
Low-Rank Exponential Integrators for

Jingyi Li aand Dongping Li a,b,1

aDepartment of Mathematics, Changchun Normal University, Changchun
130032, PR China

bDepartment of Mathematics, Jilin University, Changchun 130012, PR China

Abstract. Differential Riccati equation (DRE) is especially important in
several fields such as optimal control, filtering, and model reduction.
In this paper we present matrix-based exponential integrators for the
solution of DRE. The methods are suitable for stiff DRE. In particu-
lar, we develop low-rank versions of these methods to solve large-scale
DRE. The performance of the proposed methods is compared to existing
typical integrators.

Keywords. Differential Riccati equation, Matrix-valued exponential
integrators, Low-rank approximation, ϕ-functions.

1. Introduction

In this paper, we consider the solution of matrix differential Riccati equation
(DRE) on the time interval [t0, T] of the form

X ′(t) = AX(t) +X(t)AT +Q−X(t)GX(t), X(t0) = X0, (1)

whereX(t) ∈ R
N×N is the unknown matrix-valued function and A, Q, G ∈ R

N×N

are given coefficient matrices and X0 ∈ R
N×N denotes the initial value with

N being the dimension of the equation. The DRE plays a fundamental role in
optimal control theory, filter design theory, H∞-control of linear time-varying
systems, model reduction problems, robust control problems and many more (see,
e.g., [1,2,3,4,5]). In many practical applications, the coefficient matrix A of Eq.
(1) results from the spatial discretization of the differential operator, and the fast
and slow modes exist, which means that the associated DRE will be large and
stiff.

For stiff DRE, although the most naive approach is to expand the DRE into
a vector-valued ordinary differential equation and solve it using implicit time
integrators, the method is not suitable for large stiff DRE due to the disadvantages
of computationally expensive and considerable storage requirements. Over the
past few years some other numerical methods have been proposed for solving the

1Corresponding Author: E-mail: lidp@ccsfu.edu.cn.

Differential Riccati Equation

Fuzzy Systems and Data Mining IX
A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA231043

372

DRE, see, e.g. [6,7,8,9,10,11,12]). In particular, several low-rank approximations
based on matrix versions of classical time integration schemes, such as the BDF
method, the Rosenbrock method and the splitting method have been developed,
see, e.g., [13,14,15,16]. More recently, a low-rank approximation based on matrix
version of the exponential Rosenbrock-type integrator has been introduced in [17].

In this paper we present the matrix-valued versions of two types of exponen-
tial integrators: integrating factor method (IF) [18] and generalized integrating
factor method (GIF) [19]. Both types of methods have shown good stability and
computational efficiency in solving semi-linear problems. We also exploit their
low-rank approximations for large DRE. Numerical experiments have shown that
the methods proposed are suitable for solving large stiff DRE.

A brief overview of the paper follows. Section 2 focuses on the matrix-based
integrating factor (MIF) method. In Section 3, we present the generalized matrix-
based integrating factor method. In Section 4, we develop low-rank algorithms
for all proposed exponential integrators based on LDLT -type decompositions,
which is the main objective of this paper. In Section 5, we provide some numerical
experiments, a comparison of different methods to illustrate the accuracy and
effectiveness of the proposed methods. Finally, we summarize some conclusions
in Section 6.

2. Matrix-valued Integrating Factor Method

In this section, we describe the IF method for DRE in the matrix-valued form
similar to [18] and discuss how to apply this to large-scale problems. For this
purpose, we rewrite Eq. (1) as

X ′(t) = F (X(t)) = L[X] +N (X), (2)

where L and N are Lyapunov and nonlinear operators, respectively:

L[X] = AX +XAT , N (X) = Q−XGX. (3)

Since the large stiff property of the original Eq. (1), a transformation of
variables is considered to ameliorate the stiff part of the equation. ForX(t) around
t = t0, find a V : R→ R

n such that:

V (τ) = e−τL[X(t0 + τ)]. (4)

Differentiating (4) and then insert it into (2), we have

V ′(τ) = g(V (τ)) = e−τL[N (eτL[V])], V (τ0) = X0. (5)

The aim of this transformation of the differential equation is to remove the
explicit dependence of the equation on the operator L, except within the exponen-
tial. The exponential function will dampen the behavior of L removing the stiff-
ness or highly oscillatory nature of the problem. Then, an s-stage explicit Runge-

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 373

Kutta method with coefficients bi, ci, aij satisfying the simplifying assumptions
c1 = 0 and

s∑
j=1

bj = 1,

s∑
j=1

aij = ci, 1 ≤ i ≤ s, (6)

is used to solve (5), and the process for its numerical solution defines a sequence
Vn+1 approximating V (τn+1) by:

ki = g(Vn + τ

s∑
j=1

aijkj), 1 ≤ i ≤ s,

Vn+1 = Vn + τ

s∑
i=1

biki. (7)

