
Browser Fingerprinting: Overview and 

Open Challenges 

Marko HÖLBL , Vladimir ZADOROZHNY , Tatjana WELZER DRU OVECa,1  b a, 
Marko KOMAPARA 

a and Lili NEMEC ZLATOLAS 
a 

a
 University of Maribor, Faculty of Electrical Engineering and Computer Science, 

Maribor, Slovenia 
b

 University of Pittsburgh, School of Computing and Information, Pittsburgh, USA 
 

 
ORCiD ID: Marko Hölbl https://orcid.org/0000-0002-9414-3189  

Abstract. The central concept of browser fingerprinting is the collection of device-

specific information for identification or security purposes. This chapter provides 

an overview of the research conducted in the field of browser fingerprinting and 
presents an entry point for newcomers. Relevant literature is examined to understand 

the current research in the field of browser fingerprinting. Both research in the field 

of crafting browser fingerprints and protection against it is included. Finally, current 
research challenges and future research directions are presented and discussed.  

Keywords. Browser fingerprinting, profiling, user privacy, web tracking 

1. Introduction 

The web is a platform that we access using browsers. In recent years, with the 

introduction of technologies such as HTML5 and CSS3, the web has become more 

dynamic and utilized than ever before. Since the beginning of the web, we strive to 

improve the user experience by sharing device-specific information. However, this fact 

and the diversity of the devices connecting to the web have paved the way for device 

fingerprinting. A device fingerprint collects information about the software and hardware 

of a device for identification purposes. Typically, a fingerprinting algorithm consolidates 

the data into an identifier. A browser fingerprint is data collected specifically through 

interaction with a device's web browser [1]. This data is often needed for browsing to 

function adequately. Therefore, it cannot be remedied easily.  

The concept of browser fingerprinting is simple – collect device-specific data for 

identification and security purposes through a browser. Websites are often required to 

track users to maintain a session for various reasons, such as maintaining logged-in status, 

language preferences, or shopping cart status. The most widely used technology for this 

purpose are cookies, and in recent years, they have grown increasingly problematic due 

to their misuse, such as for advertising [2]. Since cookies are stored locally (on the user's 

computer), user information leakage or tampering can be accomplished easily [3]. This 

 
1  Corresponding Author: Marko Hölbl, Faculty of Electrical Engineering and Computer Science, 

University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia; E-mail: marko.holbl@um.si  

 Ž

Information Modelling and Knowledge Bases XXXV
M. Tropmann-Frick et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA231163

297

https://orcid.org/0000-0002-9414-3189
mailto:marko.holbl@um.si


resulted in a growing mistrust of cookies. Many browser add-ons were developed to 

address the issue by disabling or deleting cookies. Additionally, private or incognito 

browsing modes gained popularity. Given the negative connotation of cookies and 

techniques for their prevention [4], browser fingerprinting has emerged as a new standard 

in user tracking. Additionally, in the EU, websites need to issue so-called cookie 

notifications [5], which can impact the user experience of websites when using cookies 

[6]. 

A browser fingerprint is a compilation of information about a user device's hardware, 

operating system, browser, and configuration. It is the process of collecting data using a 

web browser to generate a device's (potentially unique) identifier (i.e., fingerprint). A 

server can collect various data from different available APIs (Application Programming 

Interfaces) and HTTP metadata interfaces using a simple browser-based script. An API, 

the interface that provides access to specific objects and methods, even enables access to 

hardware, such as the microphone and camera. However, it requires authorization to do 

so. Each browser features many such APIs, which are easily accessible via JavaScript, 

making information collection effortless. Unlike other identification methods, such as 

cookies, which rely on a unique identifier (ID) explicitly recorded in the browser, 

browser fingerprinting is less explicit and more concealed.  

More information about the client's software and hardware are required to adapt to 

a wider variety of devices. These unique details, such as the browser's User-Agent, can 

be gathered from several sources, such as the HTTP message header, the user's IP address, 

and the screen resolution. Some examples of data that a website can acquire are shown 

in Table 1.   

Table 1. Sample of Data Acquired by a Web Browser [7,8]. 

Characteristic Value 
User agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 

(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36 

Accept text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/we

bp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7 

Content encoding gzip, deflate, br 

Content language en-US,en,sl 

List of plugins Plugin 0: PDF Viewer; Portable Document Format; internal-pdf-viewer. 

