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Abstract. Sales forecasting plays a vital role in the daily operations of e-commerce 
companies, impacting market assessment, operational planning, and supply chain 
management. As the market is constantly changing, accurately predicting sales is a 
critical challenge that e-commerce companies need to urgently address. However, 
traditional statistical forecasting methods have disadvantages such as long run times, 
low accuracy, weak generalization, and strong data periodicity, which lead to 
unnecessary losses for companies. We propose the QLBiGRU model that utilizes 
the reinforcement learning Q-Learning algorithm combined with BiGRU to improve 
forecasting accuracy. Automatic parameter optimization technology is also used to 
reduce training time and demand for hardware resources, thereby enabling enter-
prices to accurately analyze the market and make informed decisions. 

Keywords. Sales Forecast, Automatic Parameter Optimization, Reinforcement 
Learning, BiGRU 

1. Introduction 

With the rapid development of the e-commerce industry, the e-commerce sales system 

generates a large amount of data. Sales data, as typical time series data, directly reflects 

the characteristics of commodity circulation and can be collected and utilized to predict 

sales at a certain point in the future or within a certain period. This is very important for 

e-commerce companies to formulate reasonable business plans and sales plans based on 

past experience. However, due to the influence of various factors such as seasons and 

promotional activities, it is difficult to accurately predict product sales. Inaccurate 

forecasts can lead to excess inventory and increased costs or lost sales. Therefore, 

accurate and efficient merchandise sales forecasting is key to reducing uncertainty, 

minimizing inventory buildup, and reducing opportunity costs. 

Traditional statistical methods, such as the Markov model[1], Prophet model[2], 

autoregressive moving average (ARIMA) [3], etc., have limitations due to the inability 

to solve problems such as data periodicity and perform poorly. The rise of deep learning 

has brought better prediction results, but the hyperparameters of the model, such as 

learning rate, number of iterations, and batch size, can be difficult to determine and 

require a lot of effort and cost to set. Therefore, optimizing hyperparameters is crucial 

for predictive models. 
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(1) We propose a prediction model QLBiGRU based on Q-Learning and BiGRU, 

and optimize the hyperparameters of the BiGRU model, such as the number of neurons, 

the number of iterations, and the learning rate, to improve the prediction accuracy.  

(2) We conducted experiments with different prediction lengths and performance 

optimization experiments and used multiple data sets to verify the prediction 

performance and hyperparameter optimization capabilities of the QLBiGRU model. The 

experimental results validate the effectiveness and superiority of the model. 

The rest of the paper is organized as follows, and in section 2, we report a summary 

of research related to e-commerce sales prediction and hyperparameter optimization. 

Section 3 presents a detailed description of QLBiGRU. In section 4, we conduct 

sufficient experiments to verify the validity of the proposed model in section 3. The full 

paper is summarized in section 5. 

2. Background 

2.1. E-commerce Sales Prediction 

E-commerce sales forecasting is a subfield of time series forecasting that utilizes models 

to predict future trends, directions, and development processes within a time series. 

While commonly used classical statistical forecasting methods, including linear 

regression (LR) and autoregressive moving average model (ARIMA), have limitations 

such as underfitting, the Prophet-SARIMA model has been proposed by Zhao et al. [4] 

to solve these problems. The SARIMA model helps improve the limitations of the 

ARIMA model by accounting for data periodicity, and the Prophet model applies to a 

wide range of forecasting problems with potential unique features. Combining these 

models allows for better identification of change points, seasonality, holidays, and 

emergencies in time series data. However, since training and prediction must be 

conducted separately, any updates to the model require retraining. Additionally, the 

Prophet model is not suitable for identifying complex patterns. Markov models are also 

utilized in time series forecasting; however, these models have limitations in forecasting 

problems due to the lack of relevance between current and historical data. With the 

development of deep learning, the use of the recurrent neural network (RNN), long short-

term memory (LSTM), and gated recurrent unit (GRU) have shown to improve 

prediction results. Liu et al. [5] proposed an RNN-based model for vehicle mobility 

prediction and a rolling subway passenger flow prediction model, while Wang et al. [6] 

used the LSTM model to solve traffic forecasting problems. While the traditional 

statistical method has limitations with periodic data, deep learning methods have more 

accurate predictions but face complexity in training and parameter adjustment. 

