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Abstract. Heterogeneous multi-attribute group decision-making (HMAGDM) is a
complex decision-making problem that widely exists in the real world. However,
there is relatively little research on the HMAGDM problems when the attribute set
and alternative set are both heterogeneous, and the existing studies still have some
limitations, such as the weight calculation is too simple, lacking objectivity and
comprehensiveness; the ranking methods does not consider the utility of both group
and individuals simultaneously, lacking flxibility and practicality. In order to obtain
more effective decision results, a HMAGDM method integrating multi-granulation
weighting model and improved VIKOR in uncertain linguistic environment is pro-
posed in this paper. Our contributions can be identified as follows: (1) On the ba-
sis of the uncertainty and closeness of uncertain linguistic terms (ULTs), a mea-
sure indicator for the effectiveness of experts’ opinions is proposed, and a finest-
granulation weight optimization model for experts is established by maximizing the
effectiveness; (2) Based on comprehensive consideration of effectiveness and devi-
ation, a bi-objective optimization model is proposed to obtain the multi-granulation
weights of attributes; (3) An improved VIKOR method combining the bounded-
ness of ULTs and the multi-granulation weights of attributes is proposed to obtain
more stable and effective ranking results. Finally, the case study and comparative
analysis illustrate the feasibility and characteristics of the proposed method.
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1. Introduction

Multi-attribute group decision-making (MAGDM) can be used to deal with many prac-
tical decision-making problems such as development of large project [1], urban waste
recycling partner selection[2], photovoltaic power station evaluation [3] and so on. In
the real decision-making environment, experts prefer to select some attributes they are
familiar with and the alternatives belonging to their professional fields for evaluation. In
addition, experts may use different types of evaluation information to express their opin-
ions. This type of MAGDM problem with different types and/or structures of evaluation
information is collectively referred to as heterogeneous MAGDM (HMAGDM). The ex-
isting research on HMAGDM can be classified into two frameworks: heterogeneous type
of evaluation information [4,5,6] and heterogeneous sets of attributes and/or alternatives.
The second framework can be subdivided into two cases: one is that only the attribute set
is heterogeneous[7,8,9,10,11,12]; The other is that the attribute set and alternative set are
both heterogeneous[13,14]. At present, research on HMAGDM with heterogeneous sets
of attributes and alternatives is relatively insufficient. This is mainly because the deci-
sion space structure of such problems has characteristics of diversity and personalization,
further increasing the difficulty of information aggregation and decision analysis. How
to effectively aggregate such complex heterogeneous information and obtain reasonable
and reliable decision results is one of the important challenges faced by current research.

In order to better solve the complex HMAGDM problems in uncertain linguistic
environment, a HMAGDM method integrating multi-granulation weighting model and
improved VIKOR will be proposed in this paper. The research motivation of this paper
is summarized as follows:

(1) ULTs can well reflect the uncertainty in the decision process [15] and the
HMAGDM problems in uncertain linguistic environment are widespread in the real
world. However, there are relatively few related studies.

(2) In existing HMAGDM research, weights are mostly subjectively given by ex-
perts and lack objectivity [7,8,9,10]. Moreover, the objective weighting methods cur-
rently used are too simple[11,12,13,14], and the obtained weights lack comprehensive-
ness, which is not conducive to obtaining reasonable decision results.

(3) Most HMAGDM methods use weighted aggregation [7,10,11,12,13] or TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) methods [8,9] to rank
the alternatives. However, both of them do not consider the utility of group and indi-
viduals simultaneously and cannot well reflect the decision-maker’s subjective prefer-
ences. Compared with them, VIKOR (VIsekriterijumska Optimizacija I Kompromisno
Resenje) method is more flexible and practical, which can obtain a compromise solution
finally accepted by experts [16,17]. However, the classical VIKOR method is prone to
encounter reverse ranking situations when adding, deleting, or replacing an alternative
[18], so it is necessary to develop an improved VIKOR method.

Our contributions can be mainly summarized in the following three aspects:
(1) On the basis of uncertainty and closeness of ULTs, an effectiveness measure is

proposed, which provides theoretical support for further analyzing the effectiveness of
decision results.

