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Abstract. Conventional real-time optimization (RTO) requires detailed process 
models, which may be challenging or expensive to obtain. Data-driven correlation 
integral based RTO method is an attractive alternative to circumvent the challenge 
of developing accurate process models. However, the searching step size in 
conventional correlation integral based RTO is set by trial-and-error. In order to 
improve the efficiency of the correlation integral based real-time RTO method 
optimiszation algorithm and enhance the applicability of the system, an Bayesian 
optimal optimisation step-size control strategy using Bayesian optimization based 
on correlation integral is proposed for the traditional correlation integral 
optimisation method applied in industrial systems. Based on the data-driven steady 
state model, the adaptive control of the step size is achieved by avoiding the 
change of the tuning step size through the trial-and-error method due to different 
working conditions during the real-time optimisation control. Based on the 
proposed method, the application software has been developed. The simulation 
and industrial application results have verified the feasibility and effectiveness of 
the proposed method.original real-time optimisation software is improved, and the 
practicality of the method is proved by simulation and industrial practical 
application. 

Keywords. RTO; Correlation integral; Adaptive control; Bayesian optimizsation; 
Step-size control strategy 

1. Introduction  

For the steady-state optimization of production processes [1], the purpose of improving 

production efficiency can be achieved by changing the steady-state operating point 

without changing the existing production equipment, and traditional real-time 

optimization methods tend to determine the dynamic model of the system first [2-3], 

and the dynamic process is taken into account at the same time on the basis of steady-

state tuning [4]. However, for complex industrial processes, their dynamic processes 

are often complex, and it is difficult to   accurately model the dynamics of complex 

industrial processes. The data-driven correlation integral real-time optimization (RTO) 
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algorithm is a fast method [5-6] to estimate the steady-state cost gradient with dynamic 

operation data. Based on the above advantages, for complex large-scale chemical 

industrial processes, the method can perform feature extraction for nonlinear dynamic 

processes and based on this, it can optimize the operation of nonlinear complex 

processes that are difficult to establish accurate mechanism models. 

However, the search step size of the traditional correlation integral RTO method is 

obtained by the trial-and-error method [7], and it often takes a lot of time to find the 

appropriate step size when facing different working conditions, which is inefficient and 

has certain limitations. For multi-input and multi-output systems, when the decision 

variables of the control system are in the local steady state [8], there exists a locally 

optimal objective function [9], however, the current locally optimal objective function 

value cannot be taken as the global optimal value of the control system's objective 

function, and it may be trapped in the local extreme value point. 

Meanwhile, in order to efficiently perform global search and obtain the global 

optimal solution, some optimization algorithms that combine deterministic information 

[10] and stochastic information [11], i.e., modern optimization algorithms [12], have 

been proposed in recent years. Commonly used modern optimization algorithms 

include genetic algorithms [13], particle swarm optimization algorithms [14] and 

simple polygonal evolutionary algorithms (SCE-UA), etc[15-16]. The computational 

efficiency of the algorithms becomes a non-negligible issue when dealing with 

parameter optimization problems with complex models and large amounts of data, such 

as distributed models [17]. Although these automatic optimization algorithms perform 

relatively well in terms of computational accuracy, they still need to go through at least 

hundreds or even thousands of iterations to find a better set of parameter sets. As an 

effective solution for solving complex optimization problems that are non-convex, 

multi-peaked, and costly to evaluate, Bayesian optimization has gained wide attention 

in several fields in recent years [18]. The ideal solution can be obtained after only a few 

times of objective function evaluation, and the method has been widely used in the 

fields of system optimization, deep learning, environmental monitoring and life 

sciences [19-22], which provides a new way of thinking for solving complex system 

optimization problems. The core parts of the Bayesian optimization algorithm are the 

probabilistic agent model and the collection function. Commonly used probabilistic 

agent models include beta-Bernoulli model, linear model, generalized linear model, 

Gaussian process, random forest, and deep neural network. The acquisition function is 

generally constructed from the posterior probability distribution of the objective 

function, and the optimization algorithm selects the next evaluation node guided by 

maximizing the acquisition function to ensure that the total loss is minimized. 