2.2. Hyperparameter optimization 

The selection of hyperparameters for neural network models is a test of researchers’ 

experience and often requires numerous adjustments to achieve better results. As such, 

automatic optimization of hyperparameters has garnered attention from many 

researchers in recent years. Shao et al. employed an improved Particle Swarm 

Optimization (PSO) algorithm to optimize nickel price predictions based on the LSTM 
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neural network[7]. This method utilized the enhanced PSO algorithm to optimize the 

number of neurons in the LSTM network. However, the PSO algorithm is prone to falling 

into local optimal solutions when optimizing neural network parameters. To address this 

issue, Han et al. proposed an improved Adaptive Particle Swarm Optimization (APSO) 

algorithm for optimizing rainy road traffic speed prediction model parameters of the 

GRU network[8]. They used an adaptive nonlinear inertia weight method to strike a 

balance between the PSO algorithm’s local and global search capabilities. Yang et al. 

suggested an enterprise network marketing prediction model based on a Genetic 

Algorithm (GA)-optimized BP neural network[9]. However, due to the algorithm’s 

randomness, the local search capability of the GA is poor. Grid search is another common 

optimization technique; B.D. et al. utilized this method to optimize the hyperparameters 

of a machine learning model, leading to improved predictions[10]. Traditional grid 

search algorithms, though, suffer from an excessively large invalid search range and 

sensitivity to search step size. To overcome these drawbacks, Sun et al. proposed an 

improved grid search algorithm to optimize the relevant parameter values of the Support 

Vector Regression (SVR) model, resulting in more accurate predictions[11]. 

Most traditional optimization algorithms tend to operate slowly and fall into local 

optimal solutions. In contrast, reinforcement learning has recently gained popularity for 

its efficient optimization capabilities. Wu et al. introduced an efficient model-based 

hyperparameter optimization method that models the optimization process as a 

reinforcement learning model, allowing an agent to sequentially tune hyperparameters 

and dynamically adjust the usage model[12]. Chen et al. applied deep reinforcement 

learning with model acceleration to address hyperparameter optimization problems[13]. 

This method incorporated a predictive reward value module and a guide pool to steer the 

agent’s exploration in the search space, ultimately reducing search time and enhancing 

search efficiency. 

In conclusion, traditional optimization algorithms generally suffer from slow 

convergence speed, low solution accuracy, and a tendency to fall into local optima. 

Reinforcement learning-based optimization algorithms, on the other hand, demonstrate 

high search efficiency and deliver solution strategies from scratch, with superior 

efficiency, robustness, and generalization. 

3. Model Definition 

3.1. QLBiGRU 

We establish the three parameters to be optimized as a state, generating a set of actions 

in each state. The agent continuously interacts with the environment to find the optimal 

strategy. Initially, predictions are made based on the environment's initial state, resulting 

in a set of actions � = ���,��,���, which serves as the initial strategy. This strategy is 

then executed within the environment, and the resulting RMSE value is provided as a 

reward signal. The Q table is updated accordingly. Next, predictions are made based on 

the updated strategy using the ε-greedy strategy with � =  0.9 to sample. The output is 

a new strategy �� = ���
� ,��

� ,��
� �, and the reward value under this updated strategy is 

calculated. Here, A represents the initial strategy, while ��  represents the updated 

strategy. During the BiGRU prediction phase, standardized data is sent to the three-layer 

BiGRU network for computation, and the prediction result is generated (see Fig. 1). 
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Fig. 1. QLBiGRU framework 

 

First, we define the state. The state in this article is the three hyperparameters that need 

to be optimized for the BiGRU model, which are the number of neurons, the number of 

iterations, and the learning rate, as shown below: 

� � ��1, �2, �3
 �1� 
Among them, �� represents the state of the number of neurons, �� represents the state of 

the number of iterations, and �� represents the state of the learning rate. 

We send the state S into the BiGRU model for prediction and update the model after 

execution. When updating the Q table (Formula 2), we expect to get the minimum Q 

value, so the difference between the Q value of the previous state and the subsequent 

state is calculated to obtain a better Q value and then a better strategy: 

��, �� � ��, �� � ����, ��� � ��, �� �2� 
Among them, ��, �� represents the Q value of the current state, ���, ��� represents the 

Q value of the next state, ���, ���is calculated as follows: 

���, ��� � ����, �� � �������, ���, NT
���, ��, � �3� 

Among them, NT is “not terminate” and T is “Terminated”, α is the learning rate, γ ∈
�0,1
 is the discount factor, ���, �� means to take an action a in state s and transfer to �� 
The reward function value obtained in the prime state, �� is the next action a chosen by 

the greedy strategy. The calculation of the reward function in this chapter is defined as 

follows: 

���, �� � ������, �� �4� 
Among them, the value of ���, �� is the RMSE value obtained by executing action a in 

state �. 

