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Abstract. The central concept of browser fingerprinting is the collection of device-

specific information for identification or security purposes. This chapter provides 

an overview of the research conducted in the field of browser fingerprinting and 
presents an entry point for newcomers. Relevant literature is examined to understand 

the current research in the field of browser fingerprinting. Both research in the field 

of crafting browser fingerprints and protection against it is included. Finally, current 
research challenges and future research directions are presented and discussed.  
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1. Introduction 

The web is a platform that we access using browsers. In recent years, with the 

introduction of technologies such as HTML5 and CSS3, the web has become more 

dynamic and utilized than ever before. Since the beginning of the web, we strive to 

improve the user experience by sharing device-specific information. However, this fact 

and the diversity of the devices connecting to the web have paved the way for device 

fingerprinting. A device fingerprint collects information about the software and hardware 

of a device for identification purposes. Typically, a fingerprinting algorithm consolidates 

the data into an identifier. A browser fingerprint is data collected specifically through 

interaction with a device's web browser [1]. This data is often needed for browsing to 

function adequately. Therefore, it cannot be remedied easily.  

The concept of browser fingerprinting is simple – collect device-specific data for 

identification and security purposes through a browser. Websites are often required to 

track users to maintain a session for various reasons, such as maintaining logged-in status, 

language preferences, or shopping cart status. The most widely used technology for this 

purpose are cookies, and in recent years, they have grown increasingly problematic due 

to their misuse, such as for advertising [2]. Since cookies are stored locally (on the user's 

computer), user information leakage or tampering can be accomplished easily [3]. This 
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resulted in a growing mistrust of cookies. Many browser add-ons were developed to 

address the issue by disabling or deleting cookies. Additionally, private or incognito 

browsing modes gained popularity. Given the negative connotation of cookies and 

techniques for their prevention [4], browser fingerprinting has emerged as a new standard 

in user tracking. Additionally, in the EU, websites need to issue so-called cookie 

notifications [5], which can impact the user experience of websites when using cookies 

[6]. 

A browser fingerprint is a compilation of information about a user device's hardware, 

operating system, browser, and configuration. It is the process of collecting data using a 

web browser to generate a device's (potentially unique) identifier (i.e., fingerprint). A 

server can collect various data from different available APIs (Application Programming 

Interfaces) and HTTP metadata interfaces using a simple browser-based script. An API, 

the interface that provides access to specific objects and methods, even enables access to 

hardware, such as the microphone and camera. However, it requires authorization to do 

so. Each browser features many such APIs, which are easily accessible via JavaScript, 

making information collection effortless. Unlike other identification methods, such as 

cookies, which rely on a unique identifier (ID) explicitly recorded in the browser, 

browser fingerprinting is less explicit and more concealed.  

More information about the client's software and hardware are required to adapt to 

a wider variety of devices. These unique details, such as the browser's User-Agent, can 

be gathered from several sources, such as the HTTP message header, the user's IP address, 

and the screen resolution. Some examples of data that a website can acquire are shown 

in Table 1.   

Table 1. Sample of Data Acquired by a Web Browser [7,8]. 

Characteristic Value 
User agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 

(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36 

Accept text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/we

bp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7 

Content encoding gzip, deflate, br 

Content language en-US,en,sl 

List of plugins Plugin 0: PDF Viewer; Portable Document Format; internal-pdf-viewer. 

Plugin 1: Chrome PDF Viewer; Portable Document Format; internal-pdf-

viewer. Plugin 2: Chromium PDF Viewer; Portable Document Format; 
internal-pdf-viewer. Plugin 3: Microsoft Edge PDF Viewer; Portable 

Document Format; internal-pdf-viewer. Plugin 4: WebKit built-in PDF; 

Portable Document Format; internal-pdf-viewer. 

Cookies enabled yes 

Use of local storage yes 

Use of session storage yes 

Timezone UTC+02:00 Europe/Paris 

Screen resolution and 

color depth 

1512x982x30 

Platform MacIntel 

Do Not Track yes 

Canvas Chi fordhank glyphs vext quiz 

Cwm fjordbank glyphs vext quiz 

WebGL Vendor Google Inc. (Apple) 

WebGL Renderer ANGLE (Apple, Apple M1 Pro, OpenGL 4.1) 
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This chapter aims to give an overview of existing work and, in this way, provide an 

entry point into the field and, secondly, lay the groundwork for future research in the 

field by identifying current challenges. 

This chapter's structure is as follows. This section introduced browser fingerprinting, 

and related definitions and contributions were described. A discussion of existing 

research in the field of browser fingerprinting is given in Section 2. Section 3 provides a 

summary of defense mechanisms to tackle browser fingerprinting. Later, a discussion 

and open research challenges are discussed in Section 4. Section 5 gives the conclusions.  