Plugin 1: Chrome PDF Viewer; Portable Document Format; internal-pdf-

viewer. Plugin 2: Chromium PDF Viewer; Portable Document Format; 
internal-pdf-viewer. Plugin 3: Microsoft Edge PDF Viewer; Portable 

Document Format; internal-pdf-viewer. Plugin 4: WebKit built-in PDF; 

Portable Document Format; internal-pdf-viewer. 

Cookies enabled yes 

Use of local storage yes 

Use of session storage yes 

Timezone UTC+02:00 Europe/Paris 

Screen resolution and 

color depth 

1512x982x30 

Platform MacIntel 

Do Not Track yes 

Canvas Chi fordhank glyphs vext quiz 

Cwm fjordbank glyphs vext quiz 

WebGL Vendor Google Inc. (Apple) 

WebGL Renderer ANGLE (Apple, Apple M1 Pro, OpenGL 4.1) 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges298



This chapter aims to give an overview of existing work and, in this way, provide an 

entry point into the field and, secondly, lay the groundwork for future research in the 

field by identifying current challenges. 

This chapter's structure is as follows. This section introduced browser fingerprinting, 

and related definitions and contributions were described. A discussion of existing 

research in the field of browser fingerprinting is given in Section 2. Section 3 provides a 

summary of defense mechanisms to tackle browser fingerprinting. Later, a discussion 

and open research challenges are discussed in Section 4. Section 5 gives the conclusions.  

2. Overview of Browser Fingerprint Research  

Before 2010, cookie technology was associated with browser uniqueness. Cookies 

maintain the user status (the so-called session) and can return this data if needed. Cookies 

store client data, so it is a challenge to assure privacy. Many browser users disable 

cookies with plug-ins, and current browsers include privacy options that disable cookies. 

Mayer [9] studied Internet anonymity in 2009. He showed in a tiny experiment that 

browser fingerprints may identify users, although Eckersley [10] of the Electronic 

Frontier Foundation first demonstrated a practical implementation of the idea in 2010. 

When visiting a web page, the web server can embed JavaScript code or gather 

information about the user's browsing device. As opposed to cookies, browser 

fingerprints cannot be disabled. A cookie a user can delete or deactivate using adequate 

privacy options. Browser fingerprints may be used for cross-domain identification. 

Due to the great attractiveness of user tracking with the help of browser 

fingerprinting, the field is very active, with much research in the field. Mowery and 

Shacham [11] investigated HTML Canvas fingerprint characteristics. Faiz Khademi et 

al. [12] examined browser fingerprint detection and protection. Vastel et al. [13] 

examined browser fingerprints across time.  

Browser fingerprint-related research can be categorized according to several study 

directions, including feature acquisition or defense mechanisms, both of which are 

addressed in this chapter.  

Since browser fingerprinting seeks to identify the user, researchers focus on high-

entropy, long-lasting, and preferably cross-browser fingerprint approaches. Modern 

browsers have strong functionality and extensive interfaces, giving many possible ways 

in which to create browser fingerprints.  

One of the more widely used techniques for acquiring browser fingerprints is using 

JavaScript code. In this way, browser information such as operating system or browser 

version can be gained. Much research has utilized this approach, e.g., [3,4,9,10]. For 

example, Mowery et al. used a plug-in known as NoScript and its whitelist for the 

characteristics of a fingerprint [14]. Mulazzani et al. [15] have optimized the techniques 

to enable JavaScript engine detection to leverage the JavaScript parsing engine's 

properties and, in this way, fingerprint a browser.  

Many browser plug-ins block JavaScript scripts because it is too powerful and thus 

can be abused. In 2013, Unger et al. used CSS (Cascading Style sheet) for fingerprints 

[16], while in 2015, Takei et al. used browser CSS features for fingerprint collection [17]. 

Different browser rendering engines read CSS differently; hence, attribute 

implementation states vary. Browser fingerprints are created by exploiting Web browser 

request differences. In 2021, Laperdrix et al. [18] suggested infusing style sheets for 

fingerprint traits. It uniquely identifies browser extensions from the visited website.  

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges 299



As modern browsers with HTML5 support have many capabilities, they pose a risk, 

as shown in [11]. In this work, text and WebGL scenes were used to create fingerprints. 