3.2. BiGRU 

During the experiment, we constructed a three-layer BiGRU network. Each layer of the 

BiGRU consists of two GRUs connected in series but in opposite directions. The output 

of each layer is determined collaboratively by these two GRUs, as illustrated in Fig.2. 
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Fig. 2. BiGRU model structure 

After the sales data is passed into BiGRU, the forward propagation starts. We regard all 

the GRUs in the two parts as a BiGRU layer, and the calculation of the first layer is as 

follows (Formula 5): 

ℎ�� � ! "#
�		⃗ �

� ℎ$⃗ �� &#
�⃖		�

� ℎ⃖$�� & (��) �5� 
Among them, ℎ��  represents the hidden layer state at the moment of the l-layer BiGRU 

network, (�� is the bias of the hidden layer state at the l-layer moment, #
�		⃗ �

� , #��

�  represent 

the l-layer The BiGRU forward hidden state and backward hidden state weight 

coefficients, ℎ$⃗ ��  and ℎ��  are the states of the forward and backward hidden layers at the l-

layer respectively, and their calculations are as follows: 

ℎ$⃗ �� � +�,�-��� , ℎ$⃗ ���� . �6� 
ℎ⃖$�� � +�,�-��� , ℎ⃖$���� . �7� 

Among them, ℎ$⃗ ��  and htl represent the state of the forward and backward hidden layers 

of layer l at time 1 � 1. ��� is the input at the moment of layer l, and the update gate 

calculation of layer l of the GRU network is as follows: 

2�� � 3�#
���� & ,

�ℎ���� & (�� �8� 
Among them, 2�� is the update gate of the first layer, then #

� and ,
�  are the weights of 

the update gate of the l layer, (�  is the bias, and σ is the Sigmoid activation function. The 

calculation of the layer-l reset gate is as follows: 

6�� � 3�#�
���� & ,�

�ℎ���� & (��� �9� 
Among them, represents the l layer reset gate, #�

�and ,�
� are the weights, and (�� is the 

bias. The hidden layer state of layer l is as follows: 

ℎ�� � 2��ℎ���� & �1 � 2���ℎ8�� �10� 
Among them, ℎ����  and ℎ��  respectively represent the hidden layer state at time and time; 

ℎ8��  represents the candidate hidden layer state, its calculation is as follows: 

ℎ8�� � 1�9ℎ-#�
���� &,�

� �6��ℎ���� � & (�� . �11� 
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Among them, ��

� and ��

�  represent the weight of the hidden layer state of layer l, and 	�
�  

represents the bias of the hidden layer. The specific calculation process is shown in 

Algorithm 1. 

Firstly, the model takes standardized sales time series data as input and predicts the 

output using the BiGRU model. During the parameter optimization process, the first step 

involves defining the range for the three optimization parameters. Next, the Q-Learning 

algorithm's parameters are initialized, and the optimization parameters are established as 

states. The Q table is also initialized. The process starts from state 
�, where the agent 

selects and executes action �� . The agent interacts with the BiGRU environment, 

calculates the RMSE value, observes the reward function value and 
′, updates the Q 

table, and transitions to the next state, 
�. This cycle continues until the termination state, 


�, is reached. At this point, the algorithm updates the state and begins the cycle again 

from 
�. The algorithm terminates when the maximum number of iterations is reached. 