(2) Two multi-granulation weighting models with the goal of maximizing effective-
ness measures are established for experts and attributes respectively, which can obtain
more flexible and comprehensive weight and are more suitable for the aggregation of
heterogeneous decision matrices.
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(3) An improved VIKOR method combined with the boundedness of ULTs and the
multi-granulation weights of attributes is proposed to effectively improve the stability
and reliability of the ranking results.

The rest of the paper is organized as follows. Section 2 reviews some basic concepts.
Section 3 provides an introduction to the HMAGDM method proposed in this paper.
Section 4 demonstrates the feasibility of the method through a supplier selection case.
Section 5 conducts experimental analysis from three aspects: sensitivity, stability, and
effectiveness. Section 6 draws our conclusions and points out future research directions.

2. Preliminaries

Definition 1 [19] Let S = {sα |α = 0,1, · · · , l} be a finite and totally ordered discrete
linguistic term set, where l is an even value, sα represents a linguistic term.

Xu [20] extended S into the continuous set S = {sα |α ∈ [0,q]}, where q(q ≥ l) is a
sufficiently large natural number. I(sα) denote the term index of sα in S, i.e., I(sα) = α .

Definition 2 [20] Let s̃ = [sL,sR], where sL,sR ∈ S, sL and sR are the lower and upper
limits of s̃, respectively. We call s̃ the uncertain linguistic term (ULT).

For two ULTs s̃1 = [sL1 ,sR1 ], s̃2 = [sL2 ,sR2 ], the operational laws are [20]: (1) s̃1 ⊕
s̃2 = [sL1 ,sR1 ]⊕ [sL2 ,sR2 ] = [sL1+L2 ,sR1+R2 ]; (2) ρ s̃1 = ρ[sL1 ,sR1 ] = [sρL1 ,sρR1 ], ρ ≥ 0.

Definition 3 Let s̃1 = [sL1 ,sR1 ] and s̃2 = [sL2 ,sR2 ] be two ULTs, the Euclidean distance

between s̃1 and s̃2 is given by d(s̃1, s̃2) =
1
l

√
1
2
[(I(sL1)− I(sL2))

2 +(I(sR1)− I(sR2))
2].

Xu [21] also proposed the uncertain linguistic weighted averaging (ULWA) operator.

Definition 4 [21] The ULWA operator is defined as ULWAλ (s̃1, s̃2, · · · , s̃n) = λ1s̃1 ⊕
λ2s̃2 ⊕ ·· · ⊕ λns̃n, where λ = (λ1,λ2, · · · ,λn) is the weighting vector of ULTs s̃ j( j =
1,2, · · · ,n), and λ j ∈ [0,1], Σn

j=1λ j = 1.

Definition 5 [22] A PULTS is defined as S(p) = {〈s̃k, pk〉|pk ≥ 0,k = 1,2, · · · , |S(p)|,
∑|S(p)|

k=1 pk ≤ 1}, where s̃k = [sk
L,s

k
R] is an ULT, sk

L and sk
R(s

k
L,s

k
R ∈ S,sk

L ≤ sk
R) are the lower

and upper limits of s̃k, respectively. |S(p)| is the cardinality of S(p), and pk is the prob-
ability of s̃k.

PULTS is an effective tool to depict uncertain linguistic opinions [23], which pro-
vides a new means of modeling ULTs by computing their occurrence probabilities.

3. HMAGDM method integrating multi-granulation weighting model and

improved VIKOR in uncertain linguistic environment

3.1. Problem description

For a HMAGDM problem in uncertain linguistic environment, let X = {x1,x2, · · · ,xm}
be an alternative set, A = {a1,a2, · · · ,an} be an attribute set, E = {e1,e2, · · · ,e f } be an
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expert set, S = {sα |α = 0,1, · · · , l} be a linguistic term set. Xh = {xh
i |xh

i ∈ X} represents
a subset of the alternatives selected by eh, Ah = {ah

j |ah
j ∈ A} represents a subset of the

attributes selected by eh. The decision matrix of eh can be expressed as Rh = [s̃h
i j]|Xh|·|Ah|,

where |Xh| is the number of alternatives in Xh, |Ah| is the number of attributes in Ah,
s̃h

i j = [sh
i jL,s

h
i jR] represents the evaluation value of xi under a j given by eh.

Let Ei j = {eh|s̃h
i j �= /0,eh ∈ E} represent the set of experts who evaluate xi under a j.

