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Abstract. Curz Vargas et al studied the dynamics of a deterministic SIRI epidem-
ic model, but it did not take into account the influence of environmental noise on
system parameters, in the paper, we consider that the important parameters are dis-
turbed by Ornstein-Uhlenbeck process and we can get a stochastic SIRI epidemic
model. First of all, we study the existence and uniqueness of positive solution of
system. The second, we also get the stationary distribution of the model . In the end,
we get expression of the density function of the stochastic model. Compared with
this deterministic model, the dynamical analysis of the system is more reasonable.

Keywords. Stochastic SIRI epidemic model; Stationary distribution; Ornstein-
Uhlenbeck process; Probability density function

1. Introduction

Curz Vargas et al[1]studied an infectious diseases models with relapse about global sta-
bility, the follow model is studied,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS
dt

= Λ−β 0SI−μS,

dI
dt

= β 0SI− (α +κ +μ)I + γR,

dR
dt

= κI− (μ + γ)R.

(1)

Above the parameters are positive constants. S is susceptible population, I is infected
people , R is the recovered population. The constant Λ is the recruitment rate of S ,μ
is the natural death rate of population . β 0 is the disease transmission coefficient. α is
the disease related death rate . κ is infectious individuals becomes normal individuals
and γ is the normal individuals are reverted to the infectious state. For system (1), the
disease-free equilibrium E0 = (Λ

μ ,0,0) ,

E∗ = (S∗, I∗,R∗) withS∗ = Λ
μR0

, I∗ = μ
β (R0−1) ,R∗ = κμ

β (γ+μ) (R0−1) ,Where R0 ,

the basic reproduction number, is 1

R0 =
(μ + γ)βΛ

μ(κμ +(μ + γ)(α +μ))
. (2)

1Corresponding Author:Jing Fu, Changchun Normal University, E-mail:fujing@ccsfu.edu.cn

Model

Fuzzy Systems and Data Mining IX
A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA231050

442



And

Γ0 =
{
(S, I,R) ∈ R

3
+ : S≥ 0, I ≥ 0,R≥ 0,S+ I +R≤ Λ/μ

}
. (3)

However, the above model still falls short in studying infectious disease dynamics
because it does not take into account the influence of environmental noise on system
parameters[2][3]. In the paper β 0(t) is affected by the mean-reverting OrnsteinCUhlen-
beck process and its representation is as follows, and δ , σ are positive constants ,where
δ 0 means the speed of reversion and σ2 > 0 is the intensity of fluctuation:

dβ =−δ [β 0(t)− β̄ ]dt +σdB(t), (4)

For(2), we consider p(t) = β 0(t)− β̄ , we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d p =−δmdt +σdB(t),

dS = [Λ− (p+ β̄ )SI−μS]dt,

dI = [(p+ β̄ )SI− (α +κ +μ)I + γR]dt,

dR = [κI− (μ + γ)R]dt.

(5)

and we can get a region:

Γ =

{
(p,S, I,R) ∈ R×R

3
+ : S+ I +R≤ Λ

μ

}
(6)

In Section 2 we give the conditions for existence and uniqueness of a global solution of
system (3). and in Section 3, give the conditions for existence of an ergodic stationary
distribution of system (3). Section 4 we will study the density function of the model .
Section 5 we give the conclusion for the paper.

2. Existence and uniqueness of a global solution

To prove that there is a unique positive solution to system(3), we will give the following
theorem:

Theorem 2.1. For system (3), it exists a unique solution (p(t),S(t), I(t),R(t)) on t ≥ 0
for any initial value and the initial value(p(0),S(0), I(0),R(0)) ∈ Γ a.s..

Proof. The system (3) , it is satisfy the local Lipschitz condition, and there is a unique
local solution. we will define a C2 Lyapunov function V : R×R

3
+→ R+as follows:

V = S−1− lnS+ I−1− ln I +R−1− lnR+
p2

2
. (7)

The remaining evidence is similar to the literature[4], we will omit it.
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3. stationary distribution

Define

RS
0 = R1− Λ2

μ3
σ

2
√

πδ
. (8)

whileR1 =
(μ+γ)β̄Λ

μ(κμ+(μ+γ)(α+μ))

Theorem 3.1. Assume that Rs
0 > 1 , then the stochastic system (3)admits at least one

ergodic stationary distribution ρ(·)on Γ.

Proof. we proof it need three steps: the first we need construct stochastic Lyapunov func-
tions; the second a compact set is constructed; in the end five the existence and ergodicity
of the solution of system (3).