Aiming at the multi-peaks and inefficiency waiting to be solved in the tuning 

process, this paper proposes a data-driven correlation-integral Bayesian optimization 

step-size control method based on the gradient relationship between the decision 

variables and the objective function calculated by correlation-integration, and the step-

size parameter formula and the objective function as the Bayesian optimization 

framework, which allows us to search for the globally optimal objective function value 

of the control system when the system is faced with different working conditions. The 

improved method greatly enhances the original algorithm. The improved method 

greatly enhances the applicability of the original algorithm and improves the efficiency 

of real-time optimization of the control process. 

This paper describes the principle of gradient extraction of the traditional 

correlation integral algorithm and presents the defects of the correlation integral 
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algorithm in Section 1; in Section 2 the adaptive step-size control method with 

Bayesian optimisation as the core is illustrated; Section 3 describes the development of 

a real-time optimisation software to apply the improved method and simulation is 

performed to validate the feasibility of the method; and the tuning of a real industrial 

model after the improvement of the method is performed in Section 4 to improve the 

economic efficiency; The main conclusions are given in Section 5. 

2. Problem Describes the Flaws in the Relevant Integral Algorithm 

The inefficiency of the step-size trial patch that exists in the traditional real-time 

optimization of correlation integrals is addressed as follows:For the steady-state 

optimisation of dynamic processes in multi-input multi-output systems, stochastic 

dynamic models are required: 
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where each variable in Eq. is defined as follows, ( )u t� ， ( )x t� ， ( )J t�  are the input 

variables, state variables and output variables of the system (1), respectively, and ( )w t�

、 ( )v t�
 are zero-mean Gaussian white noise.The objective function of the system is 

expressed as: 
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The tuning process needs to find the extremes of the objective function 

*

( ( ))
( ) max ( ( ( )), ( ), ( ), )

E u t

J t J E u t w t v t t

�

�

� � �  (3) 

In equation (3) *( )J t� is the optimal value of the optimisation objective function and 

( ( ))E u t� is the mean value of the tuning variables. By finding the gradient between 

( )u t� ， ( )J t�  that is, the gradient relationship between the decision variable and the 

target expectation, the use of correlation and integration method to drive the gradient 

between the two to 0, that is, the local extreme value of the objective function. 

Lemma 2-1 [6] Let the system (1) be able to stabilise around the interval around 

time 
0

( ( ))u E u t � , then when time 
0
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① The partial derivative of the optimisation objective function with respect to the 

mean value of the tuning variable is equal to the infinite integral of the linearised 

impulse response function: 
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② The necessary condition for the optimal value of the optimisation objective 

function is: 

0

( ) 0h t dt


 �

 
(5)

 

Lemma 2-2 [6] When the system (1) converges to the steady state operating point 

0
u and the tuning variable converges to the mean value of the tuning variable
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In the above equation, when ( ) 0v t � , 
0

( ,0)J u is the static relationship between 

the optimisation objective function of system (1) and the decision variables. Then, from 

Lemma 2-2, when the fluctuations and disturbances of the decision variables are small 

enough, the mean values of the decision variables are equivalent to the static tuning of 

the system. Therefore, the above dynamic process steady-state optimisation problem is 

transformed into changing the set values of the decision variables so that the static gain 

of the optimisation objective function on the decision variables tends to 0. However, 

since the specific form of the objective function is unknown, the gradient information 

cannot be obtained directly according to Eq. (6). And the static gain of the tuning 

variable for the optimisation objective function is related to the autocorrelation integral 

of the tuning variable and the cross-correlation integral of the tuning variable and the 

optimisation objective function. 
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uJ
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 is the cross-

correlation integral between the tuning variables and the optimisation objective 

function in finite time, ( , )
uu
k T M
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 is the autocorrelation integral between the tuning 

variables in finite time, ( , )
uw
k T M
� �

 is the correlation integral between the tuning 

variables and the disturbances, and T，M are the integration constants. Then, the real-

time gradient information can be obtained indirectly from the real-time data of the 

tuning variables as well as the optimisation objective variables that can be obtained in 

real-time. 
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where 
0
t  is the central locus during the data period. 

From equation (7), it can be seen that the static gain 
h
k  can be estimated from the 

computed data of 
0

( , , )
uJ

k T M t
�

�

 as well as 
0

( , , )
uu
k T M t
� �

 using the least squares 

algorithm. 