The number of experts in Ei j is denoted as |Ei j|. The set of evaluation value given by the
experts in Ei j is denoted as Vi j = {s̃h

i j|eh ∈ Ei j}= {[sh
i jL,s

h
i jR]|eh ∈ Ei j}

In order to ensure the objectivity and comprehensiveness of decision results, a
HMAGDM method needs to meet the following conditions:(1) X1 ∪X2 ∪ ·· · ∪X f = X ;
(2) A1 ∪A2 ∪·· ·∪A f = A; (3) |Ei j| ≥ 3(i = 1,2, · · · ,m, j = 1,2, · · · ,n).

3.2. Multi-granulation weighting model for experts

In this subsection, the ULT evaluation values provided by different experts are first ag-
gregated into PULTS. Then, the finest-granulation weights of experts are calculated from
the perspectives of uncertainty and closeness. Finally, a bi-objective optimization model
is established to fuse the two kinds of weights together.

First, by counting the number of occurrences of each s̃h
i j in Vi j = {s̃h

i j|eh ∈ Ei j}, the
set Vi j can be transformed into a PULTS Si j(p), that is,

Si j(p) = {〈s̃k
i j, pk

i j〉|pk
i j =

#s̃k
i j

|Vi j| , s̃
k
i j ∈Vi j,k = 1,2, · · · , |Si j(p)|,

|Si j(p)|
∑
k=1

pk = 1} (1)

where s̃k
i j = [sk

i jL,s
k
i jR], #s̃k

i j represents the number of occurrences of each s̃k
i j in Vi j, |Vi j|

represents the cardinality of Vi j, |Si j(p)| is the cardinality of Si j(p).
Then, calculate the multi-granulation weights of experts.
(1) The expert weight based on uncertainty degree
Step 1. Calculate he uncertainty degree UND(s̃h

i j) of expert eh as follows

UND(s̃h
i j) =

I(sh
i jR)− I(sh

i jL)

l
(2)

Step 2. Calculate the uncertainty degree UND(Si j(p)) of subgroup Ei j as follows

UND(Si j(p)) =
|Si j(p)|
∑
k=1

pk
i jUND(s̃k

i j) (3)

Step 3. Calculate the weight ωu
i jh of expert eh in Ei j based on uncertainty degree

ωu
i jh =

1−UND(s̃h
i j)

|Ei j|× (1−UND(Si j(p)))
(4)

(2) The expert weight based on closeness degree
Step 1. Calculate the closeness degree CLD(s̃h

i j,Si j(p)) between expert eh and the
subgroup Ei j as follows
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CLD(s̃h
i j,Si j(p)) =

|Si j(p)|
∑
k=1

pk
i j(1−d(s̃h

i j, s̃
k
i j)) (5)

Step 2. Calculate the weight ωc
i jh of expert eh in Ei j based on closeness degree

ωc
i jh =

CLD(s̃h
i j,Si j(p))

∑eh∈Ei j CLD(s̃h
i j,Si j(p))

(6)

(3) Expert weight optimization model
Let ωi jh be the multi-granulation weight of eh under a j w.r.t xi. Then the weighted

overall uncertainty of Ei j under a j w.r.t xi is UNDi j = ∑eh∈Ei j ωi jhUND(s̃h
i j). Using

ULWA operator and ωi jh, the weighted overall evaluation value of Ei j can be obtained
and denoted by s̃i j. Then the consensus degree of Ei j can be expressed as CODi j =

∑eh∈Ei j ωi jh(1− d(s̃h
i j, s̃i j)). The effectiveness degree of subgroup Ei j’s opinions can be

expressed as EFDi j =CODi j −UNDi j. By solving the following model (M-1) with the
goal of maximizing EFDi j, the weight ωi jh of expert can be obtained.

maxEFDi j =CODi j −UNDi j = ∑
eh∈Ei j

ωi jh(1−d(s̃h
i j, s̃i j))− ∑

eh∈Ei j

ωi jhUND(s̃h
i j)

s.t.