By the right of (5) for g(V (τ)), we have

ki = e−(τn+ciτ)L[N (e(τn+ciτ)L[Vn + τ
s∑

j=1

aijkj])], 1 ≤ i ≤ s,

Vn+1 = Vn + τ
s∑

i=1

biki. (8)

Then use (4) to transform back to the original variables to obtain the general
format for the IF method

k∗i = N (ecihL[Xn] + h
s∑

j=1

aije
(ci−cj)hL[k∗j]), 1 ≤ i ≤ s,

Xn+1 = ehL[Xn] + h
s∑

i=1

bie
(1−ci)hL[k∗i], (9)

where Xn is the numerical approximation to the exact solution X(t) at time
t = tn = nh, and h is the step size. Let us apply the MIF method to Eq. (1),
which leads to

k∗i = Q− (ecihL[Xn] + h
s∑

j=1

aije
(ci−cj)hL[k∗j])

·G · (ecihL[Xn] + h
s∑

j=1

aije
(ci−cj)hL[k∗j]), 1 ≤ i ≤ s,

Xn+1 = ehL[Xn] + h
s∑

i=1

bie
(1−ci)hL[k∗i]. (10)

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation374

In order to derive the MIF method, a very careful local error analysis must be

performed to determine the coefficients aij and bi. Now, the specific form of the

MIF method is listed as follows: First, we consider a second-order MIF method

and its parameters are given as

RK21 :
0
1 1

1
2

1
2

(11)

This yields the following method:

k∗1 = N (Xn),

k∗2 = N (ehL[Xn] + hehL[k∗1]),

Xn+1 = ehL[Xn] +
h

2
ehL[k∗1] +

h

2
k∗2 . (12)

Second, we consider a third-order MIF method and its parameters are given as

RK31 :

0
2
3

2
3

2
3

1
3

1
3

1
4 0 3

4

(13)

This yields the following method:

k∗1 = N (Xn),

k∗2 = N (e
2h
3 L[Xn] +

2h

3
e

2h
3 L[k∗1]),

k∗3 = N (e
2h
3 L[Xn] +

h

3
e

2h
3 L[k∗1] +

h

3
k∗2),

Xn+1 = ehL[Xn] +
h

4
ehL[k∗1] +

3h

4
e

h
3 L[k∗3]. (14)

Third, we consider a fourth-order MIF method and its parameters are given as

RK41 :

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(15)

This yields the following method:

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 375

k∗1 = N (Xn),

k∗2 = N (e
h
2 L[Xn] +

h

2
e

h
2 L[k∗1]),

k∗3 = N (e
h
2 L[Xn] +

h

2
k∗2),

k∗4 = N (ehL[Xn] + he
h
2 L[k∗3]),

Xn+1 = ehL[Xn] +
h

6
ehL[k∗1] +

h

3
e

h
2 L[k∗2] +

h

3
e

h
2 L[k∗3] +

h

6
k∗4 . (16)

The disadvantage of the MIF method for numerically solving DRE is that there
is large error coefficients for ‖L| � 1. To solve this problem, we will continue to
generalize the MIF method.

3. Generalized Matrix-valued Integrating Factor Method (GMIF)

We found that the generalized MIF method in [19] is computationally superior
to the standard MIF method, so the matrix-valued version of the generalized
MIF method will be further presented in this section. The idea of the method is
to approximate the solution of the original equation by solving a simpler ODE
exactly. To find an ODE with the same key features as (1)

X̃ ′(τ) = F̃ (X̃(τ)) = L[X] + C(τ), X̃(τ0) = X̃0, (17)

using the following approximation for the nonlinear remainder N (X):

C(τ) =

s−1∑
j=0

τ j

j!
cj , (18)

where

cj =
1

hj

s−1∑
i=0

γijNn−i. (19)

Similar to the construction of the IF method, define the operator ϕτ,F̃ : Rn →
R

n to represent the solution of (2) by V (τ) with V (τ0) = X0 such that

X(t0 + τ) = ϕτ,F̃ (V (τ)) = eτL[V] +
s∑

j=1

τ jϕj(τL)[cj−1], (20)

and then differentiate this relation with respect to τ leads to the ODE of the form

V ′(τ) = (Dϕτ,F̃ (V))−1(F (ϕτ,F̃ (V))− F̃ (ϕτ,F̃ (V))), V (τ0) = X0. (21)

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation376

One can also easily find that by defining the modified vector field F̃ such that
F̃ (X) = L[X] we get the standard IF method. By observing that Dϕτ,F̃ (V) =

eτL, (21) can be simplified

V ′(τ) = e−τL[N (X(t0 + τ))− C(τ)], V (τ0) = X0. (22)