After obtaining the static gain 
h
k , the conventional correlation integral 

optimisation algorithm uses the following iterative algorithm to change the set values 

of the tuning variables: 

( 1) ( ) ( )
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(10) 

The parameter that controls the tuning step size as well as the direction is the 

parameter   in the above equation 

( 1)
sp

u i �
 is the set value of the tuning variable at the next optimisation moment, 

and  is the constant of the weighting coefficients, with the sign of   being 

determined by whether a very small or a very large value is sought. The sign of   is 

determined by whether the value is extremely small or extremely large. If an extremely 

large value is sought, then   takes on a positive value; if an extremely small value is 

sought, then   takes on a negative value. The value of the parameter is also 

problematic, when the value of the   weight coefficient constant is large, it will lead to 

the tuning of the system's objective function to skip the local optimum, and when the 

value of the   weight coefficient constant is small, it will lead to the tuning of the 

system's objective function to search for the global optimum in a very slow and 

inefficient process . Therefore, the value of the parameter is very important, the 

traditional correlation integral real-time optimization method, when facing the 

optimization under different working conditions, can only take the value of the step-

size parameter through the trial-and-error method, and can't achieve the effect of 

adaptive to the working conditions, according to the above description of the problems, 

this paper proposes the Bayesian parameter optimization as the core of the variable 

step-size control strategy on the basis of the original correlation integral algorithm. 

3. Improved Correlation Integral Bayesian Optimal Step-size Control Strategy 

Bayesian optimisation transforms complex optimisation problems into optimisation 

functions to be solved as follows: 

*

argmax ( )d
x V R

X J x
 



 

(11) 

Where, x  denotes a d -dimensional decision vector, V denotes the decision space, 

( )J x  denotes the objective function, and the exact form of ( )J x  may not be known 

and is a black-box function. But the value of ( )J x  can be observed using experiments. 

The iterative relationship in Eq. (10) reflects the relationship between the decision 

variables and the tuning step parameter and the decision variables and the optimisation 
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objective function gain at the current and next moments. In the next section of the 

paper, the real-time optimization software will be used to change the set values of the 

decision variables according to the iterative relationship in the above equation to find 

the decision variables of the local optimal steady state operating point, and then analyse 

the optimal objective function value of the optimal steady state operating point. For 

control parameter  , when its value is large, it means that the step size is large, and 

vice versa. When the system decision variables and objective function values are close 

to the optimal operating point, the system should adaptively reduce the step size, so as 

to gradually approach the optimal operating point, and obtain more accurate critical 

point calculation results. According to the above analysis, the optimal step-size control 

strategy should be adaptive in order to ensure that the system is optimised to the precise 

optimal objective function value and at the same time improve the computational 

performance. 

Bayesian optimisation is a very effective global optimisation algorithm, and the 

goal is to find the global optimal solution in Eq. (11). In order to overcome the multi-

peak situation of the optimisation objective function, the step-size control strategy can 

directly find the global optimal objective function value, so that the step-size can be 

adjusted adaptively with the slope size of the objective function curve, in the region of 

the curve with a larger slope to control a smaller step-size, in the region of the curve 

with a smaller slope to control the step-size is relatively large, then it can be ensured 

that the step-size is more appropriate throughout the optimisation of the objective 

function curve, thus avoiding the multi-peak situation . This can avoid the situation of 

multiple peaks in the curve. The slope of the optimisation objective function curve can 

be expressed by equation (12): 

h

dJ
k
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In order to enable the step size to follow the optimisation objective function for 

adaptive adjustment, the Bayesian parametric optimal step size control strategy is 

proposed viz: 
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Where 
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k is the maximum value of the slope of the optimisation objective 

function curve and | |
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The parameters in Eq. (13) mainly include four, , , ,a b c d are the parameters 

controlling the calculation of step size, which can be calculated according to the 
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Bayesian optimisation method. From the image of the exponential function of e , it can 

be seen that at the beginning of the calculation, the size of the step size is mainly 

determined by a , c , at this time it is necessary to set the appropriate value to make 

the step larger; after the calculation is carried out for a period of time, the slope 

gradually increases, and the influence of the parameters a , b  gradually increases, and 

the influence of the value of c gradually decreases. When approaching the critical point, 

the step size needs to become smaller, and at this time the step size is determined by the 

constant d . 