Step 1. (Construct stochastic Lyapunov functions): A C2 function H(p,S(t), I(t),R(t))
: Γ→ R=V −Vmin is defined by

V (p(t),S(t), I(t),R(t)) = M[− ln I− Λ
μ2 lnS− γk

(μ + γ)2 lnR]− lnS− lnR− ln(
A
μ
−S− I−R)+

p2

2

:= MV1 +V2

where V1 =− ln I− Λ
μ2 lnS− γk

(μ+γ)2 lnR and V2 =− lnS− lnR− ln( A
μ −S− I−R)+ p2

2 ,
M is a sufficiently large number and satisfies the expression :

−M(RS
0 −1)+μ +(μ + γ)+

σ2

2
+ sup

{
−1

2
δ p2 + p

Λ
μ
+Mp

Λ
μ

}
≤−2 (9)

Employing the Itô,s formula to V1,V2 and combining the ergodic theorem[5]and (9), we
obtain

∫ ∞

−∞
(p∨0)κ(x)dx=

∫ ∞

0

√
δx√
πσ

e−
δx2

σ2 dx=
σ

2
√

πδ

∫ ∞

0
e−

(√
δx
σ

)2

d

(√
δx
σ

)2

=
σ

2
√

πδ
, a.s.

(10)

LH = M[−(p+ β̄ )S+(α +κ +μ)− γ
R
I
− Λ2

Sμ2 +(p+ β̄ )
Λ
μ2 I +μI]

− Λ
S
+(p+ β̄ )I +μ−κ

I
R
+(μ + γ)− Λ−μ(S+ I +R)−αI

Λ
μ −S− I−R

−δ p2 +
σ2

2

≤−2+(M+
Λ
μ2 )β̄ I− Λ

S
− k

I
R
− αI

A
μ −S− I−R

− 1
2

δ p2 +M
Λ2

μ3 [(p∨0)−
∫ ∞

−∞
(p∨0)κ(x)dx]

:= F(p,S, I,R)++M
Λ2

μ3 [(p∨0)−
∫ ∞

−∞
(p∨0)κ(x)dx]

(11)
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Step 2. (Construct a compact set): Then, we construct a compact setD ∈ Γas follows

Dε =

{
(p,S, I,R) ∈ Γ1|S≥ ε, I ≥ ε,R≥ ε2,S+ I +R≤ A

d
− ε3, |p| ≤ 1

ε

}
, (12)

then,

F(m,S, I,R)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2+(M+
Λ
μ2 )β̄

Λ
μ
− Λ

S
→−∞,asS→ 0+,

−2+(M+
Λ
μ2 )β̄ I →−2,asI → 0+,

−2+(M+
Λ
μ2 )β̄

Λ
μ
− k

I
R
→−∞,asR→ 0+,

−2+(M+
Λ
μ2 )β̄

Λ
μ
− αI

Λ
μ −S− I−R

→−∞,as(S, I,R)→+∞,

−2+(M+
Λ
μ2 )β̄

Λ
μ
− 1

2
δ p2 →−∞,asp→ 0+or+∞.

(13)

Clearly, we obtain that for a sufficient smallε ,F(p,S, I,R)≤−1 andF(p,S, I,R)≤ A for
any (m,S, I,R) ∈ D.

Step 3. (Existence and ergodicity): Making the use of Fatou’s lemma [7][8][9]and
the new method [3], it is easy to get

liminf
t→+∞

1
t

∫ t

0
P(τ,(p(τ),S(τ), I(τ),R(τ))Dε)dτ ≥ 1

A+1
> 0 a.s. (14)

This completes the proof.

4. Density function of the stochastic model

In the section let X1 = p− p∗,X2 = S−S∗,X3 = I− I∗,X4 = R−R∗.The linearized system
is as follows: ⎧⎪⎪⎨

⎪⎪⎩
dX1 =−δX1dt +σdB(t),
dX2 = (−a21X1−a22X2−a23X3)dt,
dX3 = (a21X1 +a32X2−a33X3 +a34X3)dt,
dX4 = (a43X3−a44X4)dt.

(15)

While a21 = S∗I∗,a22 = β ∗I∗ + μ ,a23 = β ∗S∗,a32 = β ∗I∗,a33 = (α + k + μ)−
β ∗S∗,a34 = γ,a43 = k,a44 = μ + γ.

Theorem 4.1. Let (X1,X2,X3,X4) be the solution of the system (3) with any initial value
(X1(0),X2(0),X3(0),X4(0)) ∈ R×R

4
+ . If Rs

0 > 1 ,then there is a local normal density
function Φ(X1,X2,X3,X4) and Σ is satisfy the following function:

Φ(X1,X2,X3,X4) = (2π)−
3
2 |Σ|− 1

2 e−
1
2 (X1,X2,X3,X4)Σ−1(X1,X2,X3,X4)

T
. (16)
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While

Σ = (a21a43C2)
2 J−1

1 J−1
2 J−1

3 J−1
4 Σ1

(
J−1

1 J−1
2 J−1

3 J−1
4

)T
, (17)

C0 = a32 +a23 +a33−a22,C1 =C0− (a23 +a33),C2 =−(C0C1+a44C0
a43

) 	= 0,
C3 =−C0C2a23 +C2(C0 +a44)

2−C1C2(C0 +a44)+C2(C2a43 +C2
1),

C4 =C2a43a23 +[C1C2−C2(C0 +a44)]a43 +C1(C2a43 +C2
1),

and

J1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎠, J2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠, J3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 C1

a43
1

⎞
⎟⎟⎠ ,

J4 =

⎛
⎜⎜⎝

C2a21a43 a43[C1C2−C2(C0 +a44)]−C2a43(a23−a22) C3 C4
0 C2a43 C1C2−C2(C0 +a44) C2a43 +C2