Applying the classical fourth-order Runge-Kutta method to the transformed
Eq. (22), we obtain

k1 = e−τnL[N [ϕτn,F̃
(Vn)]− C(τn + τ)],

k2 = e−(τn+
τ
2)L[N (ϕτn+

τ
2 ,F̃

(Vn +
τ

2
k1))− C(τn +

τ

2
)],

k3 = e−(τn+
τ
2)L[N (ϕτn+

τ
2 ,F̃

(Vn +
τ

2
k2))− C(τn +

τ

2
)],

k4 = e−(τn+τ)L[N [ϕτn+τ,F̃ (Vn + τk3)]− C(τn + τ)],

Vn+1 = Vn +
τ

6
k1 +

τ

3
k2 +

τ

3
k3 +

τ

6
k4. (23)

Using (21) to calculate the numerical solution in the original variable, that is

a = ϕh
2 ,F̃

(Xn),

b = ϕh,F̃ (Xn),

c = a+
h

2
(Na − C(

h

2
)),

d = b+ he
h
2 L[Nc − C(

h

2
)],

Xn+1 = b+
h

3
e

h
2 L[Na +Nc − 2C(

h

2
)] +

h

6
(Nd − C(h)), (24)

where Nn = N (n), n = a, b, c, d. The corresponding s-1st order interpolation
polynomial Cs−1(τ), we call this method ETDs/RK4. In our context, we only
consider the following three representative schemes and use them in our numerical
experiments.

• ETD1/RK4 A zeroth-order approximation C0(τ) = Nn to the nonlinear
terms N (X), leads to the ETD1/RK4 method

a = ϕh
2 ,F̃

(Xn),

b = ϕh,F̃ (Xn),

c = a+
h

2
(Na −Nn),

d = b+ he
h
2 L[Nc −Nn],

Xn+1 = b+
h

3
e

h
2 L[Na +Nc − 2Nn] +

h

6
(Nd −Nn). (25)

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 377

An interesting property to observe about the ETD1/RK4 method is that
when L = 0, the method reduces to the classical fourth-order Runge-Kutta
method.

• ETD2/RK4 A first-order approximation to the nonlinear terms N (X)
of the form

C1(τ) = Nn + τ(
Nn −Nn−1

h
), (26)

leads to the ETD2/RK4 method

a = ϕh
2 ,F̃

(Xn),

b = ϕh,F̃ (Xn),

c = a+
h

2
(Na − 3

2
Nn +

1

2
Nn−1),

d = b+ he
h
2 L[Nc − 3

2
Nn +

1

2
Nn−1],

Xn+1 = b+
h

3
e

h
2 L[Na +Nc − 3Nn +Nn−1]

+
h

6
(Nd − 2Nn +Nn−1). (27)

• ETD3/RK4 A second-order approximation to the nonlinear terms N (X)
of the form

C2(τ) = Nn + τ(
1
2Nn−2 − 2Nn−1 +

3
2Nn

h
)

+
τ2

2
(
Nn−2 − 2Nn−1 +Nn

h2
), (28)

leads to the ETD3/RK4 method

a = ϕh
2 ,F̃

(Xn),

b = ϕh,F̃ (Xn),

c = a+
h

2
(Na − 15

8
Nn +

5

4
Nn−1 − 3

8
Nn−2),

d = b+ he
h
2 L[Nc − 15

8
Nn +

5

4
Nn−1 − 3

8
Nn−2],

Xn+1 = b+
h

3
e

h
2 L[Na +Nc − 15

4
Nn +

5

2
Nn−1 − 3

4
Nn−2]

+
h

6
(Nd − 3Nn + 3Nn−1 −Nn−2). (29)

This method has two interesting properties. First, it is an exponential general
linear method that requires the transfer of two quantities Xn and Nn−k from one

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation378

step to another. Second, the coefficient matrices corresponding to the four stages
are different from those of the standard integrating factor methods. This property
applies to all generalized integrating factor methods, which use the Rung-Kutta
methods to approximate the modified initial conditions.

4. Low-rank Methods

4.1. Low-rank Matrix-valued Integrating Factor Method

In order to efficiently implement the MIF method, we consider solving the low-
rank formulation of the solution X(t). First, focusing on that Q, G and X0 in (1)
are low-rank positive definite cases, where

Q = CTC, G = BBT , X0 = L0Γ0L
T
0 , (30)

for some C ∈ R
l×N , B ∈ R

N×q, L0 ∈ R
N×r, and Γ0 ∈ R

r×r, l, q, r � N . Let Xn

be the desired approximate solution to (1) given as

Xn = LnΓnL
T
n , (31)

where Ln ∈ R
N×r, Γn ∈ R

r×r. Then, k∗i in (9) can be written as

k∗i = N (ecihL[LnΓnL
T
n] + h

s∑
j=1

aije
(ci−cj)hL[LjΓjL

T
j]), 1 ≤ i ≤ s. (32)