Compared to others, the homogeneity and high entropy make it very utilizable. Later, 

Acar et al. [19] advanced this approach. 

As discussed in [10], WebGL properties can be used to demonstrate how different 

hardware renders WebGL. However, in 2015, Nakibly et al. [20] suggested 

fingerprinting the device by detecting the CUP and GPU clock variations during a 

difficult rendering workload. The WEBGL_debug_renderer_info interface provides the 

precise device model, according to Laperdrix et al. [21]. Google's Bursztein et al. [22] 

created a browser fingerprint mechanism utilizing JavaScript and Canvas in 2016. Cao 

et al. enhanced WebGL hardware fingerprint detection in 2017 [23]. They uniquely 

identified over 99% of test devices via 31 rendering jobs. Schwarz et al. [24] used 

numerous JavaScript functionalities not described in MDN docs in 2019.  

In 2016, Englehardt et al. developed a Web Audio API-based fingerprint [25] similar 

to WebGL. Oscillator Node, an audio script, generates the unique audio fingerprint in 

this study [26]. Many browsers were tested, as well as many hardware and software 

combinations to get fingerprint data. However, it turned out that Web Audio API alone 

is unreliable. 

Browser plugins add convenience and additional functionality to browsing. Sjosten 

et al. [27] suggested using Web Accessible Resources to identify browser plug-in 

installations in 2017. Chrome and Firefox need web page extension resources, and the 

URL "extension:///" lets you check if the plug-in exists. In this way, most plug-ins can 

be detected. However, specific extensions do not have this property available. Starov et 

al. [28] used several approaches to identify browser plug-ins. Namely, many plug-ins 

alter web page DOMs, and detecting relevant modifications reveals relevant users' plug-

in installations and consequentially exposes a user. Sanchez-Rola et al. [29] presented an 

attack for access control to identify browser plug-ins using time side channels. In 2019, 

Starov et al. [30] upgraded past browser plug-ins' side effects studies, including injecting 

script or style tags, empty placeholders, or page messages. 

Fuhl et al. [31] correlated the mouse movement trajectory to the human eye, which 

could be used as a fingerprint. However, these techniques need further validation and 

research. Abgral et al. utilized cross-site scripting attacks [32] to fingerprint HTML 

parsers in different browsers. This method yields fingerprints that are hard to mislead 

and difficult to reproduce since they presume a running HTML parser. Fifield and 

Egelman [33] suggested measuring font glyph screen sizes to recognize web browser 

fingerprints in 2015. The authors mainly utilize the rendering of browsers for 

identification. In a test of over 1,000 browsers, 34% could be identified in this way. 

Authors in [34] examined HTML5's misuse of the battery API to utilize the properties of 

short-term batteries to identify users. Sanchez-Rola et al.  [29] introduced time-based 

device fingerprint recognition in 2018, which measures execution clock difference using 

JavaScript codes to identify users. Wu et al. [35] suggested a website user delay 

fingerprint in 2021. After IP address translation, users may switch browsers and use 

virtual machines with 80% recognition. 

Based on the overview of current research, the following challenges in browser 

fingerprint can be highlighted: (1) Most techniques depend on JavaScript, which is an 

omnipresent and vital part of most of today’s web pages. Nevertheless, research in the 

field of browser fingerprinting should try to develop non-JavaScript-dependent 

techniques. Some examples include research by Takei et al. [17] and Wu et al. [35]. (2) 

Research in the field of cross-browser fingerprinting should address aspects like 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges300



matching recognition featuring weighting and techniques for obtaining more reliable and 

high-entropy fingerprint characteristics. There is already some research conducted in this 

direction [4,16]. (3) From the research overview, we can see that most of the 

fingerprinting properties depend on a device’s software (e.g., plug-ins) or hardware 

properties that can be gathered through the web browser. The challenge here is to 

fingerprint co-used devices (e.g., in public places, using the same networks). Research is 

already ongoing in this direction. Fuhl et al. showed how to exploit user activity to create 

fingerprints and proved its practicality [31].  

A brief overview of different approaches to browser fingerprinting is presented in 

Table 2. 

Table 2. Categorization of Research on Brower Fingerprinting Techniques. 