Algorithm1. QLBiGRU  

Input: Normalized state data 
Output: The optimized parameters enter the BiGRU model, and the prediction results are obtained 

1：Set ranges for the number of neurons, number of iterations, and learning rate 

2：Initialize the parameters of the Q-Learning algorithm 

3：Build state relationships between optimization parameters 

4：Initialize ���,�� 

5：repeat: 

6：  initial state � 

7：  repeat: 

8：    Choose action � from state � in  ���,�� 

9：    Execute action �, enter the BiGRU model to get the predicted value， 

10：   To calculate the RMSE value, observe �，��  

11：   Calculate the value of  ���, ��by formula 2 

12：   � = ��  

13：   Calculate the value of  ���, ��by formula 2 

13：   until  reaches the terminal state �� 

14：until  reached the maximum number of iterations 

15：return Prediction results of BiGRU prediction under the optimal strategy (optimal hyperparameter 

combination) 

4. Result and comparison analysis 

4.1. Model parameter setting 

During the experiment, we initially defined the parameter ranges for optimization. For 

instance, the range for the number of neurons was set to [1, 200], the number of iterations 

was set to [1, 100], and the learning rate was set to [0.001, 0.005]. Subsequently, during 

runtime, we employed the Adam optimizer for gradient descent, and the model was 

configured with a batch size of 128. Details of other hyperparameters can be found in 

Table 1: 

Table 1. QLBiGRU model parameter settings. 

parameters value 

Batch size 128 
Loss function RMSE 
Optimizer Adam 
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Dropout value 0.5 

1
s (The value range of neuron numbers) 

[1, 200] 

2
s (Epoch value range) 

[1, 100] 

3
s (Learning rate range) 

[1e-3, 5e-3] 

 init learning rate 0.01 

 discount factor 0.9 

episode iterations 100 

4.2. Datasets 

Dataset 1: The Cainiao Demand Forecasting and Warehouse Planning Competition 

Dataset (ETD) from the 2016 Tianchi Competition. This dataset comprises real sales data 

from Alibaba's e-commerce transactions, encompassing 5,778 products between October 

2014 and December 2015. 

Dataset 2: The 2021 Alibaba Cloud Infrastructure Supply Chain Competition (SCD) 

features daily product inventory and demand data spanning June 2018 to March 2021. 

The product inventory data includes 7 columns: unit, date, product demand, geographical 

information, geographical aggregation dimension, product information, and product 

aggregation dimension. 

Dataset 3: The Society for Supply Chain and Operations Management-Shanshu 

Technology Practice-Driven Research Competition Dataset (SSD) contains historical 

sales data of 72 SKU products across 18 DC warehouses. The dataset includes daily sales 

information for each DCSKU combination from January 1, 2018, to July 30, 2020. In 

total, there are 1,080 unique DCSKU combinations and over 830,000 records. The 

historical sales data encompasses fields such as sales date, warehouse ID, commodity ID, 

DC*SKU combination ID, and sales volume (box). 

4.3. Analysis 

To verify the effectiveness of our proposed QLBiGRU model and evaluate its 

performance in sales forecasting, we conducted experiments of various scales on three 

datasets: ETD, SCD, and SSD. The prediction lengths considered were 3, 5, 7, and 14. 

The results of these experiments are presented in Tables 2, 3, and 4. 

In addition, we compared our QLBiGRU model with six other baseline methods, 

namely RNN, LSTM, BiGRU, PSO-LSTM, ACO-LSTM, and IACO-BiGRU. We 

performed experiments using these methods and analyzed the results. Overall, the 

QLBiGRU model demonstrated superior performance compared to the other methods. 

RNN performed the worst due to the issue of gradient disappearance or explosion, which 

resulted in poor prediction results. LSTM, on the other hand, generally outperformed 

RNN, but its larger parameter size led to longer running times. GRU, with fewer 

parameters and slightly faster execution, offered a viable alternative to LSTM. Moreover, 

BiGRU exhibited the ability to capture contextual information effectively, making it a 

more reasonable choice for an e-commerce sales forecasting model. 

From the experimental data, it is evident that the prediction results obtained after 

optimizing the model parameters were superior to manually set ones. This highlights the 

limitations of relying solely on experiential parameter settings, which can affect the 
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predictive performance of the model. Automatic optimization proves to be more accurate 

and therefore yields better results. Specifically, in the SSD dataset experiment (Table 4), 

considering product 4 as an example, when the prediction length is 7, the evaluation 

indicators of the predicted values obtained by PSO-LSTM were 47.4%, 3.3%, and 27.5% 

higher than those of LSTM, respectively. Similarly, when the prediction length is 14, the 

evaluation indicators of IACO-BiGRU improved by 37.5%, 14.4%, and 20.9% compared 

to BiGRU. These findings affirm the necessity of optimizing the model parameters. 