In the above formula, k∗j has the same splitting factor as k∗i , and its splitting

process is described subsequently. The decompositions LaΓnL
T
a to ecihL[Xn] and

L̂aΓ̂aL̂
T
a to h

∑s
j=1 aije

(ci−cj)hL[k∗j] are given by the factors

La = ecihALn,

L̂a = [e(ci−c0)hAL0, e
(ci−c1)hAL1, · · · , e(ci−cs−1)hALs−1],

Γ̂a = blkdiag(γ0Γ0, γ1Γ1, · · · , γs−1Γs−1), γi−1 = hai,i−1, 1 ≤ i ≤ s. (33)

Note that the new matrix Li has more columns than Lj and more than the rank.
This means that the size of the blocks of the new matrix will increase dramatically
over time during the decomposition process and the computational cost becomes
expensive. It is necessary to find more suitable low-rank factors by column com-
pression strategies. Then, inserting (33) into ecihL[Xn] +h

∑s
j=1 aije

(ci−cj)hL[k∗j]
yields a decomposition of form L̃aΓ̃aL̃

T
a with

L̃a = [La, L̂a], Γ̃a = blkdiag(Γn, Γ̂a). (34)

Again, inserting the splitting factors L̃a and Γ̃a into (32) and direct calculation
shows that

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 379

Algorithm 1 Low-rank approximation of the MIF method for DRE.

Input: A ∈ R
N×N , C ∈ R

l×N such that Q = CTC,B ∈ R
N×q such that G =

BBT , L0 ∈ R
N×r,Γ0 ∈ R

r×r such that X0 = L0Γ0L
T
0 , t ∈ [a, b], and the

stepsize h.
1: for n = 0 to [b−a

h] do
2: for i = 1 to s do
3: La = ecihALn;
4: L̂a = [e(ci−c0)hAL0, e

(ci−c1)hAL1, · · · , e(ci−cs−1)hALs−1];

5: Γ̂a =

⎛
⎜⎜⎜⎝

γ0Γ0

γ1Γ1

. . .

γs−1Γs−1

⎞
⎟⎟⎟⎠ , γj = hai,j , 1 ≤ i ≤ s.

6: Column-compress La, L̂a and Γ̂a.
7: Form L̃a = [La, L̂a] and Γ̃a = blkdiag(Γn, Γ̂a).
8: Column-compress L̃a and Γ̃a.
9: Form Li = [CT , L̃a] and Γi = blkdiag(I,−(Γ̃aL̃

T
aB)(Γ̃aL̃

T
aB)T).

10: Column-compress Li and Γi.
11: Lb = ehALn;
12: L̃b = [e(1−c1)hAL1, e

(1−c2)hAL2, · · · , e(1−cs)hALs];
13: Γ̃b = blkdiag(β1Γ1, β2Γ2, · · · , βsΓs), βi = hbi, 1 ≤ i ≤ s.
14: Column-compress Lb, L̃b and Γ̃b.
15: end for
16: Form Ln+1 = [Lb, L̃b] and Γn+1 = blkdiag(Γn, Γ̃b).
17: Column-compress Ln+1 and Γn+1.
18: end for
Output: Ln and Γn.

k∗i = N (L̃aΓ̃aL̃
T
a)

= CTC − L̃aΓ̃aL̃
T
aBBT L̃aΓ̃aL̃

T
a

= LiΓiL
T
i , (35)

with

Li = [CT , L̃a], Γi = blkdiag(I,−(Γ̃aL̃
T
aB)(Γ̃aL̃

T
aB)T). (36)

Under the LDLT -type splitting with k∗i = LiΓiL
T
i , it can be proved that

Xn+1 = ehL[LnΓnL
T
n] + h

s∑
i=1

bie
(1−ci)hL[LiΓiL

T
i]

= LbΓnL
T
b + L̃bΓ̃bL̃

T
b , (37)

with

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation380

Lb = ehALn,

L̃b = [e(1−c1)hAL1, e
(1−c2)hAL2, · · · , e(1−cs)hALs],

Γ̃b = blkdiag(β1Γ1, β2Γ2, · · · , βsΓs), βi = hbi, 1 ≤ i ≤ s. (38)

Now, we obtain the LDLT -type splitting with Xn+1 ≈ Ln+1Γn+1Ln+1, and then
use a column compression strategy to obtain low-rank splitting factors:

Ln+1 = [Lb, L̃b], Γn+1 = blkdiag(Γn, Γ̃b). (39)

For completeness, we summarize the above solution process in Algorithm 1.