The collection function of Bayesian optimisation is the basis for purposefully 

searching the next evaluation point from the parameter space, and there are mainly 

three kinds: PI, EI, and UCB, in this paper, PI (Probability of Improvement) is selected 

as the collection function. PI indicates the possibility that the next sample point of the 

collection may improve the optimal objective function, as shown in the following 

equation: 
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Where 
*

v  is the optimal value of the current objective function; ( ) i  is the 

standard normal distribution cumulative density function;   is the balance parameter, 

by adjusting the size of   can avoid falling into the local optimum, to achieve the 

global search for the optimal value. 

The parameter optimisation process is shown in Figure1: 

 

Figure 1. Bayesian optimisation flowchart 

Its corresponding optimisation process is: 

①The real-time gradient information of the objective function and the decision 
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variable is extracted by correlation integration, and the initial value of the step function 

parameter is set, so that the initialised objective function distribution and sampling can 

be obtained. 

② The next evaluation point is actively selected, which can make the collection 

function maximised. 

③Add the newly collected samples to the historical sampling set. 

④ When the objective function reaches the local optimum, determine whether it is 

the global optimum and update the parameters to continue tuning. 

4. Verification of The Developed Software with Simulation 

The full name of the developed software is: "CIM-Tuner Multivariate Optimization 

Control Software". which is shown in figure 2. This software mainly constructs CIM 

optimization controller to control the controlled object based on Correlation Integral 

Algorithm (CIM), and Bayesian optimization method. The control process controls the 

controlled object through OPC. When controlled by OPC, the controlled object can be 

the DCS system of the actual industrial plant, or a simulation system built by Simulink 

and other simulation software on the local or remote computer. In this paper, the 

simulation is chosen to construct the control system by building simulink model, and 

real-time optimization is carried out under the premise of multiple peaks of the 

objective function, aiming at avoiding the emergence of multiple peaks through the 

improved Bayesian optimization with variable step-size control strategy, so as to 

realize one-time tuning to find the global optimal value of the objective function. 

①  is the main menu of software operation, Controller: initialization of the 

controller; Simulation: offline testing of the controlled system; OPC: the DMC 

controller through the OPC role in the controlled object; 

② is the trend graph of optimization variable (PV). 

③ is the trend graph of operation variable (MV) 

.  

Figure 2.CIM-Tuner software interface 
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The figure 3 builds the control system through simulink, connects to CIM-Tuner 

through the universal OPC server platform MatrikonOPC Explorer, and realises the 

target optimisation through CIM-Tuner. 

 
Figure 3. Built simulink simulation control system 

The figure 4 shows the multi-peak optimisation objective function of the system, it 

can be seen that multiple extremes occur in different intervals during the tuning process, 

and due to the fixed step size, adaptive control is not implemented, which leads to the 

system tuning process can not directly find the global optimum value of the objective 

optimisation function. 

 

Figure 4. CIM-Tuner simulation of the original algorithm optimisation objective function curve 

The figure 5 shows the tuning process of optimising the objective function through 

the Bayesian optimisation with variable step size control strategy. As can be seen from 

the figure, due to the adaptive adjustment of the tuning step size, there is no multi-polar 

values in the interval of the objective optimisation function during the tuning process, 

and it is possible to find the global optimal value of the objective optimisation function 

directly. 
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Figure 5. Optimisation objective function curve of CIM-Tuner simulation improvement algorithm 

5. Industrial Application 

The process flow based on this paper is the ethane recovery project procedure of 

Xinjiang Bazhou Tarim Energy Co., Ltd. which adopts advanced "propane pre-cooling 

+ expander refrigeration + double reflux ethane recovery" technology for ethane 

recovery, and produces ethane, liquefied gas and stabilized light hydrocarbons as main 

products. The gas from Dirun line, Yinglun line, Tirun line and Kirun line enters into 

the pipe cleaning device after summarization, and then enters into two dehydration and 

mercury removal devices in two rows after dust removal and metering; the wet gas 

removes the small amount of solid particles and liquids entrained therein, and then 

enters into the mercury removal tower from top to bottom, and then the wet gas after 

mercury removal is dewatered; the dewatered dry gas filters out molecular sieve dust 

and then enters into the cold box of the ethane recovery device. Through the cold box 

D line pre-cooling into the cryogenic separator gas-liquid separation, liquid phase 

throttling down pressure into the 21st layer of the tower plate of the upper 

demethanization tower; the gas phase into the expansion end of the expander expansion, 

cooling down into the 16th layer of the tower plate of the tower of the demethanization 

tower tower tower tower top gas by the cold box A line reheat into the expander 

compression end, compression, pressurization and cooling, to the separation of 

metering equipment; the bottom of the tower of the tower of the demethanization liquid 

phase throttling down pressure into the middle of the tower of de-ethane; the tower of 

the ethane recycling device cold box. The liquid phase at the bottom of the deethane 

tower is throttled and depressurized, and then enters the middle of the deethane tower; 

the gas at the top of the deethane tower is cooled by the condenser at the top of the 

deethane tower and then enters the reflux tank of the deethane tower to carry out gas-

liquid separation, and the liquid phase is pressurized by the reflux pump of the 

deethane tower and then goes to the top of the deethane tower to serve as a return flow. 

