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Abstract. Blockchain technology revolutionized digital payments and transactions 
by introducing disruptive capabilities. It operates through smart contracts, 
automated software code facilitating transactions without intermediaries. Smart 
contracts, written in various languages, have gained popularity but are vulnerable to 
logic flaws and security threats, potentially leading to financial losses and 
undermining blockchain integrity. Validating their security is essential, although 
current tools only detect specific attacks, lacking a comprehensive automated 
solution. This article presents a two-stage process wherein the initial phase involves 
the extraction of characteristics from smart contracts through the analysis of abstract 
syntax trees (ASTs) and control flow graphs (CFGs). In order to improve the 
precision of our results, we can leverage the distinctive capabilities of the fuzzing 
technique to label the data prior to its integration into the training model. In the 
subsequent phase, approach is utilized neural decision tree (NDT) typically 
combines a decision tree structure with neural network components. The mixed-
method approach is utilized, leveraging the distinct advantages offered by neural 
networks and decision trees. The purpose of this collaborative technique is to 
enhance the probability of identifying vulnerabilities in smart contracts. The 
experimental assessment yielded favorable outcomes in the detection of smart 
contract vulnerabilities, namely those pertaining to Reentrancy, integer overflow, 
and Block Number Dependency. 
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1. Introduction 

In the age where blockchain technologies are flourishing, smart contracts have become 

a fundamental element in decentralized applications, bestowing automation, 

transparency, and security to a range of transactions and engagements. Smart contracts 

are contracts that execute themselves, with the conditions embedded directly into the 

code [1]. These contracts serve as the foundational elements of decentralized applications 

and are crucial for executing intricate business processes on the blockchain. Nevertheless, 

the attributes that make smart contracts so vital, such as their unchangeable nature and 

independence, also make them vulnerable to harmful manipulations if they are not 

meticulously crafted. 

 
1 Corresponding author: Department of Computer Science and Technology, University of Science and 

Technology Beijing (USTB), Beijing 100083, China. E-mail: ghazi_en87@yahoo.com. 
2 Second author: a professor in Department of Computer Science, University of Science and Technology 

Beijing (USTB), Beijing 100083, China. E-mail: chenhs@ustb.edu.cn  

Fuzzy Systems and Data Mining IX
A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA231090

788



 The escalating emergence and deployment of smart contracts have concurrently 

revealed an abundance of security impediments, with vulnerabilities being at the 

forefront. The sensitivities of these contracts, particularly due to their extensive 

integration with digital assets, bear the risk of engendering significant financial 

detriments. These substantial setbacks have spurred significant attention towards the 

imperative task of safeguarding and ensuring the stability of smart contracts. A scrutiny 

of existing literature evinces that a multitude of efforts have been initiated to tackle the 

security conundrums associated with smart contracts [2]. 

Several studies have delved into the exploration of methods for detecting 

vulnerabilities in smart contracts. One approach, formal verification, has encountered 

various challenges. It tends to be susceptible to errors due to its reliance on artificial rules, 

and it struggles to encompass intricate patterns comprehensively. Additionally, the 

comparative analysis in this method often necessitates the use of complex symbols and 

contrast indicators, demanding substantial computational resources and leading to 

prolonged detection times. 

This paper presents a machine learning model for detecting vulnerabilities in smart 

contracts, utilizing over 1100 verified contracts. The approach involves a two-step 

process: Preparation and Training. During Preparation, meaningful attributes are 

extracted from contract code, including static features from abstract syntax trees (ASTs) 

and control flow graphs (CFGs). Then we used established vulnerability detection tools 

such as sFuzz [3], CONFUZZIUS [4], and xFuzz [5] to label our training data. In the 

Training Model step, a mixed-method approach combines decision trees and neural 

networks, specifically employing the Neural Decision Trees(NDT) model. This model 

combines decision tree-based partitioning with neural networks to capture complex data 

relationships, offering both accuracy and interpretability. To summarize, our main 

contributions are as follows: 

1. We propose a model for automated detection of vulnerabilities in Ethereum smart 

contracts using neural decision trees.  

2. It differs from the existing works in that for the first time in our knowledge, labeling 

data by using the fuzzing tools (xFuzz, sFuzz, CONFUSS) for more accuracy. 

3. The efficacy of the model has been demonstrated in terms of its suitability for 

identifying vulnerabilities in smart contracts. The model was executed on authentic 

contracts, resulting in a prediction recall and precision of 92%. Furthermore, the model 

has a detection time of around 5 seconds per contract. 

