with the same structure network, the PSR-

LSTM prediction model is more accurate than the LSTM prediction model. 

The training performance in Fig. 10, Fig. 11. MSE (mean squared error) is the 

average squared difference between prediction result and target result. The MSE is more 

lower, the performance is more better. The PSR-LSTM has better test performance, MSE 

is 0.3683, at epoch 6. LSTM MSE is 1.3111, at epoch 68, clearly the PSR-LSTM has 

faster convergence, so it is more effective for predicting pore water pressure. 

According to the correlation between prediction result and target result. If the R is 

1, it means there is a close relationship between them, if R is 0, it means a random 

relationship. The result is in Fig. 12, Fig. 13, R is 0.93 for LSTM and R is 0.98 for PSR-

LSTM. There is about 5% increase of R value. In conclusion, the output correctness of 

PSR-LSTM is also better LSTM. 

 
Figure. 9 Learned result based on LSTM. 
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Figure. 10 MSE for LSTM. 

 

Figure. 11 MSE for PSR-LSTM. 

 

Figure. 12 R Values for LSTM. 
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Figure. 13 R Values for PSR-LSTM. 

4. Conclusion 

This paper proposes a machine learning method predicting the pore water pressure of 

liquefied iron concentrate cargo. In comparison to traditional time sequence prediction 

methods LSTM, the proposed machine learning method provides reconstructed state 

matrix to gain relevant information of dynamic system. After, LSTM is utilized to learn 

a prediction model. Comparing with directly using LSTM, the PSR-LSTM is more 

effective and accuracy, it is an excellent candidate for applied in actual transportation 

and helpful to guide engineers to make more reasonable strategies for navigation safety. 
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