⎧⎪⎨
⎪⎩

ωi jh ≥ min{ωu
i jh,ω

c
i jh},eh ∈ Ei j

∑
eh∈Ei j

ωi jh = 1 (M-1)

3.3. Multi-granulation weighting model for attributes

Through the above calculation, the effectiveness under each attribute can be expressed

as EFD j =
1
m

∑m
i=1 EFDi j. Let v j be the final weight of attribute, the total effectiveness

of group opinions can be expressed as EFD = ∑n
j=1 v jEFD j. Next, we will give an

objective comprehensive weighting method for attributes.
(1) The attribute weight based on effectiveness degree
The weight vr

i j of a j based on effectiveness under xi can be calculated as follows:

vr
i j =

EFDi j

∑n
j=1 EFDi j

(7)

(2) The attribute weight based on maximizing deviation
By using the weights of experts and ULWA operator, the individual decision ma-

trices of experts can be aggregated into the group decision matrix R̃ = [s̃i j]m×n, where
s̃i j = [si jL,si jR] represents the overall evaluation value of the subgroup under a j w.r.t xi.

The weight vd
j of a j based on maximizing deviation can be calculated as follows[24]:

vd
j =

∑m
i=1 ∑m

t=1 d(s̃i j, s̃t j)

∑n
j=1 ∑m

i=1 ∑m
t=1 d(s̃i j, s̃t j)

(8)

(3)Attribute weight optimization model
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Let v j denote the synthetic weight of attribute and DEVj = ∑m
i=1 ∑m

t=1 d(s̃i j, s̃t j)
represent the deviation under a j. Then, the total deviation under all attributes can
be expressed as DEV = ∑n

j=1 v jDEVj. Combined with the total effectiveness EFD =

∑n
j=1 v jEFD j, a bi-objective optimization model (M-2) with the goal of maximizing both

EFD and DEV can be establised to fuse the above two kinds of attribute weights.

maxEFD∗DEV = (
n

∑
j=1

v jEFD j)∗ (
n

∑
j=1

v jDEVj)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi j =
vr

i jv
d
j

∑n
j=1 vr

i jv
d
j
, i = 1,2, · · · ,m, j = 1,2, · · · ,n

min{min
i

vr
i j,v

d
j ,min

i
vi j} ≤ v j ≤ max{max

i
vr

i j,v
d
j ,max

i
vi j}, j = 1,2, · · · ,n

n

∑
j=1

v j = 1

(M-2)

3.4. The improved VIKOR method

In order to effectively improve the stability of the ranking results, an improved VIKOR
method is proposed in this subsection, which replaces the maximum and minimum values
in the current alternative set with the upper and lower limits of the linguistic term set as
PIS and NIS, and uses the multi-granulation weights of attributes to calculate the group
utility and individual regret respectively. The specific ranking method is as follows:

Step 1. Let s̃+ = [sl ,sl ] be the PIS and s̃− = [s0,s0] be the NIS under all attributes.
Step 2. Calculate the group utility value Si = ∑n

j=1 v jd(s̃+, s̃i j) and individual regret
value Ri = max j{v jd(s̃+, s̃i j)} of alternative xi (i = 1,2, · · · ,m).

Step 3. Calculate the overall evaluation value Qi of alternative xi(i = 1,2, · · · ,m)

Qi = μ
Si −S−

S+−S−
+(1−μ)

Ri −R−

R+−R− (9)

where S+ =max
i

Si, S− =min
i

Si, R+ =max
i

Ri, R− =min
i

Ri. μ ∈ [0,1] is the compromise

coefficient.
Step 4. Arrange the alternatives in ascending order according to the values of Si, Ri

and Qi, respectively. Suppose the ranking result obtained from Qi is x(1),x(2), · · · ,x(m),
the determination process of the optimal alternative is as follows:

If x(1) satisfies condition 1: Q(x(2))−Q(x(1)) ≥ 1
m−1

, and condition 2: x(1) is still

the optimal alternative according to the ascending order of Si or Ri. Then x(1) is a stable
optimal alternative in the decision process.

If the above two conditions cannot be met at the same time, the compromise solution
can be generated according to the following two situations: if condition 2 is not met, x(1)

and x(2) are both compromise solutions; If condition 1 is not met, the compromise solu-
tion set is X = {x(1),x(2), · · · ,x(J)}, where J is the maximum positive integer calculated

by Q(x(J))−Q(x(1))<
1

m−1
.
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4. An illustrative example

The following takes an e-commerce enterprise as an example to illustrate the feasibil-
ity of the method. X = {x1,x2, · · · ,x6} are six candidate suppliers, and the correspond-
ing evaluation indices are A = {a1,a2, · · · ,a5}, where a1–service quality, a2–logistics
cost, a3–enterprise capability, a4–informatization degree, a5–enterprise development
prospect. Five experts are E = {e1,e2, · · · ,e5}. The linguistic term set adopted by the
experts is S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor, s4 =
fair, s5 = slightly good, s6 = good, s7 = very good, s8 = extrimly good}. The decision
matrices Rh(h = 1,2, · · · ,5) provided by the experts are shown in Tables 1-3.

