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Abstract. Healthy and stable machining processes are critical for ensuring 
machining accuracy and guaranteeing machine safety. However, due to complex 
machining conditions and harsh service environments, machining processes 
inevitably suffer from abnormalities, which can lead to product defects, increased 
scrap rates, and even catastrophic accidents. To address this issue, a kernel density 
regularized Bayesian learning framework is proposed for machining process 
anomaly detection. In this work, an adaptive kernel density estimate is first 
constructed to eliminate outlier interferences and provide prior distributions to 
subsequent Bayesian learning for improving detection accuracy. On this basis, the 
Bayesian learning framework is innovatively developed for incorporating prior 
knowledge and multi-classification models, which presents a scientific 
interpretation for detection results from a probabilistic perspective. Finally, two 
practical engineering applications are employed to validate the effectiveness of the 
proposed method. The results show that the proposed method not only improves 
the anomaly detection accuracy under time-varying operating conditions but also 
provides confidence levels for detection results. By these advantages, this work 
may provide a useful tool for independently perceiving the health conditions of 
machine tools. 
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1. Introduction  

With the development of smart manufacturing technology, the requirements for the 

intelligence of machine tools are rapidly increasing [1]. Machine tools should have the 

ability to independently perceive and self-determine. In particular, the performance of 

the machining process plays a pivotal role in producing high-precision and high-quality 

components. However, due to harsh operating environments and thermal-force 

coupling effects, machining processes inevitably suffer from abnormalities such as tool 

breakage and chips in the spindle. These abnormalities may lead to reduced 

productivity and product quality, or even damage to the machine tool [2]. Therefore, the 
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anomaly detection of the machining process has attracted extensive attention from both 

industry and academia and has become an important research field in the 

manufacturing industry. 

Machining processes are complex and dynamic, involving a myriad of parameters 

and variables that can affect the final product quality. Traditional quality control 

methods may not be sufficient to identify subtle variations or deviations in the 

machining process. Benefiting from advanced sensing technologies and the industrial 

Internet of Things (IoT), a variety of sensors are embedded in machine tools to 

perceive the operating conditions of machining processes [3]. For this reason, many 

data-driven approaches were widely used for anomaly detection of machining, such as 

support vector machine (SVM) [4], Gaussian mixture model (GMM) [5], and 

probabilistic state space model (PSSM) [6]. However, machine tools primarily work in 

normal conditions, so it is difficult to obtain abnormal data. As a result, the available 

data are usually unbalanced in quantity, which leads to the failure of supervised-based 

methods. In addition, although many deep learning methods have end-to-end 

convenience, they lack physical interpretation, which leads to the detection results 

lacking credibility and universality. Therefore, it is urgent to explore an interpretable 

anomaly detection scheme for machining processes. 

It is worth mentioning that support vector data description (SVDD) is a powerful 

tool for anomaly detection during the machining process [7]. Even though SVDD is 

designed for one-class classification, it does not require the training data to be 

completely normal. Additionally, unlike deep neural networks, which are difficult for 

users to understand, SVDD provides intuitive geometric features that do not require 

any specific assumptions about the data distribution. These advantages make SVDD 

widely adopted for anomaly detection of machining processes. Chen et al. [8] used 

SVDD to detect wind turbine blade faults. Tao et al. [9] proposed density-regularized 

SVDD for anomaly detection of machine tools. Zhou et al. [10] constructed a hybrid 

model based on SVDD to further improve detection accuracy. 

Although SVDD methods have achieved satisfactory results in specific scenarios, 

they still encounter some challenges in anomaly detection of the machining process 

under time-varying conditions. Firstly, current SVDD methods assume that the trained 

samples are obtained from the same distribution, which is not matched with the 

practical machining process. Secondly, samples obtained from practical machining are 

inevitably contaminated by noise. These interferences may cause the current SVDD to 

fail to describe the actual data distribution. Finally, SVDD can only address one-class 

classification problems. These drawbacks greatly limit the application of SVDD for 

anomaly detection of machining processes. 

To address the above challenges, kernel density regularized Bayesian learning is 

proposed for anomaly detection in machining processes under time-varying conditions. 

In this method, kernel density estimation (KDE) is first developed for evaluating the 

distribution of training data and eliminating noise interferences. Subsequently, a 

Bayesian learning framework is constructed for reinterpreting SVDD from a 

probabilistic perspective. The probabilistic estimation is used to perceive unknown 

anomaly conditions and to identify interferences from unknown domains. Finally, the 

effectiveness of the proposed method is validated by acquiring data from practical 

engineering applications. The results show that the developed approach may provide a 

useful tool for anomaly detection of machining processes. 