Table 2. Experimental results of the ETD dataset 

(Best result in bold, * indicates sub-optimal result) 

   Step=3  Step=5 

Commodity Method MSE MAE RMSE MSE MAE RMSE 

1 

RNN 0.4440 0.3025 0.6663 0.7726 0.4991 0.8790 
LSTM 0.5061 0.2948 0.7114 0.4265 0.2758 0.6531 
BiGRU 0.2617 0.1986 0.5115 0.2858 0.2181 0.5346 
PSO-LSTM 0.0739 0.1881 0.2718 0.0744 0.1790 0.2728 
ACO-LSTM 0.0661 0.1723 0.2571 0.0639 0.1516 0.2528 
IACO-BiGRU 0.0552* 0.1502 0.2350* 0.0601* 0.1520* 0.2453* 
QLBiGRU 0.0354 0.1539* 0.1883 0.0391 0.1611 0.1978 

2 

RNN 0.6464 0.4040 0.8040 0.7279 0.3358 0.8531 
LSTM 0.4042 0.2893 0.6358 0.4949 0.2984 0.7034 
BiGRU 0.2836 0.2425 0.2836 0.2797 0.2280 0.2797 
PSO-LSTM 0.0746 0.2019 0.2732 0.0819 0.2050 0.2862 
ACO-LSTM 0.0694 0.1679 0.2635 0.0638 0.1572* 0.2526 
IACO-BiGRU 0.0541* 0.1377* 0.2326* 0.0532* 0.1626 0.2308* 
QLBiGRU 0.0269 0.1330 0.1642 0.0273 0.1368 0.1654 

Table 3. Experimental results of the SCD dataset 

(Best result in bold, * indicates sub-optimal result) 

   Step=3  Step=5 

Commodity Method MSE MAE RMSE MSE MAE RMSE 

1 

RNN 0.8336 0.3293 0.9130 0.8783 0.2976 0.9372 
LSTM 0.8091 0.3092 0.8995 0.7676 0.3102 0.8761 
BiGRU 0.7247 0.3024 0.8512 0.7511 0.3141 0.8666 
PSO-LSTM 0.1937 0.3123 0.4401 0.2361 0.2780 0.4859 
ACO-LSTM 0.0419 0.1314* 0.2048 0.0455 0.1404* 0.2133 
IACO-BiGRU 0.0313* 0.1361 0.1771* 0.0378* 0.1606 0.1944* 
QLBiGRU 0.0239 0.1295 0.1546 0.0245 0.1278 0.1565 

2 

RNN 0.8046 0.3215 0.8970 0.8942 0.3606 0.9456 
LSTM 0.7438 0.3267 0.8624 0.7306 0.3021 0.8547 
BiGRU 0.6229 0.3482 0.7892 0.6865 0.2959 0.8286 
PSO-LSTM 0.1861 0.1849 0.4314 0.2195 0.2045 0.4685 
ACO-LSTM 0.0437 0.1433 0.2091 0.0457 0.1302* 0.2139 
IACO-BiGRU 0.0313* 0.1250* 0.1771* 0.0349* 0.1384 0.1869* 
QLBiGRU 0.0217 0.1149 0.1474 0.0242 0.1246 0.1558 

Table 4. Experimental results of the SSD dataset 

(Best result in bold, * indicates sub-optimal result) 

Commodity Method 
Step=7 Step=14 

MSE MAE RMSE MSE MAE RMSE 

1 

RNN 0.2017 0.3863 0.4491 0.2391 0.4045 0.4890 
LSTM 0.1487 0.2040 0.3856 0.1646 0.3008 0.4057 
BiGRU 0.1304 0.2895 0.3611 0.1466 0.1978 0.3829 
PSO-LSTM 0.1062 0.2249 0.3259 0.1140 0.2267 0.3377 
ACO-LSTM 0.0956 0.2082 0.3092 0.0976 0.1925* 0.3124 
IACO-BiGRU 0.0874* 0.1682 0.2956* 0.0965* 0.1932 0.3106* 
QLBiGRU 0.0653 0.1885* 0.2556 0.0615 0.1728 0.2480 

2 RNN 0.2193 0.2166 0.4683 0.2356 0.2238 0.4854 
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LSTM 0.1314 0.1786 0.3626 0.1407 0.1854 0.3751 