The SEPSim Tarim optimization algorithm test model was used for experimental 

validation of industrial applications, Figure 6 shows the SEPSim model building 

interface, where the unit gain OBJ_BM was set as the optimization objective value, the 

separator top temperature AIC-TV111_1, the expander outlet temperature AIC-Q-JT-1, 

and the deethanization tower top C2 control AIC-C2, were set as the three decision 

variables for tuning. 
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Figure 6. Test model of the Tarim optimisation algorithm 

The model's plant revenue OBJ_BM unit is billion/year, by tuning the model's 

dynamic process steady-state optimisation can increase the plant revenue from 8.326 

million/year to 8.708 million/year,increasing the revenue by 0.382 billion/year. The 

figure 7 shows the multi-peak situation of the device revenue tuning curve, from the 

figure can be seen due to the optimisation objective function there is a multi-peak 

situation, the tuning process is not strictly convex optimisation, there may be a short-

lived tuning in the opposite direction, the fundamental reason is that the tuning step is 

set to be unchanged, giving a fixed value of the tuning step is unreasonable, and should 

be adapted along with the control system objective optimisation function of the steady 

state optimisation: 

 

 

Figure 7. Optimisation curve of decision variables and objective function of the original algorithm for Tarim 

model 
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The results of the steady state optimisation of the dynamic process of the target 

device benefit by the Bayesian optimal step size control strategy are shown in the 

figure 8, which shows that the optimisation curve of the target function OBJ_BM does 

not have the phenomenon of multiple peaks, and due to the adaptivity of the tuning step 

size, it makes that the OBJ_BM can be tuned to the global optimum directly, avoiding 

multiple times of tuning, which improves the efficiency of the tuning.The tuning step 

size of the Bayesian optimization method is adaptive as shown in Table 1. 

 

 

Figure8. Optimisation curve of decision variables and objective function of the improved algorithm for the 

Tarim model 

Table 1 Variable step size control process data 

Step i   a  b c  d  

1 0.02 0.3025 1.824 2.464 -0.8283 

2 0.05 0.2209 2.765 3.650 -0.5361 

3 0.3 0.1867 3.5023 5.126 -0.1953 

4 0.45 -1.426 3.886 0.033 0.9602 

5 0.5 -1.551 4.231 0.027 1.0262 

6 0.1 0.1072 1.862 2.881 -0.0774 

7 0.05 0.2209 2.765 3.650 -0.5361 
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6. Conclusions 

This paper focuses on the inefficiency of the algorithm and the weak applicability of 

the working conditions due to the trial-and-error method used in the traditional 

correlation-integral real-time optimization method for tuning the step size, as well as 

the multi-peak phenomenon in the real-time optimization and tuning of the objective 

function of the steady-state optimization of the dynamic process, and further analyzes 

the phenomenon of multiple peaks, which is due to the irrational setting of the tuning 

step size parameter. On the basis of the original correlation integral real-time 

optimisation algorithm, combined with the Bayesian optimisation method, an adaptive 

variable step-size control strategy is obtained, and an improved algorithm is obtained to 

obtain the fitting parameters for variable step-size tuning. Based on the ethane recovery 

project process operation procedure of Tarim Energy Limited Liability Company, using 

the Tarim optimization model test algorithm of SEPSim, the original algorithm and the 

improved Bayesian optimization step-size control algorithm based on correlation 

integral were used to make a comparative analysis of the optimization target economic 

benefit OBJ_BM curve, respectively. The analysis results show that the improved 

algorithm can adaptively adjust the step size in different time periods to avoid the 

emergence of multi-peak situations, and can directly tune the objective optimisation 

function to the global optimum. It improves the efficiency of the algorithm and brings 

certain economic benefits. 
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