4.2. Low-rank Generalized Matrix-valued Integrating Factor Method

For the ETDs/RK4 method, we similarly assume that the previous solution ap-
proximation Xn = LnΓnL

T
n with Ln ∈ R

N×r, Γn ∈ R
r×r. We assume that the

ϕj(
h
2L)[cj−1] term can be decomposed into the form LCΓCL

T
C , 1 ≤ C ≤ s, and

then the first stage value a can be written as the form of LDLT -type:

a = ϕh
2 ,F̃

(Xn)

= e
h
2 L[Xn] +

s∑
j=1

(
h

2
)jϕj(

h

2
L)[cj−1]

= [e
h
2 ALn, L1, L2, · · · , Ls]

⎛
⎜⎜⎜⎜⎜⎝

Γn
h
2Γ1

h2

4 Γ2

. . .
hs

2s Γs

⎞
⎟⎟⎟⎟⎟⎠

[e
h
2 ALn, L1, L2, · · · , Ls]

T

= LaΓaL
T
a . (40)

Then Na has the LDLT -type splitting L̃aΓ̃aL̃
T
a with

L̃a = [CT , La], Γ̃a = blkdiag(I,−(ΓaLaB)(ΓaLaB)T). (41)

A similar assumption on ϕj(hL)[cj−1] yields that it has the decomposition

L̃C Γ̃CL̃
T
C and the approximation LbΓbL

T
b to b is given by

Lb = [ehALn, L̃1, L̃2, · · · , L̃s], Γb = blkdiag(Γn, hΓ̃1, h
2Γ̃2, · · · , hsΓ̃s). (42)

Obviously, the process of finding the splitting factor of c involves the poly-
nomial C(h2), so the splitting of the stage value c is achieved by first splitting
the polynomial cj in LDLT -type format, then performing an LDLT factorization
of the interpolated polynomial C(h2), and finally forming a low-order factor of
c by collecting the three terms on the right-hand side. The polynomials cj cor-

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 381

responding to the value of C(h2) in (24) has a low-rank splitting form C̃jD̃jC̃
T
j

with

C̃j = [L̃0, L̃1, · · · , L̃n−s+1],

D̃j = blkdiag(
γ0j
hj

Γ̃0,
γ1j
hj

Γ̃1, · · · ,
γ(s−1)j

hj
Γ̃n−s+1), 0 ≤ j ≤ s− 1. (43)

Substitute cj by the above splitting, we obtain the splitting factors C̄j , D̄j of
C(h2)

C̄j = [C̃0, C̃1, C̃2, · · · , C̃s−1],

D̄j = blkdiag(D̃0,
τ

2
D̃1,

(τ2)
2

2!
D̃2, · · · ,

(τ2)
s−1

(s− 1)!
D̃s−1). (44)

And then c can be written as the low-rank form LcΓcL
T
c with

Lc = [La, L̃a, C̄j], Γc = blkdiag(Γa,
h

2
Γ̃a,−h

2
D̄j). (45)

A proeduce similar to (41) can be applied to Nc yields the splitting factors

L̃c = [CT , Lc], Γ̃c = blkdiag(I,−(ΓcLcB)(ΓcLcB)T). (46)

Using the spliting C(h2) = C̄jD̄jC̄
T
j , it follows that d has the following splitting

factors

Ld = [Lb, e
h
2 AL̃c, e

h
2 AC̄j], Γd = blkdiag(Γb, hΓ̃c,−hD̄j). (47)

In the same way, the splitting factors of Nd can be written as

L̃d = [CT , Ld], Γ̃d = blkdiag(I,−(ΓdLdB)(ΓdLdB)T). (48)

Finally, we obtain the LDLT -type splitting C(h) = ĈjD̂jĈ
T
j with

Ĉj = [C̃0, C̃1, C̃2, · · · , C̃s−1],

D̂j = blkdiag(D̃0, τD̃1,
τ2

2!
D̃2 · · · , τ s−1

(s− 1)!
D̃s−1). (49)

Now, the low-ranking approximation Ln+1Γn+1L
T
n+1 to Xn+1 is given by forming

Ln+1 = [Lb, e
h
2 AL̃a, e

h
2 AL̃c, e

h
2 AC̄j , L̃d, Ĉj],

Γn+1 = blkdiag(Γb,
h

3
Γ̃a,

h

3
Γ̃c,−2h

3
D̄j ,

h

6
Γ̃d,−h

6
D̂j). (50)

The details on procedure are summarized in Algorithm 2.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation382

Algorithm 2 Low-rank approximation of the ETDs/RK4 method for DREs.

Input: A ∈ R
N×N , C ∈ R

l×N such that Q = CTC,B ∈ R
N×q such that G =

BBT , L0 ∈ R
N×r,Γ0 ∈ R

r×r such that X0 = L0Γ0L
T
0 , t ∈ [a, b] and the

stepsize h.
1: for n = 0 to

[
b−a
h

]
do

2: for j = 1 to s do
3: Compute the low-rank approximation LCΓCL

T
C to ϕj(

h
2L)Cj−1 based

on a numerical quadrature formula.
4: Compute the low-rank approximation L̃C Γ̃CL̃

T
C to ϕj(hL)Cj−1 based

on a numerical quadrature formula.
5: end for
6: Compute the LDLT splitting LaΓaL

T
a of a with

La = [e
h
2 ALn, L1, L2, · · · , Ls], Γa = blkdiag(Γn,

h
2Γ1,

h2

4 Γ2, · · · , hs

2s Γs).
7: Column-compress La and Γa.
8: Form L̃a = [CT , La] and Γ̃a = blkdiag(I,−(ΓaLaB)(ΓaLaB)T).
9: Column-compress L̃a and Γ̃a.