BiGRU 0.1131 0.1774* 0.3363 0.1367 0.1828* 0.3697 

PSO-LSTM 0.1081 0.2590 0.3288 0.1083 0.2613 0.3292 

ACO-LSTM 0.1035 0.2218 0.3217 0.1174 0.2115 0.3427 

IACO-BiGRU 0.0930* 0.2010 0.3049* 0.0923* 0.1937 0.3039* 

QLBiGRU 0.0566 0.1758 0.2380 0.0608 0.1758 0.2465 

3 

RNN 0.2086 0.2080 0.4567 0.2454 0.2139 0.4954 

LSTM 0.1794 0.2221 0.4235 0.1887 0.2665 0.4344 

BiGRU 0.1322 0.1855 0.3635 0.1388 0.2283 0.3726 

PSO-LSTM 0.1117 0.2535 0.3343 0.0990 0.2228 0.3146 

ACO-BiGRU 0.0929 0.1805* 0.3048 0.0936 0.2025* 0.3060 

IACO-BiGRU 0.0877* 0.2129 0.2962* 0.0891* 0.2061 0.2985* 

QLBiGRU 0.0500 0.1648 0.2237 0.0541 0.1653 0.2327 

4 

RNN 0.2081 0.2064 0.4562 0.2144 0.1984 0.4630 

LSTM 0.1904 0.1934 0.4363 0.1919 0.2147 0.4380 

BiGRU 0.1186 0.1739 0.3444 0.1397 0.1899 0.3738 

PSO-LSTM 0.1000 0.1869 0.3163 0.1140 0.2267 0.3377 

ACO-BiGRU 0.0912 0.1806* 0.3021 0.0970 0.1922 0.3114 

IACO-BiGRU 0.0822* 0.1806 0.2867* 0.0873* 0.1625 0.2954* 

QLBiGRU 0.0693 0.1983 0.2633 0.0686 0.1803* 0.2620 

Additionally, to further validate the performance of the QLBiGRU algorithm, we 

compared the super-parameter optimization time among different methods. We 

conducted five experiments for each method and calculated the average value. The 

results are presented in Figure 3. As observed, the QLBiGRU model exhibited the 

shortest running time and high search efficiency. 

 

Fig. 3. Comparison of running time 

We compared the experimental errors using three different reward functions: RMSE, 

MAE, and MSE (Fig. 4). Based on the results, it is evident that the use of RMSE as a 

reward function yields the smallest prediction error. Therefore, it is more reasonable to 

utilize RMSE as the preferred reward function. 
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Fig. 4. Error comparison when three evaluation indicators are set as reward functions 

To analyze the convergence performance of the model, we compared the convergence 

curves of its loss function across different datasets (Fig. 5). The results demonstrate that 

QLBiGRU exhibits faster convergence specifically on the SSD dataset. 

 

 

Fig. 5. Loss values of the model on three data sets 

Finally, the prediction results obtained using QLBiGRU consistently outperform 

those of the PSO-LSTM, ACO-LSTM, and IACO-BiGRU models. Analyzing the 

experimental results from the ETD dataset (Table 2), we observe that for commodity 1, 

when the prediction length is 3, the QLBiGRU model achieves a 52.0% improvement in 

the three prediction evaluation indicators compared to the PSO-LSTM model, with a 

QLBiGRU ratio of 30.7%. Additionally, the ACO-LSTM model experiences a respective 

increase of 46.4%, 10.6%, and 26.7% in MSE, MAE, and RMSE. When the prediction 

length is 5, the QLBiGRU model demonstrates a 34.9% increase in MSE and a 19.3% 

increase in RMSE compared to the IACO-BiGRU model. The advantages of the Q-

Learning algorithm in addressing the super-parameter optimization problem compensate 

for the limitations of the PSO and ACO algorithms, which are prone to local optima, thus 

leading to improved prediction results. 
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5. Conclusion 

Based on the e-commerce sales forecasting, we employed the Q-Learning algorithm in 

combination with the BiGRU model to enhance the prediction and optimization of 

traditional heuristic algorithms. The traditional approaches often face challenges such as 

getting stuck in local optimal solutions, long execution times, and inadequate 

performance. The effectiveness of our proposed QLBiGRU model was evaluated across 

different prediction scales on three distinct datasets: ETD, SCD, and SSD. Following a 

comprehensive evaluation, we concluded that the QLBiGRU model exhibits superior 

performance in accurately predicting sales for various commodities at each scale. 
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