Technique is based on Example Reference 
JavaScript [3,4,9,10,14,15] 
CSS [16–18] 

Hardware [20,21,23,29,34] 

HTML5 features [11,19–26] 

Plug-ins / Extensions [27,28,30,36] 

3. Overview of Browser Fingerprint Defense Research  

Browser fingerprints, especially those acquired without the user's knowledge, pose a 

major threat to privacy. Browser fingerprints are best used to precisely monitor and 

secure users when they don't wish to be tracked. Scholars explore browser fingerprint 

defense to provide a secure and effective way for users who want to remain concealed.  

Browser fingerprint protection research increased after Eckersley et al.'s [10] study 

highlighted the browser tracking potential. However, there are examples of browser 

plug-ins or add-ons that further facilitate fingerprinting, like Firegloves [37]. This plug-

in returns random results when data on browser properties is gathered, which makes 

identifying such users simpler. On the other hand, tools like FP-Block [38] generate site-

specific fingerprints without affecting continuous or cross-domain tracking. Additionally, 

authors in [12] proposed to monitor web objects running on the user’s browser to check 

for the intention of fingerprinting. Additionally, they employ protection techniques using 

randomization, filtering, and even blacklists of relevant websites.  

In 2014, Besson et al. noted that randomization is not difficult, but how to randomize 

is. This work models trackers and fingerprint recognition tools using information theory 

channels and presents a randomization approach to assure program privacy without 

fingerprints. Nikiforakis et al. [39] proposed a randomization approach where developers 

can balance effectiveness and usability using different randomization algorithms. 

Laperdrix et al. [40] use software variety and dynamic reconfiguration to automatically 

construct varied browsers for the randomized return of phony fingerprints. Since a virtual 

machine environment is needed for the implementation, this can significantly impact 

efficiency. Another study by Trickel et al. [41] created CloakX to hide browser plug-in 

fingerprints by randomizing the accessible resource path. The technique uses JavaScript 

code rewriting and the DOM proxy Droxy to intercept and rewrite extension requests, 

thus assuring protection during browser plug-in installation. 

Another direction of browser fingerprinting defense was proposed by Wu et al. [42], 

namely unification. In their work, the authors suggested unifying WebGL and proposed 

an approach called UNIGL. Additionally, Fiore et al.'s [43] proposed a concept in which 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges 301



fake data (used for fingerprinting) are generated to cope with browser fingerprinting. 

However, it needs to be changed continuously to protect regardless of whether genuine 

and false fingerprint tracking would be possible.  

An interesting technique was proposed by Yokoyama and Uda [44]. The authors 

employ local agents to modify the browser fingerprint value and, in this way, prevent 

fingerprinting. Another approach was proposed in [45], where Chromium was changed 

to protect against Flash and Canvas browser fingerprinting, but without influencing the 

two technologies. Laperdrix et al. [46] also offered a Firefox-based upgrade with 

fingerprint protection against AudioContext, and Mitropoulos et al. presented a training 

technique [47] for known cross-site scripting attacks to gather browser fingerprints [32]. 

ElBanna and Abdelbaki later created a method to reduce browser fingerprinting [48] for 

WebGL and Canvas fingerprint monitoring. 

Based on the overview of current research on browser fingerprint protection, it is 

evident that this can be done using additional plug-ins or modified versions of browsers. 

Still, the main remaining challenges include: (1) It is difficult for a user (browser) to 

determine whether the website’s intention is legitimate or malicious. For instance, it is 

unclear to the user whether or not their screen resolution is being considered when 

designing the site's layout. For example, it is difficult to determine if retrieving the screen 

resolution information is to adapt the web page layout or for browser fingerprinting 

purposes. (2) The use of unification with a small number of users is questionable. It 

requires the support of vendors, international standards organizations, and technical 

committees to, for example, unify WebGL and Canvas rendering.  

4. Discussion and Open Challenges 

The development of browser fingerprinting technology is consistent with the growing 

concern for privacy among individuals. Traditional tracking using cookies has shown 

shortcomings, as cookies can be stolen [49], modified or forged, and even injected [50]. 

Google recently announced that they plan to ban third-party cookies as more and more 

users block cookies or install protection plug-ins. If this happens, browser fingerprinting 

will become more important to assure statefulness and legitimate user tracking.  