2. Overview of Browser Fingerprint Research  

Before 2010, cookie technology was associated with browser uniqueness. Cookies 

maintain the user status (the so-called session) and can return this data if needed. Cookies 

store client data, so it is a challenge to assure privacy. Many browser users disable 

cookies with plug-ins, and current browsers include privacy options that disable cookies. 

Mayer [9] studied Internet anonymity in 2009. He showed in a tiny experiment that 

browser fingerprints may identify users, although Eckersley [10] of the Electronic 

Frontier Foundation first demonstrated a practical implementation of the idea in 2010. 

When visiting a web page, the web server can embed JavaScript code or gather 

information about the user's browsing device. As opposed to cookies, browser 

fingerprints cannot be disabled. A cookie a user can delete or deactivate using adequate 

privacy options. Browser fingerprints may be used for cross-domain identification. 

Due to the great attractiveness of user tracking with the help of browser 

fingerprinting, the field is very active, with much research in the field. Mowery and 

Shacham [11] investigated HTML Canvas fingerprint characteristics. Faiz Khademi et 

al. [12] examined browser fingerprint detection and protection. Vastel et al. [13] 

examined browser fingerprints across time.  

Browser fingerprint-related research can be categorized according to several study 

directions, including feature acquisition or defense mechanisms, both of which are 

addressed in this chapter.  

Since browser fingerprinting seeks to identify the user, researchers focus on high-

entropy, long-lasting, and preferably cross-browser fingerprint approaches. Modern 

browsers have strong functionality and extensive interfaces, giving many possible ways 

in which to create browser fingerprints.  

One of the more widely used techniques for acquiring browser fingerprints is using 

JavaScript code. In this way, browser information such as operating system or browser 

version can be gained. Much research has utilized this approach, e.g., [3,4,9,10]. For 

example, Mowery et al. used a plug-in known as NoScript and its whitelist for the 

characteristics of a fingerprint [14]. Mulazzani et al. [15] have optimized the techniques 

to enable JavaScript engine detection to leverage the JavaScript parsing engine's 

properties and, in this way, fingerprint a browser.  

Many browser plug-ins block JavaScript scripts because it is too powerful and thus 

can be abused. In 2013, Unger et al. used CSS (Cascading Style sheet) for fingerprints 

[16], while in 2015, Takei et al. used browser CSS features for fingerprint collection [17]. 

Different browser rendering engines read CSS differently; hence, attribute 

implementation states vary. Browser fingerprints are created by exploiting Web browser 

request differences. In 2021, Laperdrix et al. [18] suggested infusing style sheets for 

fingerprint traits. It uniquely identifies browser extensions from the visited website.  
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As modern browsers with HTML5 support have many capabilities, they pose a risk, 

as shown in [11]. In this work, text and WebGL scenes were used to create fingerprints. 

Compared to others, the homogeneity and high entropy make it very utilizable. Later, 

Acar et al. [19] advanced this approach. 

As discussed in [10], WebGL properties can be used to demonstrate how different 

hardware renders WebGL. However, in 2015, Nakibly et al. [20] suggested 

fingerprinting the device by detecting the CUP and GPU clock variations during a 

difficult rendering workload. The WEBGL_debug_renderer_info interface provides the 

precise device model, according to Laperdrix et al. [21]. Google's Bursztein et al. [22] 

created a browser fingerprint mechanism utilizing JavaScript and Canvas in 2016. Cao 

et al. enhanced WebGL hardware fingerprint detection in 2017 [23]. They uniquely 

identified over 99% of test devices via 31 rendering jobs. Schwarz et al. [24] used 

numerous JavaScript functionalities not described in MDN docs in 2019.  

In 2016, Englehardt et al. developed a Web Audio API-based fingerprint [25] similar 

to WebGL. Oscillator Node, an audio script, generates the unique audio fingerprint in 

this study [26]. Many browsers were tested, as well as many hardware and software 

combinations to get fingerprint data. However, it turned out that Web Audio API alone 

is unreliable. 

Browser plugins add convenience and additional functionality to browsing. Sjosten 

et al. [27] suggested using Web Accessible Resources to identify browser plug-in 

installations in 2017. Chrome and Firefox need web page extension resources, and the 

URL "extension:///" lets you check if the plug-in exists. In this way, most plug-ins can 

be detected. However, specific extensions do not have this property available. Starov et 

al. [28] used several approaches to identify browser plug-ins. Namely, many plug-ins 

alter web page DOMs, and detecting relevant modifications reveals relevant users' plug-

in installations and consequentially exposes a user. Sanchez-Rola et al. [29] presented an 

attack for access control to identify browser plug-ins using time side channels. In 2019, 

Starov et al. [30] upgraded past browser plug-ins' side effects studies, including injecting 

script or style tags, empty placeholders, or page messages. 