10: Compute the LDLT splitting LbΓbL
T
b of b with

Lb = [ehALn, L̃1, L̃2, · · · , L̃s] and Γb = blkdiag(Γn, hΓ̃1, h
2Γ̃2, · · · , hsΓ̃s).

11: Column-compress Lb and Γb.
12: for j = 0 to s-1 do
13: Compute the LDLT splitting C̃jD̃jC̃

T
j of Cj with

C̃j = [L̃0, L̃1, · · · , L̃n−s+1],

D̃j = blkdiag(
γ0j

hj Γ̃0,
γ1j

hj Γ̃1, · · · , γ(s−1)j

hj Γ̃n−s+1).

14: Column-compress C̃j and D̃j .
15: end for
16: Form C̄j = [C̃0, C̃1, C̃2, ..., C̃s−1] and

D̄j = blkdiag(D̃0,
τ
2 D̃1,

(τ
2)

2

2! D̃2, · · · , (τ
2)

s−1

(s−1)! D̃s−1).

17: Column-compress C̄j and D̄j .
18: Compute the LDLT splitting LcΓcL

T
c of c with

Lc = [La, L̃a, C̄j] and Γc = blkdiag(Γa,
h
2 Γ̃a,−h

2 D̄j).
19: Column-compress Lc and Γc.
20: Form L̃c = [CT , Lc] and Γ̃c = blkdiag(I,−(ΓcLcB)(ΓcLcB)T).
21: Column-compress L̃c and Γ̃c.
22: Compute the LDLT splitting Ld ΓdL

T
d of d with

Ld = [Lb, e
h
2 AL̃c, e

h
2 AC̄j] and Γd = blkdiag(Γb, hΓ̃c,−hD̄j).

23: Column-compress Ld and Γd.
24: Form L̃d = [CT , Ld] and Γ̃d = blkdiag(I,−(ΓdLdB)(ΓdLdB)T).
25: Column-compress L̃b and Γ̃d.
26: Form Ĉj = [C̃0, C̃1, C̃2, ..., C̃s−1] and

D̂j = blkdiag(D̃0, τD̃1,
τ2

2! D̃2 · · · , τs−1

(s−1)!D̃s−1).

27: Column-compress Ĉj and D̂j .

28: Form Ln+1 = [Lb, e
h
2 AL̃a, e

h
2 AL̃c, e

h
2 AC̄j , L̃d, Ĉj] and

Γn+1 = blkdiag(Γb,
h
3 Γ̃a,

h
3 Γ̃c,− 2h

3 D̄j ,
h
6 Γ̃d,−h

6 D̂j).
29: Column-compress Ln+1 and Γn+1.
30: end for
Output: Ln and Γn.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 383

5. Numerical experiments

In the following subsections, we test the performance of the method presented
through a number of numerical experiments. All tests were performed under Win-
dows 10 and MATLAB R2021b, running on a computer equipped with an Intel
Core i5 processor (1.6 GHz) and 8 GB of RAM. The relative error is measured
in the F-norm, i.e.,

Error =
||Y − Ŷ ||F
||Y ||F , (51)

where Ŷ is the computed solution and Y is the reference solution, respectively.
In the experiment, we use the MATLAB functions recurLrlyap [20] and expmv

in [21] to evaluate ϕ-functions of the form ϕ(L)[Q] and matrix functions of the
form eAL, respectively. The MATLAB function recurLrlyap employs the scaling
and recursion method, while the MATLAB function expmv employs the scaling
and squaring method based on the Taylor series. For the low-rank implementation,
the column compression strategy terminates at a tolerance of N · ε. Here, N is
the system dimension and ε denotes the machine accuracy.

Experiment 1. The matrix A was obtained from the 5-point discretization of the
following advection-diffusion operator

L[u] = 	u− f1(x, y)
∂u

∂x
− f2(x, y)

∂u

∂y
, (52)

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions.
The system matrices A, B and C can be generated directly by the MATLAB
functions fdm 2d matrix and fdm 2d vector in the LYAPACK toolbox [22], re-
spectively. In this test, we set two different function values f1(x, y) = 10x and
f2(x, y) = 100y. The domains of B and C are restricted to the input region of
x, y ∈ (0.1, 0.3) and the output region of x, y ∈ (0.7, 0.9). The low-rank factor L0

of the initial value X0 was randomly generated by the MATLAB function rand.
Further, there are n0 = 40 equidistant grid points in each spatial dimension, and
that the dimension of the matrix A is n2

0. The reference solution of equation (1) at
time t can be expressed exactly in terms of the fourth-order symmetric splitting
scheme for the scheme with time step size h = 10−4.