Table 1. The decision matrix R1 provided by e1

X1 A1

a1 a2 a3 a4 a5

x1 [s7,s7] [s6,s7] [s6,s7] [s4,s4] [s6,s7]

x2 [s5,s8] [s7,s7] [s3,s3] [s4,s5] [s2,s5]

x5 [s6,s8] [s4,s5] [s4,s6] [s5,s5] [s6,s7]

x6 [s0,s3] [s5,s7] [s5,s6] [s4,s6] [s6,s8]

Table 2. The decision matrices provided by e2 and e3

X2 A2
X3 A3

a2 a3 a4 a5 a1 a2 a4 a5

e2 x2 [s5,s6] [s4,s6] [s6,s6] [s2,s5] e3 x1 [s5,s8] [s7,s8] [s3,s4] [s5,s5]

x3 [s5,s6] [s3,s5] [s4,s5] [s3,s5] x2 [s5,s8] [s7,s8] [s6,s6] [s2,s5]

x4 [s5,s6] [s5,s7] [s4,s4] [s4,s5] x3 [s1,s3] [s6,s6] [s5,s5] [s4,s6]

x5 [s4,s5] [s5,s5] [s4,s4] [s6,s6] x4 [s1,s4] [s5,s8] [s4,s5] [s5,s5]

x6 [s4,s5] [s4,s6] [s5,s5] [s5,s7] x5 [s4,s7] [s5,s5] [s4,s6] [s3,s5]

Table 3. The decision matrices provided by e4 and e5

X4 A4
X5 A5

a1 a3 a4 a1 a2 a3 a5

e4 x1 [s3,s6] [s6,s8] [s4,s5] e5 x1 [s7,s7] [s7,s8] [s8,s8] [s5,s8]

x2 [s3,s5] [s3,s5] [s4,s5] x3 [s4,s7] [s5,s7] [s4,s5] [s4,s5]

x3 [s1,s3] [s4,s5] [s3,s4] x4 [s1,s4] [s5,s6] [s5,s7] [s4,s7]

x4 [s1,s4] [s5,s5] [s4,s5] x5 [s3,s3] [s3,s6] [s2,s5] [s2,s5]

x6 [s1,s4] [s1,s3] [s4,s5] x6 [s5,s7] [s4,s5] [s5,s5] [s3,s6]

The specific supplier selection process is as follows:
Step 1. By using Eq.(1), the group PULTS matrix are obtained.
Step 2. By using Eqs.(2)-(4), the weights ωu

i jh of eh ∈ Ei j are obtained; By using
Eqs.(5) and (6), the weights ωc

i jh of eh ∈ Ei j are obtained. By solving model (M-1), the
weights ωi jh of eh ∈ Ei j are obtained.
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Step 3. By using Eqs.(7), the weights vr
i j of attributes under each alternative based

on effectiveness are obtained.
Step 4. By using the weights of experts ωi jh and ULWA operator, the group ULT

decision matrix R̃ are obtained and shown in Table 4.

Table 4. Group ULT decision matrix R̃

X A
a1 a2 a3 a4 a5

x1 [s5.848,s7] [s6.676,s7.676] [s6,s7.3] [s3.682,s4.318] [s5.342,s6.434]

x2 [s4.388,s7.082] [s6.364,s7] [s3.3,s4.5] [s5.068,s5.534] [s2,s5]

x3 [s1.88,s4.175] [s5.385,s6.286] [s4.898,s5.888] [s4.046,s4.682] [s3.684,s5.316]

x4 [s1,s4] [s5,s6.526] [s5,s6.2] [s4,s4.636] [s4.411,s5.5]

x5 [s4.211,s5.632] [s4.116,s5.185] [s3.808,s5.403] [s4.396,s4.942] [s4.539,s5.824]

x6 [s1.872,s4.576] [s4.3,s5.6] [s3.918,s5.051] [s4.381,s5.286] [s4.743,s7.037]

Step 5. By using Eq.(8), the weights vd
j of each attribute based on maximizing devi-

ation in R̃ are obtained, vd
1 = 0.326, vd

2 = 0.196, vd
3 = 0.193, vd

4 = 0.091, vd
5 = 0.195.