Fuhl et al. [31] correlated the mouse movement trajectory to the human eye, which 

could be used as a fingerprint. However, these techniques need further validation and 

research. Abgral et al. utilized cross-site scripting attacks [32] to fingerprint HTML 

parsers in different browsers. This method yields fingerprints that are hard to mislead 

and difficult to reproduce since they presume a running HTML parser. Fifield and 

Egelman [33] suggested measuring font glyph screen sizes to recognize web browser 

fingerprints in 2015. The authors mainly utilize the rendering of browsers for 

identification. In a test of over 1,000 browsers, 34% could be identified in this way. 

Authors in [34] examined HTML5's misuse of the battery API to utilize the properties of 

short-term batteries to identify users. Sanchez-Rola et al.  [29] introduced time-based 

device fingerprint recognition in 2018, which measures execution clock difference using 

JavaScript codes to identify users. Wu et al. [35] suggested a website user delay 

fingerprint in 2021. After IP address translation, users may switch browsers and use 

virtual machines with 80% recognition. 

Based on the overview of current research, the following challenges in browser 

fingerprint can be highlighted: (1) Most techniques depend on JavaScript, which is an 

omnipresent and vital part of most of today’s web pages. Nevertheless, research in the 

field of browser fingerprinting should try to develop non-JavaScript-dependent 

techniques. Some examples include research by Takei et al. [17] and Wu et al. [35]. (2) 

Research in the field of cross-browser fingerprinting should address aspects like 

M. Hölbl et al. / Browser Fingerprinting: Overview and Open Challenges300



matching recognition featuring weighting and techniques for obtaining more reliable and 

high-entropy fingerprint characteristics. There is already some research conducted in this 

direction [4,16]. (3) From the research overview, we can see that most of the 

fingerprinting properties depend on a device’s software (e.g., plug-ins) or hardware 

properties that can be gathered through the web browser. The challenge here is to 

fingerprint co-used devices (e.g., in public places, using the same networks). Research is 

already ongoing in this direction. Fuhl et al. showed how to exploit user activity to create 

fingerprints and proved its practicality [31].  

A brief overview of different approaches to browser fingerprinting is presented in 

Table 2. 

Table 2. Categorization of Research on Brower Fingerprinting Techniques. 

Technique is based on Example Reference 
JavaScript [3,4,9,10,14,15] 
CSS [16–18] 

Hardware [20,21,23,29,34] 

HTML5 features [11,19–26] 

Plug-ins / Extensions [27,28,30,36] 

3. Overview of Browser Fingerprint Defense Research  

Browser fingerprints, especially those acquired without the user's knowledge, pose a 

major threat to privacy. Browser fingerprints are best used to precisely monitor and 

secure users when they don't wish to be tracked. Scholars explore browser fingerprint 

defense to provide a secure and effective way for users who want to remain concealed.  

Browser fingerprint protection research increased after Eckersley et al.'s [10] study 

highlighted the browser tracking potential. However, there are examples of browser 

plug-ins or add-ons that further facilitate fingerprinting, like Firegloves [37]. This plug-

in returns random results when data on browser properties is gathered, which makes 

identifying such users simpler. On the other hand, tools like FP-Block [38] generate site-

specific fingerprints without affecting continuous or cross-domain tracking. Additionally, 

authors in [12] proposed to monitor web objects running on the user’s browser to check 

for the intention of fingerprinting. Additionally, they employ protection techniques using 

randomization, filtering, and even blacklists of relevant websites.  

In 2014, Besson et al. noted that randomization is not difficult, but how to randomize 

is. This work models trackers and fingerprint recognition tools using information theory 

channels and presents a randomization approach to assure program privacy without 

fingerprints. Nikiforakis et al. [39] proposed a randomization approach where developers 

can balance effectiveness and usability using different randomization algorithms. 

Laperdrix et al. [40] use software variety and dynamic reconfiguration to automatically 

construct varied browsers for the randomized return of phony fingerprints. Since a virtual 

machine environment is needed for the implementation, this can significantly impact 

efficiency. Another study by Trickel et al. [41] created CloakX to hide browser plug-in 

fingerprints by randomizing the accessible resource path. The technique uses JavaScript 

code rewriting and the DOM proxy Droxy to intercept and rewrite extension requests, 

thus assuring protection during browser plug-in installation. 