To test the performance of the GMIF method, we compared it with two class-
es of low-rank integrators developed in [23], including the second-order Rosen-
brock method and fourth-order symmetric additive splitting method. We abbre-
viate them as Ros2 and Split4, respectively.

Figure 1 shows the accuracy and efficiency plots for ETD1/RK4, ETD2/RK4,
ETD3/RK4, Ros2 and Split4 for each system on the integration interval [0, 0.1]
with time step sizes h ∈ { 1

500 ,
1

600 ,
1

700 ,
1

800 ,
1

900 ,
1

1000}. We can see that ET-
D1/RK4, ETD2/RK4 and ETD3/RK4 are more accurate than Ros2 and Split4
for the same time step, on the other hand they are more expensive. To get a
better view as well as to compare the three methods, they are again plotted in
Figure 2 with the same integration interval and number of steps.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation384

102 103 104 105

Computational time

10-12

10-11

10-10

10-9

10-8

10-7

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

a.Efficiency plot

1 1.2 1.4 1.6 1.8 2
Step sizes 10-4

10-12

10-11

10-10

10-9

10-8

10-7

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

b.Order plot

Figure 1. Experimental results of DRE for Experiment 1. Left: The relative errors ver-
sus computational time at t = 0.1. Right: The relative errors versus time step sizes
h ∈ { 1

500
, 1
600

, 1
700

, 1
800

, 1
900

, 1
1000

} for the same problem.

103 104 105

Computational time

3

4

5

6

7

8

9

10
11
12
13

R
el

at
iv

e
er

ro
rs

10-12

ETD1/RK4
ETD2/RK4
ETD3/RK4

a.Efficiency plot

1 1.2 1.4 1.6 1.8 2
Step sizes 10-4

3

4

5

6

7

8

9

10
11
12
13

R
el

at
iv

e
er

ro
rs

10-12

ETD1/RK4
ETD2/RK4
ETD3/RK4

b.Order plot

Figure 2. Same experimental setup as in Fig 1, but now for comparison purposes only the three
methods ETD1/RK4, ETD2/RK4, ETD3/RK4 are shown.

Experiment 2. As a second numerical experiment, We consider an artificial sym-
metric model problem acting on the unit square ω = (0, 1)2 with N = n2

0 = 1600

degrees of freedom. The matrix A ∈ Rn2
0×n2

0 can be viewed as a finite difference
discretization of the two-dimensional Laplace operator in a unitary square matrix
with uniform boundary conditions. The matrices B ∈ Rn2

0×1, C ∈ R1×n2
0 and

L0 ∈ Rn2
0×1 are randomly generated using the MATLAB function randn with

normally distributed terms. In order to determine the exact reference solution, we
use a fourth-order symmetric splitting approach with time step size h = 10−3. To
test the relative errors and computation times of the GMIF method, we compared
it with Ros2 and split4 developed in M.E.S.S. Toolbox [23]. We have carried out

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 385

10-1 100 101 102

Computational time

10-10

10-8

10-6

10-4

10-2
R

el
at

iv
e

er
ro

rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

a.Efficiency plot for α = 2 · 10−2

10-1 100 101 102

Computational time

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

b.Efficiency plot for α = 2 · 10−1

10-1 100 101 102

Computational time

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

a.Efficiency plot for α = 2

100 101 102 103

Computational time

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

b.Efficiency plot for α = 2 · 10

Figure 3. The relative errors of ETD1/RK4, ETD2/RK4, ETD3/RK4, Ros2 and Split4 versus
the computation time when integrating each of the equations for Example 2 for t = 1.

numerical experiments with four different values of the coefficient α = 2 · 10−2,

2 · 10−1, 2, 2 · 10. The stiffness of the problem increases with increasing values of

α.

Figure 3 and Figure 4 examine the efficiency plots and accuracy plots of the

methods with different coefficients for time steps of h = 2−k, k = 4, 5, · · · , 8 un-

der the integration interval [0, 1], respectively. In Figure 3, we can see that ET-

D1/RK4, ETD2/RK4 and ETD3/RK4 are more effective than Ros2 and Split4

for the same time step corresponding to a smaller stiffness. As the problem be-

comes more rigid, our relative errors are always significantly smaller than those

of Ros2 and spilt4 , although our method performs slightly worse in terms of

validity. Observe in Figure 4 that ETD1/RK4, ETD2/RK4 and ETD3/RK4 have

higher accuracy when using the same step size. In particular, they remain more

accurate than Ros2 and Split4 in the case of strongly rigid problems.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation386

10-3 10-2 10-1

Step sizes

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

a.order plot for α = 2 · 10−2

10-3 10-2 10-1

Step sizes

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

b.order plot for α = 2 · 10−1

10-3 10-2 10-1

Step sizes

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

a.order plot for α = 2

10-3 10-2 10-1

Step sizes

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
rs

ETD1/RK4
ETD2/RK4
ETD3/RK4
Ros2
Split4

b.order plot for α = 2 · 10

Figure 4. The relative errors of ETD1/RK4, ETD2/RK4, ETD3/RK4, Ros2 and Split4 ver-
sus the variable number of time step sizes h = 2−k, k = 4, 5, · · · , 8 when integrating each of
equations for Experiment 2 on [0, 1].