Step 6. By solving model (M-2), the synthetic weights v j of attributes are obtained,
v1 = 0.324, v2 = 0.269, v3 = 0.155, v4 = 0.091, v5 = 0.161.

Step 7. Let μ = 0.5, s̃+ = [s8,s8] and s̃− = [s0,s0]. By using the improved VIKOR
method, the values of Si, Ri and Qi are obtained (see Table 5). The ranking result obtained
from Qi is x1 � x2 � x5 � x3 � x6 � x4 and the optimal solution is x1.

Table 5. The values and rankings of the alternatives

X Values Rankings
Si Ri Qi Si Ri Qi

x1 0.219 0.068 0 1 1 1
x2 0.359 0.107 0.406 2 2 2
x3 0.446 0.207 0.892 4 5 4
x4 0.463 0.231 1 6 6 6
x5 0.406 0.128 0.568 3 3 3
x6 0.460 0.201 0.902 5 4 5

5. Comparative analysis

5.1. Sensitivity analysis

The overall evaluation values Qi(1≤ i≤ 6) and ranking results corresponding to different
compromise coefficient μ are shown in Table 6.

It can be seen from Table 6 that different μ will result in different ranking results.
However, no matter what value μ takes, the optimal alternative is always x1 and the order
of the first three alternatives has not changed. If weighted aggregation or TOPSIS is used
instead of the improved VIKOR method, only one ranking result can be obtained, i.e.,
x1 � x2 � x5 � x3 � x6 � x4. By contrast, the improved VIKOR method is more flexible
and practical.
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Table 6. The decision results under different compromise coefficient μ

μ Q1 Q2 Q3 Q4 Q5 Q6 Ranking results
Optimal

alternative
0 0 0.238 0.851 1 0.368 0.817 x1 � x2 � x5 � x6 � x3 � x4 x1

0.1 0 0.272 0.860 1 0.408 0.834 x1 � x2 � x5 � x6 � x3 � x4 x1

0.2 0 0.305 0.868 1 0.448 0.851 x1 � x2 � x5 � x6 � x3 � x4 x1

0.3 0 0.339 0.876 1 0.488 0.868 x1 � x2 � x5 � x6 � x3 � x4 x1

0.4 0 0.373 0.884 1 0.528 0.885 x1 � x2 � x5 � x3 � x6 � x4 x1

0.5 0 0.406 0.892 1 0.568 0.902 x1 � x2 � x5 � x3 � x6 � x4 x1

0.6 0 0.440 0.900 1 0.607 0.919 x1 � x2 � x5 � x3 � x6 � x4 x1

0.7 0 0.473 0.909 1 0.647 0.936 x1 � x2 � x5 � x3 � x6 � x4 x1

0.8 0 0.507 0.917 1 0.687 0.954 x1 � x2 � x5 � x3 � x6 � x4 x1

0.9 0 0.541 0.925 1 0.727 0.971 x1 � x2 � x5 � x3 � x6 � x4 x1

1.0 0 0.574 0.933 1 0.767 0.988 x1 � x2 � x5 � x3 � x6 � x4 x1

5.2. Stability analysis

In this subsection, the stability of the proposed method will be verified through abla-
tion experiments. Table 7 lists the differences between the improved VIKOR method
(I-VIKOR) and three comparison methods M-VIKOR, D-VIKOR and MD-VIKOR.

Table 7. The improved VIKOR method and three comparison methods

Methods PIS NIS Attribute weights
I-VIKOR

(ours) [sl ,sl ] [s0,s0] multi-granulation weight

M-VIKOR [maxi si jL,maxi si jR] [mini si jL,mini si jR] multi-granulation weight

D-VIKOR [sl ,sl ] [s0,s0]
single-granulation weight based on

maximizing deviation

MD-VIKOR [maxi si jL,maxi si jR] [mini si jL,mini si jR]
single-granulation weight based on

maximizing deviation

Tables 8 show the ranking results of the four methods mentioned above. It can be
seen that the stability of the proposed I-VIKOR is the best, while the stability of MD-
VIKOR is the worst.