Another direction of browser fingerprinting defense was proposed by Wu et al. [42], 

namely unification. In their work, the authors suggested unifying WebGL and proposed 

an approach called UNIGL. Additionally, Fiore et al.'s [43] proposed a concept in which 
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fake data (used for fingerprinting) are generated to cope with browser fingerprinting. 

However, it needs to be changed continuously to protect regardless of whether genuine 

and false fingerprint tracking would be possible.  

An interesting technique was proposed by Yokoyama and Uda [44]. The authors 

employ local agents to modify the browser fingerprint value and, in this way, prevent 

fingerprinting. Another approach was proposed in [45], where Chromium was changed 

to protect against Flash and Canvas browser fingerprinting, but without influencing the 

two technologies. Laperdrix et al. [46] also offered a Firefox-based upgrade with 

fingerprint protection against AudioContext, and Mitropoulos et al. presented a training 

technique [47] for known cross-site scripting attacks to gather browser fingerprints [32]. 

ElBanna and Abdelbaki later created a method to reduce browser fingerprinting [48] for 

WebGL and Canvas fingerprint monitoring. 

Based on the overview of current research on browser fingerprint protection, it is 

evident that this can be done using additional plug-ins or modified versions of browsers. 

Still, the main remaining challenges include: (1) It is difficult for a user (browser) to 

determine whether the website’s intention is legitimate or malicious. For instance, it is 

unclear to the user whether or not their screen resolution is being considered when 

designing the site's layout. For example, it is difficult to determine if retrieving the screen 

resolution information is to adapt the web page layout or for browser fingerprinting 

purposes. (2) The use of unification with a small number of users is questionable. It 

requires the support of vendors, international standards organizations, and technical 

committees to, for example, unify WebGL and Canvas rendering.  

4. Discussion and Open Challenges 

The development of browser fingerprinting technology is consistent with the growing 

concern for privacy among individuals. Traditional tracking using cookies has shown 

shortcomings, as cookies can be stolen [49], modified or forged, and even injected [50]. 

Google recently announced that they plan to ban third-party cookies as more and more 

users block cookies or install protection plug-ins. If this happens, browser fingerprinting 

will become more important to assure statefulness and legitimate user tracking.  

Based on the review of existing research, we anticipate the following directions for 

future research: 

(1) Machine learning and AI will play an important role. One of the directions will be 

algorithms automatically matching fingerprints, as presented in [16,51]. Considering 

the evolution of fingerprinting techniques and approaches [10,13], a matching 

algorithm is required. Efficient rule-based matching algorithms were already 

developed [10,13,52,53]. With further progress in machine and deep learning, this 

technology is becoming preferable when developing browser fingerprinting 

techniques. For instance, [9,12] present a clustering algorithm to extract fingerprint 

signs autonomously. Additionally, machine learning algorithms, such as neural 

networks, are becoming increasingly popular [11,13] for fingerprinting. It is 

anticipated that in future research, combining browser fingerprinting and machine 

learning will increase. 

(2) Browser fingerprinting applications [54–57] exploit two aspects: the immutability 

of browser fingerprints and the use of browser fingerprints – gathering them through 

browser feature collection. However, with research in the field of browser 

fingerprinting, hardware fingerprinting, and the evolution of browser fingerprinting 
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[58–61], additional potential applications are emerging (e.g. cross-browser 

fingerprinting or cross-domain tracking). 

(3) As browsers and network technologies continuously develop, many technologies 

will disappear or be discontinued. For example, Microsoft, Google, and Adobe have 

discontinued technical support for Flash. Therefore, new approaches that are less 
dependent on specific technology need to be developed.  

Despite the fact that browser fingerprinting has been around for a significant amount 

of time and its maturity, legislation, regulation, and technical specifications have fallen 

behind practice [62]. Regarding information leakage, previous studies [63] have focused 

more on the technical aspect of securing device information. Research in [36] 

demonstrates that browser fingerprinting technology can impact personal privacy. 

Vendors are continuously monitoring the progress in the field and upgrading their 

products to prevent the acquisition of specific features that could help with browser 

fingerprinting. However, in the long term, the fundamental remedy still lies in regulation, 

legislation, and governance to guide technology development.  

5. Conclusions 

Current research on browser fingerprinting has yielded significant results that can 

be used for tracking users. There are two sides to the coin – on the one hand, browser 

fingerprinting can be used instead of cookies for maintaining the state of a user and, on 

the other, misused for tracking. The combination of browser fingerprinting and 

traditional user identity tracking can be applied positively, like identity tracking, user 

authentication, and for security. In this chapter, we have given an overview of browser 

fingerprinting from two aspects – acquiring and protecting against it. Further, we have 

discussed various challenges and future directions of the research field, which is intended 

to help facilitate further research in this interesting and, for online privacy, very 

important field.  
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