6. Conclusion

In this paper, we show how two types of exponential integrators can be applied to
matrix-valued DRE, one of which is the integrating factor method and the other
is the generalized integrating factor method. Based on this, we further construct
two efficient algorithms based on low-rank decomposition. The performance is
tested in numerical experiments with two different examples, and the results show
that the proposed methods are more effective for large-scale rigid problems. In
addition, the core of the computation of the generalized integral factor method is
the computation of the function. Therefore, we hope that more accurate function
computation methods can be proposed in the future to improve the performance.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation 387

Acknowledgements

This work was supported in part by the National Nature Science Foundation of
China (Grant No. 12371455) and Jilin Scientific and Technological Development
Program (Grant No. 20200201276JC) and the Natural Science Foundation of
Changchun Normal University (Grant No. 2021001).

References

[1] Abou-Kandil H, Freiling G, Ionescu V, Jank G. Matrix Riccati Equations in Control and
Systems Theory. Switzerland: Birkhäuser, Basel; 2003.

[2] Ichikawa A, Katayama H. Remarks on the time-varying H∞ Riccati equations. Systems
Control Lett. 1999;37:335-345.

[3] Jacobs OLR. Introduction to Control Theory. UK: Oxford Science Publications; 1993.
[4] Lancaster P, Rodman L. Algebraic Riccati equations. New York: Oxford Science Publica-

tions/The Clarendon Press Oxford University Press; 1995.
[5] Mehrmann V. The Autonomous Linear Quadratic Control Problem: Theory and Numer-

ical Solution. 1991.
[6] Choi CH, Laub AJ. Efficient matrix-valued algorithms for solving stiff Riccati differential

equations. IEEE Trans. Automat. Control. 1990;35:770-776.
[7] Lang N, Mena H, Saak J. On the benefits of the LDLT factorization for large-scale dif-

ferential matrix equation solvers. Linear Algebra and its Applications. 2015;480:44-71.
[8] Davison EJ, Maki M. The numerical solution of the matrix Riccati differential equation.

IEEE Trans. Automat. Control. 1973;18:71-73.
[9] Dieci L. Numerical integration of the differential Riccati equation and some related issues.

SIAM J. Numer. Anal. 1992;29:781-815.
[10] Kenne C, Leipnik R. Numerical integration of the differential matrix Riccati equation.

IEEE Trans. Automat. Control. 1985;30:962-970.
[11] Kirsten G, Simoncini V. Order reduction methods for solving large-scale differential matrix

Riccati equations. SIAM J. Sci. Comput. 2020;42:2182-2205.
[12] Laub AJ. A schur method for solving algebraic Riccati equations. IEEE Trans. Autom.

Control. 1979;24:913-921.
[13] Benner P, Mena H. BDF methods for large-scale differential Riccati equations. proc of

mathematical theory of network & systems mtns. 2009.
[14] Benner P, Mena H. Rosenbrock Methods for Solving Riccati Differential Equations. IEEE

Trans, Automat. Control. 2013;58:2950-2956.
[15] Stillfjord T. Adaptive high-order splitting schemes for large-scale differential Riccati equa-

tions. Numer. Algor. 2018;78:1129-1151.
[16] Stillfjord T. Low-rank second-order splitting of large-scale differential Riccati equations.

IEEE Trans. Automat. Control. 2015;60:2791-2796.
[17] Li DP, Zhang XY, Liu RY. Exponential integrators for large-scale stiff Riccati differential

equation. J. Comput. Appl. Math. 2021;389:113360.
[18] Lawson D. Generalized RungeKutta processes for stable systems with large lipschitz con-

stants. SIAM J. Numer. Anal. 1967;4:372-380.
[19] Krogstad S. Generalized integrating factor methods for stiff PDEs. Journal of Computa-

tional Physics. 2005;203:72-88.
[20] Li DP, Zhang XY. A low-rank algorithm for solving Lyapunov operator ϕ-functions within

the matrix-valued exponential integrators. 2022. arXiv: 2212.02408.
[21] Al-Mohy A, Higham N. A new scaling and modified squaring algorithm for matrix func-

tions. SIAM J. Matrix Anal. Appl. 2009;31:970-989.
[22] Penzl T. LYAPACK A MATLAB Toolbox for Large Lyapunov and Riccati Equations,

Model Reduction Problems, and Linear-Quadratic Optimal Control Problems Users. 2000.
[23] Saak J, Koehler M, Benner P. M-M.E.S.S.-1.0.1-The Matrix Equations Sparse Solvers

Library. 2016.

J. Li and D. Li / Low-Rank Exponential Integrators for Differential Riccati Equation388