1
0 0 C2 C1
0 0 0 1

⎞
⎟⎟⎠,

Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

d2d3−d1d4
2(d1d2d3−d2

3−d2
1 d4)

0 − d3
2(d1d2d3−d2

3−d2
1 d4)

0

0 d3
2(d1d2d3−d2

3−d2
1 d4)

0 − d1
2(d1d2d3−d2

3−d2
1 d4)

− d3
2(d1d2d3−d2

3−d2
1 d4)

0 d1
2(d1d2d3−d2

3−d2
1 d4)

0

0 − d1
2(d1d2d3−d2

3−d2
1 d4)

0 d1d2−d3
2d4(d1d2d3−d2

3−d2
1 d4)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The parameters in Σ1are as follows:

d1 = δ +a22 +a33 +a44,
d2 = a23a32 +a22a44 +a22a33 +a33a44 +(a22 +a33 +a44)δ −a34a43,
d3 = δ (a23a32 +a22a44 +a22a33 +a33a44−a34a43)+a23a32a44−a34a43a22,
d4 = δ (a23a32a44−a34a43a22).

Proof. For system (15), it also has the from:

dX = AXdt +ZdB(t), (18)

while X = (X1,X2,X3,X4)
T , Z = diag(σ ,0,0,0),

A =

⎛
⎜⎜⎝
−δ 0 0 0
−a21 −a22 −a23 a24
a21 a32 −a33 0
0 0 −a43 −a44

⎞
⎟⎟⎠ . (19)

and we consider the following equation:

ϕ(λ ) = λ 4 +d1λ 3 +d2λ 2 +d3λ +d4, (20)
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where

d1 = δ +a22 +a33 +a44,
d2 = a23a32 +a22a44 +a22a33 +a33a44 +(a22 +a33 +a44)δ −a34a43,
d3 = δ (a23a32 +a22a44 +a22a33 +a33a44−a34a43)+a23a32a44−a34a43a22,
d4 = δ (a23a32a44−a34a43a22).

According to the RouthCHurwitz criterion, we obtain that d1d2 − d3 > 0,d1d2d3 −
d2

3 − d2
1d4 > 0. And system (3) has a unique probability density function, according to

literature[10][11] and it satisfies the following FokkerCPlanck equation:

−σ2

2
∂ 2

∂X2
1

Φ+ ∂
∂X1

(−δX1Φ)+ ∂
∂X2

[(−a21X1−a22X2−a23X3)Φ]

+ ∂
∂X3

[(a21X1 +a32X2−a33X3−a34X4)Φ]+ ∂
∂X4

[(a43X3−a44X4)Φ] = 0,
(21)

and

Φ(x) = l0e−
1
2 XQXT

. (22)

And l0 is a positive constant and
∫
R

3
+

Φ(x)dX = 1. And B need accord with the following
equation:

BZ2B+AT B+BA = 0. (23)

here B is positive definite, let Σ = B−1, then

Z2 +AΣ+ΣAT = 0. (24)

by calculation, A1 = J4J3J2J1AJ−1
1 J−1

2 J−1
3 J−1

4 , Thus Eq. (24) can be expressed as fol-
lows:

J4J3J2J1Z2JT
1 JT

2 JT
3 JT

4 +A1J4J3J2J1ΣJT
1 JT

2 JT
3 JT

4 + J4J3J2J1ΣJT
1 JT

2 JT
3 JT

4 AT
1 = 0. (25)

Through calculating,

J4J3J2J1Z2JT
1 JT

2 JT
3 JT

4 = (C2a21a43)
2 Z2 and J4J3J2J1ΣJT

1 JT
2 JT

3 JT
4 = (C2a21a43)

2 Σ1,
(26)

where

Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

d2d3−d1d4
2(d1d2d3−d2

3−d2
1 d4)

0 − d3
2(d1d2d3−d2

3−d2
1 d4)

0

0 d3
2(d1d2d3−d2

3−d2
1 d4)

0 − d1
2(d1d2d3−d2

3−d2
1 d4)

− d3
2(d1d2d3−d2

3−d2
1 d4)

0 d1
2(d1d2d3−d2

3−d2
1 d4)

0

0 − d1
2(d1d2d3−d2

3−d2
1 d4)

0 d1d2−d3
2d4(d1d2d3−d2

3−d2
1 d4)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

In the end, we use the Lemma 4.2 of [12], and Σ1 is a positive definite matrix, thus
this completes the proof.
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5. Conclusion

Curz Vargas et al studied a deterministic model,but it does not take into account the
influence of environmental noise on system parameters, in the paper, we consider that
the important parameters are disturbed by Ornstein-Uhlenbeck process, which is more
reasonable. We study a stochastic model and consider the disease transmission coefficient
is affect by Ornstein-Uhlenbeck process. We prove some dynamic behaviors like solution
of the global, and we get the condition of stationary distribution. Compared with this
deterministic model, the dynamical analysis of the system is more reasonable.
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