2. Background 

We briefly review smart contracts vulnerabilities detection in Section 2.1, and machine 

learning vulnerability detection in smart contracts in Section 2.2, and Neural Decision 

Trees in Section 2.3 

2.1.  Smart Contracts Vulnerability Detection Methods 

The ascendancy of Blockchain technology and the concomitant prominence of smart 

contracts have engendered a burgeoning interest in smart contract security. Consequent 

to the high stakes often implicated by smart contracts, particularly in financial 

applications, the detection and amelioration of vulnerabilities have become an area of 

critical import. In this section, we will introduce three kinds of smart contract 
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vulnerability detection methods, including Static analysis, Dynamic analysis, Fuzzing 

Method. 

Static analysis is a technique that can be employed to scrutinize Solidity smart 

contracts without the need for their execution[6]. This methodology involves examining 

the Solidity source code of the smart contract to identify potential vulnerabilities and 

verify adherence to coding standards [7]. Several tools have been developed for static 

analysis, Slither [8], is a tool that requires access to the source code of the smart contract. 

It's mainly used to identify vulnerabilities and issues at the code level, but it may not be 

as effective in identifying runtime vulnerabilities that only manifest when the contract is 

executed. Slither can generate false positives. 

Dynamic analysis is a method that examines a program while it is executing or 

running [9]. It involves analyzing the program's behavior and interactions with its 

environment, including the inputs and outputs, to identify vulnerabilities and potential 

issues that may not be apparent from the source code alone. Dynamic analysis can 

simulate various scenarios, including the injection of malicious inputs, to uncover 

vulnerabilities that an attacker might exploit.  

Fuzzing Method Fuzzing is a software testing approach that is automated, wherein 

potential data is supplied as inputs to a program[10]. The process of fuzzing generates 

partially valid inputs that are not immediately rejected by the parser. However, these 

inputs do expose corner cases that were inadequately handled in earlier stages of the 

program. ContractFuzzer [11] is the first smart contract fuzzing tool that creates fuzzing 

inputs by leveraging the Application Binary Interface (ABI) specifications of smart 

contracts. It further employs test oracles to find potential security vulnerabilities and 

utilizes the Ethereum Virtual Machine (EVM) to capture runtime behaviors of smart 

contracts. 

2.2.  Machine Learning Vulnerability Detection in Smart Contract 

The public's interest in smart contract security has been considerable, which has 

prompted noteworthy developments in machine learning-based contract vulnerability 

detection methods.  The two steps of current software vulnerability detection methods, 

which are based on machine learning and cutting-edge techniques, are 1) training and 2) 

detection. When the prediction model is fully trained, satisfactory results can be obtained. 

Currently, there is a need to address the issue of integrating ML technologies with smart 

contract detection methods. A few papers provide an overview of the literature[12] [13] 

[14] [15] [16] have been proposed and they have been using machine learning models to 

detect vulnerabilities in smart contract  All these deep learning methods papers are trying 

to extract features from opcode and label contracts with types of vulnerabilities of smart 

contract to prepare data and employ machine learning algorithms to detect vulnerabilities 

in smart contracts. 

Other papers [17][18][19] have been conducted to identify smart contract 

vulnerabilities through the application of deep learning methodologies. However, these 

studies have primarily focused on extracting features directly from the source code of 

smart contracts in order to construct a training dataset based on the Abstract Syntax Tree 

(AST) representation. This approach is advantageous as it allows for the utilization of 

high-level programming languages and facilitates the processing of the AST. The 

utilization of static code analyzers for the purpose of extracting features and assigning 

labels to the smart contract. After the preparation of a training dataset, deep learning 

models can be trained on it in order to classify new data and identify vulnerabilities. All 
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existing machine-learning papers are trying to label dataset by using Symbolic Execution 

or Static analysis methods to detect potential vulnerabilities in the contracts. 

2.3.  Neural Decision Trees (NDT) 

Neural Decision Trees be used for classification tasks. NDT are hybrid machine learning 

models that combine the strengths of decision trees and neural networks [20]. The 

primary concept of Neural Decision Trees (NDT) is employing a neural network to 

reduce interdependencies among input variables initially, followed by feeding the 

changed input variables into a decision tree learning process for the purpose of 

categorization. Therefore, the NDT algorithm commences by accepting training data as 

input for the neural network model. The subsequent output is subsequently forwarded 

for decision reconstruction, and the resulting rules will be the final output of the NDT 

model. The NDT model can be applied to predict by combining decision tree-based 

partitioning with neural networks for capturing complex relationships in the data. It 

offers the advantage of interpretability while delivering accurate predictions [21]. 