Based on the review of existing research, we anticipate the following directions for 

future research: 

(1) Machine learning and AI will play an important role. One of the directions will be 

algorithms automatically matching fingerprints, as presented in [16,51]. Considering 

the evolution of fingerprinting techniques and approaches [10,13], a matching 

algorithm is required. Efficient rule-based matching algorithms were already 

developed [10,13,52,53]. With further progress in machine and deep learning, this 

technology is becoming preferable when developing browser fingerprinting 

techniques. For instance, [9,12] present a clustering algorithm to extract fingerprint 

signs autonomously. Additionally, machine learning algorithms, such as neural 

networks, are becoming increasingly popular [11,13] for fingerprinting. It is 

anticipated that in future research, combining browser fingerprinting and machine 

learning will increase. 

(2) Browser fingerprinting applications [54–57] exploit two aspects: the immutability 

of browser fingerprints and the use of browser fingerprints – gathering them through 

browser feature collection. However, with research in the field of browser 

fingerprinting, hardware fingerprinting, and the evolution of browser fingerprinting 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges302



[58–61], additional potential applications are emerging (e.g. cross-browser 

fingerprinting or cross-domain tracking). 

(3) As browsers and network technologies continuously develop, many technologies 

will disappear or be discontinued. For example, Microsoft, Google, and Adobe have 

discontinued technical support for Flash. Therefore, new approaches that are less 
dependent on specific technology need to be developed.  

Despite the fact that browser fingerprinting has been around for a significant amount 

of time and its maturity, legislation, regulation, and technical specifications have fallen 

behind practice [62]. Regarding information leakage, previous studies [63] have focused 

more on the technical aspect of securing device information. Research in [36] 

demonstrates that browser fingerprinting technology can impact personal privacy. 

Vendors are continuously monitoring the progress in the field and upgrading their 

products to prevent the acquisition of specific features that could help with browser 

fingerprinting. However, in the long term, the fundamental remedy still lies in regulation, 

legislation, and governance to guide technology development.  

5. Conclusions 

Current research on browser fingerprinting has yielded significant results that can 

be used for tracking users. There are two sides to the coin – on the one hand, browser 

fingerprinting can be used instead of cookies for maintaining the state of a user and, on 

the other, misused for tracking. The combination of browser fingerprinting and 

traditional user identity tracking can be applied positively, like identity tracking, user 

authentication, and for security. In this chapter, we have given an overview of browser 

fingerprinting from two aspects – acquiring and protecting against it. Further, we have 

discussed various challenges and future directions of the research field, which is intended 

to help facilitate further research in this interesting and, for online privacy, very 

important field.  

Acknowledgement  

The authors acknowledge the financial support from the Slovenian Research and 

Innovation Agency (Research Core funding No. P2-0057, the bilateral project BI-US/22-

24-147) and the financial support of the ATHENA (Advanced Technology Higher 

Education Network Alliance) European University project, funded by the European 

Union, Erasmus+, European universities initiative, grant agreement number 101004096. 

References 

1.  Wikipedia. Device fingerprint [Internet]. 2023 [cited 2023 Jul 6]. Available 

from: https://en.wikipedia.org/wiki/Device_fingerprint 
2.  Mathews-Hunt K. CookieConsumer: Tracking online behavioural advertising in 

Australia. Comput Law Secur Rep. 2016;32(1):55–90.  

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges 303



3.  Kwon H, Nam H, Lee S, Hahn C, Hur J. (In-)security of cookies in HTTPS: 

Forensics and Security. 2020;15.  

4.  Cranor LF. Cookie monster. Commun ACM. 2022;65(7):30–2.  

5.  GDPR.eu. Cookies, the GDPR, and the ePrivacy Directive [Internet]. 2023 [cited 

2023 Jul 7]. Available from: https://gdpr.eu/cookies/ 

6.  Kulyk O, Hilt A, Gerber N, Volkamer M. this website uses cookies”: Users’ 

perceptions and reactions to the cookie disclaimer. In: European Workshop on 

Usable Security (EuroUSEC). 2018.  

7.  Electronic Frontier Foundation (EFF). Cover Your Tracks [Internet]. 2023 [cited 

2023 Jul 6]. Available from: https://coveryourtracks.eff.org/ 

8.  AmIUnique.org. Am I Unique? [Internet]. 2023 [cited 2023 Jul 6]. Available 

from: https://amiunique.org/ 

9.  Mayer JR. Any person… a pamphleteer: Internet Anonymity in the Age of Web 

2.0. 2009.  

10.  Eckersley P. How unique is your web browser? In: Privacy Enhancing 

Technologies. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1–18.  