The remainder of this paper is organized as follows. A brief description of SVDD 

is presented in Section 2. Next, the proposed method is elaborated in Section 3. In 
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Section 4, two engineering application cases are employed to validate the performance 

of the proposed method. Lastly, some conclusions are summarized in Section 5. 

2. Theoretical Background 

Mathematically, SVDD constructs a minimal hypersphere that encloses all or most of 

the training samples in a predetermined space �  and identifies any other uncovered 

samples as outliers [11]. For any given dataset  
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where O and R represent the center and radius of the hypersphere, respectively. 

To deal with possible interferences in training samples, an improved model is 

derived by adding a regularization term. This term allows that the distance from each 

sample xi to the center O does not have to be strictly less than R. The above model is 

re-expressed as follows: 
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where C denotes the nonnegative penalty factor and  1
,...,

T

N
 χ  represents the 

slack variables. 

In the following, the Lagrange multiplier method is introduced to solve the above 

model. The Lagrange function is depicted as: 
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     stand for the Lagrange multipliers. 

By substituting the KKT condition into the Lagrangian function, the SVDD model 

can be derived via the following equation: 
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where k () denotes the kernel function, and xs is the support vector. 
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For an arbitrary test sample, its distance to the center of the hypersphere can be 

calculated by: 

     * *
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where x* represents the new test sample. If D > R, x* will be recognized as an outlier, 

otherwise it will be considered as a normal sample. 

3. Proposed Method 

In the practical machining process, machining a component requires multiple steps, 

which produces variable machining processes. The collected normal samples usually 

obey multiple distributions rather than a single distribution. As a result, multiple 

hyperspheres need to be constructed for anomaly detection under variable operating 

conditions. To address this issue, a kernel density regularized Bayesian learning is 

constructed for anomaly detection under time-varying operating conditions. In this 

work, the KDE is first proposed for estimating the distribution of training samples and 

removing noise interferences. On this basis, the Bayesian framework is then 

constructed for reinterpreting the SVDD from a probabilistic perspective. Multi-class 

model is integrated into the above framework to build hyperspheres for each class to 

contain as many observations as possible and to keep other classes as far away from the 

observations as possible. Finally, the superiority of the proposed method is validated by 

practical engineering applications. 

3.1 Kernel Density Estimate 

As mentioned above, some outliers will inevitably be confused with normal samples 

during complex machining. This will make the SVDD very sensitive to outliers in the 

training process, which could result in overfitting. In light of this, KDE is introduced 

for outlier detection and prior distribution estimation [12]. The KDE for each sample xi 

is defined as: 
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where K(x) is the Gaussian kernel function, and hi indicates the width parameter. 

The KDE is a measure that compares the density of each sample with its 

neighboring samples. It defines an outlier detection method that effectively depicts 

complex data structures. It is worth mentioning that the width parameter hi determines 

the performance of density estimation. The width parameter hi is denoted by: 
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where c is the scaling factor controlling the smoothing effect,   denotes a small 
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positive number to ensure that the width is non-zero, usually set to 10-5, and dk-max and 

dk-min are the largest and smallest values of the distance, respectively. 

To better describe the sample distribution, the Mahala Nobis distance is employed 

to measure the distance between individual samples. The dk is calculated by: 

   
 

1
,

1
k i

k i i j

j N

d d
k








x

x x x  (8) 

where d () represents the Mahala Nobis distance. 

As expected, the KED can be utilized to measure the importance of the samples. 

High-density training samples are more likely to be located within the hypersphere than 

low-density samples. Furthermore, the KDE can also estimate the distribution of each 

sample, which provides a priori distributions for subsequent probability estimation. 

3.2 Bayesian Learning Framework 

To cope with the complex machining process, a multi-class SVDD is introduced for the 

health monitoring of machine tools. It constructs n hyperspheres around each normal 

class, where each hypersphere contains as many observations as possible in its class 

while keeping observations from other classes outside the boundary [13]. 

For given k classes    11
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where Ok and Rk denote the center and radius of each hypersphere, respectively. 

Similarly, the Lagrange multiplier method is introduced to solve the above model. 

The Lagrange function is presented as follows: 
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where      , , ,

0, 0, 0, 0
m k m k m kk

i i i i
         are Lagrangian dual variables. 

By substituting the KKT condition into the Lagrangian function, the hypersphere 

model can be derived as follows: 
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where xs denotes the support vectors. 