3. Overview Our Method 

The proposed model for detecting smart contract vulnerabilities in machine learning 

leverages the utilization of multiple fuzzing analyzers, thereby optimizing the accuracy. 

To accomplish this, a collection of machine learning classifiers is trained using 

established vulnerabilities. The objective is to forecast the presence of similar security 

vulnerabilities in a novel contract. There are two main steps to creating our machine 

learning model vulnerability detection in smart contracts the first step is machine 

learning preparation and the second step is the machine learning training model. The 

Proposed Architecture in Figure 1. A comprehensive elucidation of each individual phase 

is included in the subsequent sections. 

 

 
Figure 1. Proposed Architecture 
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3.1. Step1: Machine Learning Preparation 

In this section, we provide a detailed explanation of the preparation process employed 

for training the machine learning model, which is designed to identify vulnerabilities 

present in smart contracts. We discuss the data collection in Section 3.1.1 and introduce 

Feature Extraction in Section 3.1.2, Labeling data in Section 3.1.3 

3.1.1. Data Collection and Preprocessing   

Supervised learning necessitates a dataset that is adequately large and labeled, while 

blockchain systems commonly serve as hosts for publicly accessible smart contracts. The 

decision was made to download and compile contracts via Etherscan, a well-known 

Ethereum service platform [22]. The data sets at our disposal comprise contracts that 

exhibit three distinct types of vulnerabilities, namely Reentrancy, Integer Overflow, and 

Block Number Dependency. In order to ensure representativeness, a comprehensive 

dataset comprising a total of 1100 contracts was gathered for subsequent analysis. The 

dataset was partitioned into an 80% training set and a 20% testing set.  

3.1.2. Building AST and Feature Extraction  

In preparing the training dataset, features are directly extracted from the smart contract's 

source code by utilizing a Solidity parser [23] to generate an abstract syntax tree (AST). 

The data structure of AST is chosen because it contains the abstract syntactic structure 

and content-related details. Solidity parser is an open-source tool that is relatively simple 

to install and operate. It examines the syntax of Solidity code and constructs an AST, 

which can be navigated using the parser’s built-in functions and dictionary methods. 

Moreover, The CFG is employed to extract an additional set of features a graph 

representation of the different paths a program can take during execution [24]. CFGs 

provide a visual representation of the program’s control flow and are instrumental in 

extracting information regarding the different execution paths within a program. we use 

a tool specifically designed for analyzing smart contract Slither (8). This tool provides 

features extracted from CFGs and can help to identify potential issues and opportunities 

for improvement in smart contract code. features extracted are 20, of which 13 are 

extracted from ASTs and the other 7 Features from CFGs 

3.1.3. Labeling 

The benefit of using fuzzing tools instead of a particular static tool is that fuzzing tools 

can reduce false negatives Thus, it increases the accuracy of vulnerability detection We 

chose the fuzzing tools sFuzz (3), CONFUZZIUS (4), and xFuzz (5). because they detect 

smart contract vulnerabilities with greater accuracy than other fuzzing tools. In this 

process, we chose these tools that could detect a variety of common smart contract 

vulnerabilities. In the labeling process, vulnerability reports from various detection tools 

are collected for each contract by taking the common vulnerabilities (Reentrancy, Integer 

Overflow, Block Number Dependency), and the value of each label is either 0 or 1. When 

the value is 1, it indicates that the contract does have a vulnerability of that sort. and 

when the value is 0, it indicates that the contract does not have a vulnerability, a contract 

is labeled as vulnerable (1) if it secures at least two votes in the analysis of fuzzing tools 

indicating a vulnerability. otherwise, the labels as non-vulnerable (0). the quality of the 
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labels and features will directly impact the performance of the machine learning models, 

so it’s important to ensure accuracy in this labeling process. 

3.2.  Step2: Machine Learning Training Model 

We take the features from smart contracts and use a neural decision tree (NDT) model to 

train three types of vulnerability. a neural diction tree network was trained with the 

following parameters: 

1) Number of Trees: 10  

2) Depth: 10 

3) Feature Rate: 1.0  

4) Number of Classes:3 

5) Number of Features: 11 

 The core of the algorithm involves building and training a Neural Decision Tree (NDT) 

model, which is a hybrid of neural networks and decision trees. Once the model is trained, 

it can predict class labels (0 or 1) for each data point in the testing set. The algorithm also 

evaluates the model's performance using metrics such as accuracy, precision, recall, and 

F1-score, and it generates a confusion matrix to assess how well the model identifies 

normal and vulnerable contracts. 