11.  Mowery K, Shacham H. Pixel Perfect: Fingerprinting canvas in HTML5. In: 

Proceedings of W2SP. San Francisco, CA, USA; 2012. p. 1–12.  

12.  Khademi A, Zulkernine M, Weldemariam K. FPGuard: detection and prevention 

- ing. In: DBSec 2015: Data and Applications Security and 

Privacy XXIX. Cham: Springer; 2015. p. 293–308.  

13.  Vastel A, Laperdrix P, Rudametkin W, Rouvoy R. FP-STALKER: Tracking 

Browser Fingerprint Evolutions. In: 2018 IEEE Symposium on Security and 

Privacy (SP). IEEE; 2018.  

14.  Mowery K, Bogenreif D, Yilek S, Shacham H. Fingerprinting information in 

JavaScript implementations. In: Proceedings of W2SP. Krakow, Poland; 2011.  

15.  

Citeseer; 2013.  

16.  Unger T, Mulazzani M, Fruhwirt D, Huber M, Schrittwieser S, Weippl E. SHPF: 

Enhancing HTTP(S) session security with browser fingerprinting. In: 2013 

International Conference on Availability, Reliability and Security. IEEE; 2013.  

17.  Takei N, Saito T, Takasu K, Yamada T. Web browser fingerprinting using only 

cascading style sheets. In: 2015 10th International Conference on Broadband and 

Wireless Computing, Communication and Applications (BWCCA). IEEE; 2015.  

18.  Laperdrix P, Starov O, Chen Q, Kapravelos A, Nikiforakis N. Fingerprinting in 

Style: Detecting Browser Extensions via Injected Style Sheets. In: 30th USENIX 

Security Symposium (USENIX Security 21) [Internet]. USENIX Association; 

2021. p. 2507–24. Available from: 

https://www.usenix.org/conference/usenixsecurity21/presentation/laperdrix 

19.  Acar G, Eubank C, Englehardt S, Juarez M, Narayanan A, Diaz C. The web 

never forgets: Persistent tracking mechanisms in the wild. In: Proceedings of the 

2014 ACM SIGSAC Conference on Computer and Communications Security. 

Vienna, Austria; 2014. p. 674–89.  

20.  Nakibly G, Shelef G, Yudilevich S. Hardware Fingerprinting Using HTML5. 

CoRR [Internet]. 2015;abs/1503.01408. Available from: 

http://arxiv.org/abs/1503.01408 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges304



21.  Laperdrix P, Rudametkin W, Baudry B. Beauty and the beast: Diverting modern 

web browsers to build unique browser fingerprints. In: 2016 IEEE Symposium 

on Security and Privacy (SP). IEEE; 2016.  

22.  Bursztein E, Malyshev A, Pietraszek T, Thomas K. Picasso: lightweight device 

s. In: Proceedings of the 6th Workshop on 

Security and Privacy in Smartphones and Mobile Devices. Vienna, Austria; 2016.  

23.  Cao Y, Li S, Wijmans E. (Cross-

level features. In: 24th Annual Network and Distributed System Security 

Symposium. Scottsdale, Arizona, USA; 2017.  

24.  Schwarz M, Lackner F, Gruss D. JavaScript template attacks: Automatically 

inferring host information for targeted exploits. In: Proceedings 2019 Network 

and Distributed System Security Symposium. Reston, VA: Internet Society; 

2019.  

25.  Englehardt S, Narayanan A. Online tracking: a 1- million-site measurement and 

analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer 

and Communications Security. Vienna, Austria; 2016.  

26.  Queiroz JS, Feitosa EL. A Web Browser Fingerprinting method based on the 

Web Audio API. Comput J. 2019;62(8):1106–20.  

27.  Sjösten A, Van Acker S, Sabelfeld A. Discovering browser extensions via web 

accessible resources. In: Proceedings of the Seventh ACM on Conference on 

Data and Application Security and Privacy. New York, NY, USA: ACM; 2017.  

28.  Starov O, Nikiforakis N. XHOUND: Quantifying the fingerprintability of 

browser extensions. In: 2017 IEEE Symposium on Security and Privacy (SP). 

IEEE; 2017.  

29.  Sanchez-Rola I, Santos I, Balzarotti D. Clock around the clock: time-based 

Computer and Communications Security. Toronto, Canada; 2018.  