Table 8. Ranking results of four methods before and after deleting x1

Methods Before deleting x1 After deleting x1

I-VIKOR x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.3)
x1 � x2 � x5 � x3 � x6 � x4 (0.4 ≤ μ ≤ 1)

x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.4)
x2 � x5 � x3 � x6 � x4 (0.5 ≤ μ ≤ 1)

M-VIKOR

x1 � x2 � x6 � x5 � x3 � x4 (μ ≤ 0.1)
x1 � x2 � x5 � x6 � x3 � x4 (0.2 ≤ μ ≤ 0.5)
x1 � x2 � x5 � x3 � x6 � x4 (0.6 ≤ μ ≤ 0.9)

x1 � x2 � x5 � x3 � x4 � x6 (μ = 1)

x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.6)
x2 � x5 � x3 � x6 � x4 (0.7 ≤ μ ≤ 1)

D-VIKOR x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.6)
x1 � x2 � x5 � x3 � x6 � x4 (0.7 ≤ μ ≤ 1)

x5 � x2 � x6 � x3 � x4 (0 ≤ μ ≤ 0.2)
x2 � x5 � x6 � x3 � x4 (0.3 ≤ μ ≤ 1)

MD-VIKOR x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.9)
x1 � x2 � x5 � x3 � x6 � x4 (μ = 1)

x5 � x2 � x6 � x3 � x4 (0 ≤ μ ≤ 0.4)
x2 � x5 � x6 � x3 � x4 (0.5 ≤ μ ≤ 1)
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5.3. Effectiveness analysis

In this subsection, the advantages of the multi-granulation weighting model for ex-
pert will be explained through comparative analysis of effectiveness. The proposed
HMAGDM method is called M-HMAGDM. The other three comparison methods are
U-HMAGDM using the uncertainty based expert weight ωu

i jh, C-HMAGDM using the
closeness based expert weight ωc

i jh, and E-HMAGDM with equal expert weight. The dif-
ference between them is only reflected in the calculation method of expert weights. Table
9 lists the effectiveness and ranking results corresponding to the above four methods.

Table 9. Comparison of effectiveness and ranking results of four HMAGDM methods

Mehtods EFD1 EFD2 EFD3 EFD4 EFD5 EFD Ranking results
M-HMAGDM

(ours) 0.576 0.78 0.686 0.822 0.662 0.684 x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.3)
x1 � x2 � x5 � x3 � x6 � x4 (0.4 ≤ μ ≤ 1)

U-HMAGDM 0.572 0.78 0.686 0.822 0.66 0.683 x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.7)
x1 � x2 � x5 � x3 � x6 � x4 (0.8 ≤ μ ≤ 1)

C-HMAGDM 0.566 0.764 0.681 0.812 0.637 0.671 x1 � x2 � x5 � x6 � x3 � x4 (0 ≤ μ ≤ 0.3)
x1 � x2 � x5 � x3 � x6 � x4 (0.4 ≤ μ ≤ 1)

E-HMAGDM 0.559 0.705 0.679 0.811 0.633 0.644 x1 � x5 � x2 � x6 � x3 � x4 (0 ≤ μ ≤ 0.6)
x1 � x5 � x2 � x3 � x6 � x4 (0.7 ≤ μ ≤ 1)

From Table 9, it can be seen that the proposed method M-HMAGDM has the best
performance, while E-HMAGDM has the lowest performance. The other two methods
are between M-HMAGDM and E-HMAGDM.

6. Conclusions

The proposed HMAGDM method can effectively overcome the limitations of existing
methods in weight setting, information aggregation and alternative ranking, and ob-
tain more reasonable and high-quality decision results. The advantages of the proposed
method are demonstrated through comparative analysis of sensitivity, stability, and ef-
fectiveness. However, this study is limited to uncertain linguistic environment and can-
not be directly used to handle the HMAGDM problems with different forms and granu-
lations of fuzzy linguistic preference information in the open dynamic environment. In
the future, we will closely connect with practical decision-making problems and com-
bine factors such as trust relationships, self-confidence, attribute priority, and alternative
grade to study consensus analysis models and decision feedback mechanisms for com-
plex HMAGDM problems in different linguistic environments. On this basis, explore
more flexible and reliable group decision-making methods to provide decision-makers
with more scientific and practical decision support.
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