In the following, Bayesian learning is introduced to reinterpret the multi-class 

SVDD. Each sample in the high-dimensional space is assumed to follow a 

multidimensional Gaussian distribution. 
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Subsequently, the Lagrange multiplier likelihood function and the data distribution 

prior are substituted into the Bayesian formula to derive the posterior distribution of the 

dual variables. 
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where  |p D  is the likelihood function, and     
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the prior distribution of samples. 

Finally, the dual variables are derived by the maximum posterior distribution. It is 

expressed as follows. 

 ˆ argmax |p


  D  (15) 

The above optimization problem is a quadratic programming problem, which 

means that it has an optimal solution. Substituting the derived solution into Eq. (11), 

the multi-class hypersphere model can be obtained for anomaly detection. The 

proposed method not only performs anomaly detection for machining processes under 
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multiple conditions but also provides probabilities for each sample. By these 

advantages, it may provide a useful solution for the health management of machine 

tools. 

4. Experimental Verifications 

In this section, the performance of the proposed method is validated by using 

experimental data collected from the compact CNC machining center. The 

experimental platform is shown in Fig. 1. The machining parameters are designed for a 

spindle speed of 10000 rpm and the workpiece material is aluminum alloy. In addition, 

to better monitor the machining process and to reduce signal transmission losses, an 

accelerometer is mounted on the spindle table to measure cutting vibrations in the X, Y, 

and Z directions. The output of the accelerometer is captured by the acquisition card 

with a frequency of 3000 Hz. The detailed parameters of the data acquisition system 

are shown in Table 1. 

Workpiece Cutting toolWorktable Machine vise

Tool storage

Tool holder

Accelerometer

Feed controlCoolant sprayer

High speed spindle(a) (b)Automatic tool changer

 

Fig. 1. (a) Compact CNC machining center; (b) The mounted position of the accelerometer. 

Table 1. The detailed parameters of the data acquisition system. 

Accelerometer type Data acquisition card Sampling frequency Mounting type 

IEPE 8688 A5 NI USB-9201 3000Hz Magnetic base 

To improve the detection efficiency and remove redundant information, signal 

features are first extracted, such as time-domain features, frequency-domain features, 

and time-frequency-domain features. Besides, the principal component analysis (PCA) 

is adopted to visualize detection results. Fig. 2 (a) presents the detection results. The 

proposed method not only effectively detects anomalies for the four processing 

conditions but also provides probability estimates for each sample. These probabilities 

give the confidence degree that the sample belongs to this class. It is worth mentioning 

that the proposed method offers possibilities for monitoring unknown faults. Fig. 2 (b) 

shows the anomaly detection accuracy. It can be noticed that the accuracy of the 

proposed method reaches 98.24% under multiple machining conditions, which further 

validates the effectiveness of the developed method. 
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Fig. 2. Case 1 (a) Anomaly detection results obtained with proposed method; (b) The confusion matrix. 

In the following, the second engineering application case is further employed to 

validate the performance of the developed method. The original signal is first 

transformed into a feature matrix. Then, the PCA is introduced to visualize the 

detection results. The anomaly detection results are depicted in Fig. 3 (a). It is observed 

from this figure that the generated decision boundary contains the normal sample space 

well. For each class, the probability that the sample belongs to this class is provided for 

recognizing outliers. Benefiting from the adaptive probability estimation strategy, the 

proposed method can provide a scientific interpretation for each sample from a 

probabilistic perspective, which improves the credibility of anomaly detection results. 

Additionally, Fig. 3 (b) displays the confusion matrix. It is noticed that the accuracy 

reaches 96.19%, which effectively demonstrates the performance of the proposed 

method. Therefore, the developed approach may provide a useful tool for the health 

monitoring of machining processes. 

 

Fig. 3. Case 2 (a) Anomaly detection results obtained with proposed method; (b) The confusion matrix. 

5. Conclusions 

In this paper, a kernel density regularized Bayesian learning is constructed for 

machining process anomaly detection. The integration of kernel density estimation with 

Bayesian learning provides a powerful framework to effectively recognize outliers 

under time-varying operating conditions. By constructing the kernel density estimation, 

the proposed approach can adaptively model the underlying probability distribution of 

training samples, which not only removes the noise interference in advance but also 

provides a prior distribution for Bayesian estimation. Subsequently, the Bayesian 
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learning framework further improves accuracy and robustness under different 

machining conditions by incorporating prior distributions and multiple classification 

models. Finally, the data collected from the practical machining process is employed to 

validate the effectiveness of the proposed method. The results show that the proposed 

method exhibits strong performance even with limited training data and imbalanced 

datasets, which may provide a useful solution for CNC machine tool health 

management. 
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