30.  Starov O, Laperdrix P, Kapravelos A, Nikiforakis N. Unnecessarily Identifiable: 

Quantifying the fingerprintability of browser extensions due to bloat. In: The 

World Wide Web Conference. New York, NY, USA: ACM; 2019.  

31.  Fuhl W, Sanamrad N, Kasneci E. The Gaze and Mouse Signal as additional 

Source for User Fingerprints in Browser Applications. CoRR [Internet]. 

2021;abs/2101.03793. Available from: https://arxiv.org/abs/2101.03793 

32.  Abgrall E, Traon Y Le, Monperrus M, Gombault S, Heiderich M, Ribault A. 

XSS-FP: Browser Fingerprinting using HTML Parser Quirks. CoRR [Internet]. 

2012;abs/1211.4812. Available from: http://arxiv.org/abs/1211.4812 

33.  Fifield D, Egelman S. Fingerprinting web users through font metrics. In: 

Financial Cryptography and Data Security. Berlin, Heidelberg: Springer Berlin 

Heidelberg; 2015. p. 107–24.  

34.  Olejnik - a privacy 

analysis of the HTML5 Battery Status API. In: Data Privacy Management, and 

Security Assurance. Cham: Springer International Publishing; 2016. p. 254–63.  

35.  Wu T, Song Y, Zhang F, Gao S, Chen B. My Site Knows Where You Are: A 

Novel Browser Fingerprint to Track User Position. In: ICC 2021 - IEEE 

International Conference on Communications. 2021. p. 1–6.  

36.  Karami S, Ilia P, Solomos K, Polakis J. Carnus: Exploring the privacy threats of 

browser extension fingerprinting. In: Proceedings 2020 Network and Distributed 

System Security Symposium. Reston, VA: Internet Society; 2020.  

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges 305



37.  Boda K, Földes ÁM, Gy. Gulyás–portal. eu G. Cross-browser fingerprinting test 

2.0.  

38.  Ferreira Torres C, Jonker HL, Mauw S (Sjouke). FP-Block: Usable Web Privacy 

by Controlling Browser Fingerprinting. In: Pernul G, Ryan PYA, Weippl E, 

editors. Computer Security – ESORICS 2015. Switzerland: Springer Nature 

Switzerland AG; 2015. p. 3–19. (Lecture Notes in Computer Science (LNCS) 

series; vol. 2).  

39.  

little white lies. In: Proceedings of the 24th International Conference on World 

Wide Web. Florence, Italy; 2015.  

40.  Laperdrix P, Rudametkin W, Baudry B. Mitigating Browser Fingerprint 

Tracking: Multi-level Reconfiguration and Diversification. In: 2015 IEEE/ACM 

10th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems. 2015. p. 98–108.  

41.  Trickel E, Starov O, Kapravelos A, Nikiforakis N, Doupé A. Everyone is 

Different: Client-side Diversification for Defending Against Extension 

Fingerprinting. In: 28th USENIX Security Symposium (USENIX Security 19) 

[Internet]. Santa Clara, CA: USENIX Association; 2019. p. 1679–96. Available 

from: https://www.usenix.org/conference/usenixsecurity19/presentation/trickel 

42.  Wu S, Li S, Cao Y, Wang N. Rendered Private: Making GLSL Execution 

Uniform to Prevent WebGL-based Browser Fingerprinting. In: 28th USENIX 

Security Symposium (USENIX Security 19) [Internet]. Santa Clara, CA: 

USENIX Association; 2019. p. 1645–60. Available from: 

https://www.usenix.org/conference/usenixsecurity19/presentation/wu 

43.  Fiore U, Castiglione A, Santis Alfredo D, Palmieri F. Countering browser 

fingerprinting techniques: Constructing a fake profile with Google chrome. In: 

2014 17th International Conference on Network-Based Information Systems. 

IEEE; 2014.  

44.  Yokoyama S, Uda R. A proposal of preventive measure of pursuit using a 

browser fingerprint. In: Proceedings of the 9th International Conference on 

Ubiquitous Information Management and Communication. New York, NY, 

USA: ACM; 2015.  

45.  Baumann P, Katzenbeisser S, Stopczynski M, Tews E. Disguised Chromium 

Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. 