4. Experimental Evaluation 

In this section, we first present the metrics used for the model evaluation. Then we 

introduce the evaluation results of the implications of using our (NDT) model compared 

with the decision tree (DT) on security vulnerability analysis on smart contracts. 

4.1. Evaluation Metrics 

The proposed work employs a set of metrics including accuracy, precision, recall, F1 

score, and the confusion matrix to assess the performance of learning algorithms for 

classification (NDT), with the choice of metrics playing a pivotal role in model selection. 

Specifically, the study primarily focuses on accuracy as the predominant metric for 

evaluating classification models, defined as the ratio of correctly predicted instances to 

all predictions and calculated through the confusion matrix components (False Negatives, 

True Negatives, True Positives, and False Positives). In the context of vulnerability 

detection, the work emphasizes the significance of recall, precision, and F1-score as 

critical indicators. Additionally, the evaluation includes accuracy and loss values during 

the training process, with a preference for minimizing false negatives to detect all 

potential vulnerabilities and minimizing false positives to enhance the effectiveness of 

the analysis. As a result, the F1-score emerges as a reliable measure, accommodating 

imbalanced data, while performance evaluation relies on precision, recall, and the F1 

measure computed from the confusion matrix metrics.  

4.2. Evaluation Results 

Obviously, the performance of (NDT) is the best compared with the decision tree (DT) 

model (see Table 1) in the sense that all of its indicators are the highest. When comparing 
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the results of the vulnerability detection models, we observe variations in accuracy, recall, 

F1-score, and precision across different types of vulnerabilities. We report the 

experimental results in Table 1. 

       The findings of our study indicate that the traits we retrieved have the capability to 

identify vulnerabilities with a satisfactory level of accuracy. Hence, it is postulated that 

both the structural patterns of code and its complexity have an influence on the presence 

of vulnerabilities.  It has been observed that the detection accuracies of the three 

vulnerabilities exceed 85%. with other evaluation metrics consistently surpassing the 

90% threshold. In the context of the Block Number Dependency vulnerability, it is seen 

that the NDT model exhibits an accuracy rate of 92.73%, whilst the DT model 

demonstrates an accuracy rate of 85.45%. The NDT model exhibits superior performance 

in terms of recall (94%), F1-score (95%), and precision (96%) compared to the DT model 

in relation to this particular vulnerability. It is worth noting that the NDT model exhibits 

a slightly lower accuracy index in the case of Integer Overflow, potentially stemming 

from the multifaceted nature of this vulnerability, where the extracted features may not 

capture all relevant aspects. 
Table 1 experimental results of three vulnerabilities in terms of accuracy, recall, precision, F1-score and 
precision 

Vulnerability Model Accuracy  Recall  F1-score  Precision 

Reentrancy NDT 86.82% 93% 91% 89% 

DT 84.55% 91% 90 % 88% 

Integer Overflow NDT 84.55% 94% 90% 86% 

DT 80.91% 98% 88% 81% 

Block Number 
Dependency 

NDT 92.73% 94% 95% 96% 

DT 85.45% 86% 90% 95% 
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         Figure 2: NDT Confusion Matrix                                 Figure 3: DT Confusion Matrix 
 

The confusion matrix, as depicted in Figure 2 and Figure 3, reveals that the NDT 

algorithm exhibits a lower number of False Positive instances compared to the NT 

algorithm. This observation suggests that the prediction methodology employed by NDT 

is effective. The lower value seen in the Precision index of the two models may be 

attributed to the higher likelihood of false positives associated with Integer Overflow 

vulnerabilities. The presence of numerous valid operations can lead to integer overflows.  
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5. Conclusion & future work 

In this article, we introduce an innovative system for automating the detection of 

vulnerabilities in Ethereum smart contracts, leveraging machine learning algorithms. Our 

approach stands out as it pioneers the use of the fuzzing method for data labeling, aiming 

to enhance accuracy. The model's effectiveness is substantiated by its time-saving 

capabilities and its proficiency in identifying vulnerabilities within smart contracts. We 

conducted experiments on real contracts, resulting in an impressive prediction recall and 

precision rate of 92%. Additionally, the model demonstrates a remarkable detection time 

of approximately 5 seconds per contract. This article also presents a two-step method 

strategy, with the first step involving feature extraction from smart contracts using 

abstract syntax trees (AST) and control flow graphs (CFGs), in the second step by a 

mixed-method approach combining neural networks and decision trees to data set 

training. The model we developed exhibited a notable enhancement in both accuracy and 

efficiency when compared to the direct utilization of fuzzing techniques. 
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