 

46.  Laperdrix P, Baudry B, Mishra V. FPRandom: Randomizing core browser 

objects to break advanced device fingerprinting techniques. In: Lecture Notes in 

Computer Science. Cham: Springer International Publishing; 2017. p. 97–114.  

47.  Mitropoulos D, Stroggylos K, Spinellis D, Keromytis AD. How to train your 

Transactions on Privacy and Security. 2016;19(1):1–31.  

48.  ElBanna A, Abdelbaki N. NONYM!ZER: Mitigation framework for browser 

fingerprinting. In: 2019 IEEE 19th International Conference on Software Quality, 

Reliability and Security Companion (QRS-C). IEEE; 2019.  

49.  Sivakorn S, Polakis I, Keromytis AD. The cracked cookie jar: HTTP cookie 

hijacking and the exposure of private information. In: 2016 IEEE Symposium on 

Security and Privacy (SP). IEEE; 2016.  

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges306



50.  Calibri F, Chen H, Duan X, Zheng J, Jiang J. Path leaks of HTTPS Side-Channel 

by cookie injection. In: International Workshop on Constructive Side-Channel 

Analysis and Secure Design. Springer; 2018. p. 189–203.  

51.  Laperdrix P, Avoine G, Baudry B, Nikiforakis N. Morellian analysis for 

browsers: Making web authentication stronger with canvas fingerprinting. In: 

Detection of Intrusions and Malware, and Vulnerability Assessment. Cham: 

Springer International Publishing; 2019. p. 43–66.  

52.  Liu X, Liu Q, Wang X, Jia Z. Fingerprinting web browser for tracing anonymous 

web attackers. In: 2016 IEEE First International Conference on Data Science in 

Cyberspace (DSC). IEEE; 2016.  

53.  Liangfeng Z, Yi W, Yuanyi W, Rui K. Statistics-

technology. Information Network Security. 2019;11:49–55.  

54.  Nikiforakis N, Kapravelos A, Joosen W, Kruegel C, Piessens F, Vigna G. 

Cookieless monster: Exploring the ecosystem of web-based device 

fingerprinting. In: 2013 IEEE Symposium on Security and Privacy. IEEE; 2013.  

55.  Rochet F, Efthymiadis K, Koeune F, Pereira O. SWAT: Seamless web 

authentication technology. In: The World Wide Web Conference. New York, 

NY, USA: ACM; 2019.  

56.  Jia Z, Cui X, Liu Q, Wang X, Liu C. Micro-honeypot: Using browser 

fingerprinting to track attackers. In: 2018 IEEE Third International Conference 

on Data Science in Cyberspace (DSC). IEEE; 2018.  

57.  

Electronic Production. 2019;2.  

58.  Li X, Cui X, Shi L, Liu C, Wang X. Constructing browser fingerprint tracking 

chain based on LSTM model. In: 2018 IEEE Third International Conference on 

Data Science in Cyberspace (DSC). IEEE; 2018.  

59.  Bird S, Mishra V, Englehardt S, Willoughby R, Zeber D, Rudametkin W, et al. 

Actions speak louder than words: Semi-supervised learning for browser 

fingerprinting detection. CoRR [Internet]. 2020;abs/2003.04463. Available 

from: https://arxiv.org/abs/2003.04463 

60.  Qixu L, Xinyu L, Cheng L, Junnan W, Langping C, Jiaxi L. An android browser 

onal recurrent neural network. 

Computer Research and Development. 2020;57(11):2294–311.  

61.  Muñoz-Garcia Ó, Monterrubio-Martin J, Garcia-Aubert D. Detecting browser 

Electronic Business. 2012;10(2):120–41.  

62.  Laperdrix P, Bielova N, Baudry B, Avoine G. Browser Fingerprinting: A Survey. 

ACM Trans Web [Internet]. 2020 Apr;14(2). Available from: 

https://doi.org/10.1145/3386040 

63.  Jérôme Segura. Operation Fingerprint: A Look Into Several Angler Exploit Kit 

Malvertising Campaigns [Internet]. MalwareBytes. 2016 [cited 2023 Jul 2]. 

Available from: https://www.malwarebytes.com/blog/news/2016/03/ofp 

  

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges 307


	1. Introduction
	2. Overview of Browser Fingerprint Research
	3. Overview of Browser Fingerprint Defense Research
	4. Discussion and Open Challenges
	5. Conclusions
	Acknowledgement
	References

