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Abstract. Dynamic multi-layer network analysis is the frontier direction of network 
science and a prominent challenge in the field of complex network systems. In this 
paper, a covariate-assisted dynamic multi-layer network community detection 
method is proposed, which effectively combines the dependence within each 
network, across time and between different layers. The latent Gaussian process is 
used to model the edge probability between participants, and a flexible time series 
analysis is obtained. An extended model based on community is proposed to reduce 
the computational burden. In terms of parameter estimation, this paper uses the 
Bayesian method to conduct posterior inference on model parameters. Finally, a set 
of real business relationship network data is used for experiments, and the results 
show that the dynamic multilayer block network model has lower estimation time 
cost and better prediction performance, and the chunking structure of its model is 
more capable of revealing meaningful community structures, which makes it 
suitable for dealing with more complex dynamic networks. 

Keywords. Dynamic multi-layer blocks；edge covariates; gaussian process; latent 
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1. Introduction 

Social network research focuses on the analysis of the dependencies between people or 

other social units, that is, the dependencies caused by the ties that bind them together 

[1-2]. Nowadays, there is a growing interest in the dynamic interdependencies of 

networks with other structures. However, these dynamic interactions[3] across time 

usually occur in multilayer connections, and thus multilayer networks are jointly 

modeled to fully understand the evolution of the complex network structure under study 

over time. 

Data on social interaction processes are rapidly becoming highly multidimensional, 

and the availability of multidimensional networks in World Wide Web architectures[4], 

telecommunication infrastructures[5], and so on continues to increase. A growing 

number of research directions indicate the need for appropriate approaches to address the 
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complexity associated with network problems, and network modularity analysis[6], 

network resilience analysis[7], etc. are examples of these new directions. 

In recent years, statistical models for multi-layer networks have increased. The latent 

space model first proposed by Hoff et al.[8] is a classic model because it can flexibly 

capture common network features, such as node degree heterogeneity, transitivity, 

homogeneity, etc. Gollini and Murphy[9] and DAngelo et al.[10] proposed a latent space 

model for multi-layer networks. It is assumed that the latent representation of each node 

is the same on all layers, and the changes between networks are captured by layer-

specific parameters that control the overall network characteristics. Durante and 

Dunson[11-12] introduced continuous-time dynamics by considering the Gaussian 

process of potential coordinate evolution over time, and then they extended the model in 

2016[13]. Durante et al.[14] proposed a dynamic multi-layer network model, which 

considers a shared latent space to capture the global structure and a K-layer specific latent 

space that characterizes the special structure of each layer. On this basis, Carmona et 

al.[15] proposed a general network model for longitudinal data of multi-layer networks 

with directed and weighted edges in 2019 to analyze the dynamic multi-layer network 

structure changes over time more comprehensively. Dealing with large networks is often 

computationally difficult, however; Yildirimoglu and Kim[16] used modularity-based 

community monitoring to find demand patterns in a multilayered urban environment for 

demand analysis at different spatial resolutions. Yap et al.[17] used graph-based 

community detection to determine which wiring harnesses within the selected hubs to 

synchronize in order to be applicable to the context of the current public transportation. 

and Tian et al.[18] significantly reduced the computational cost of the large-scale 

rebalancing problem by partitioning the shared bicycle network. In 2022, Hector et 

al.[19] proposed a new probabilistic latent network model to predict multi-layer dynamic 

graphs that are increasingly common in transportation. 

Inspired by the above work, the contributions of this paper's work are as follows. 

First, this paper proposes a covariate-assisted community monitoring approach for 

dynamic multilayer networks that effectively combines dependencies within each 

network, across time, and between different layers, while maintaining flexibility. Second, 

the computational burden is reduced by jointly considering both the temporal and spatial 

dimensions of the network to provide an in-depth demonstration of the evolution of the 

dynamic multilayer network structure over time. Finally, a set of real business 

relationship network data is used as an example to validate the method, and the 

experimental results prove that it has lower estimation time cost and better prediction 

performance, and is suitable for dealing with more complex dynamic networks. 

2. Dynamic multi-layer block network model  

The dynamic multilayer graph has each layer of graph that evolves over time, and can be 

represented by V V  adjacency matrix  k
Y t , each matrix has a binary element 

     0,1
k k

ij jiY t Y t  , which measures whether there is a connection between nodes i  

and j . If there is a connection between participants i  and j  at time 
1
,...,

n
t t t  on the 

1,...,k K -th layer, then   1
k

ijY t  .  
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To strengthen the community structure, each node in the network is assumed to 

belong to a random block[20] or cluster such that the probability of the existence of an 

edge between any two nodes in the network depends on which block or cluster 

 1,...,b B  they belong to. Thus the estimation will be performed on  1 2B B   blocks 

rather than on  1 2N N   nodes, where B N� , significantly reduces the computational 

cost. The prior probability is set to  
i b

p z b   , where z  is the vector assigned to the 

block, indicating that each participant i  belongs to which block, and 

 1
,...,

B
Dirichlet  ∼ . The model is extended by considering the inclusion of 

covariates, specifically the joint modeling of inter-block and intra-block connection 

probabilities as follows. 

 1
,...,

i B
z Categorical  ∼

 (1) 

      ,

k k

ij i j pqY t z p z q Bernoulli t  ∼

 (2) 

    
             

   

'

1 1

1

                                        ,  p=q

R H
k k k

pr qr ph qh m ij

r hk k

pq pq R
k

prp

r

t x t x t x t x t t g t p q

t Logit t

t x t

 

 



 




   


  

 


 



，

 (3) 

3. Bayesian posterior inference 

The full data likelihood of the model presented in this paper is: 

    
  

 

  
  

 

  
 

1

1 1 2 1 1 1 1 1

exp exp

1 exp 1 exp

k
k

ij
pq

z z pqi j

k
pq

z zi j
pq

Y t y t
k k

pT K V i T K B
k k

ij pq n tk
kt k i j t k p q

t t
p Y t t

t t

 



 



       

 
  

 

 

 (4) 

Where     k k

pq pqt Logit t   ,  k

pqn t  and  k

pqy t  denote the number of possible 

edges and actual edges in  k

ijY t  between blocks p  and q , respectively. 

3.1. Gaussian Process Prior for Time - Varying Latent Coordinates  

Inspired by the dynamic modeling of a single network, the Gaussian process prior 

considering the potential coordinates of participants is defined as follows : 

        20, ,    c , exp ,    k 0
i j i j

t GP c t t k t t
   

    ∼  (5) 

        21
0, ,    , exp ,    0ir r i j i jx x x x

x t GP c c t t k t t k


   ∼  (6) 
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        21
0, ,    , exp ,    0

ih

k k

h x x i j x i j xx t GP c c t t k t t k


   ∼  (7) 

independently for 1,..., ,  r=1,...,R,  h 1,..., ,    1,...,i V H k K   ,  ,
i jx

c t t  and  ,
x i j
c t t  in 

Equations (6) and (7) represent the square exponential correlation function of the 

Gaussian process with shared and layer-specific potential coordinates, respectively. 
1 1

1
,...,

R
 

 

 and 
1 1

1
,...,

k k

H
 

 

 are the positive shrinkage parameters of the control potential 

coordinate set of 1,...,k K  for each layer. The multiplicative inverse gamma prior[21] 

of shrinkage parameters is 1 1

1

,    r=1,...,R

r

r u

u

 
 



 ,  1 1
,1Gamma a ∼ ,  1 2

 ,1

u
Gamma a


∼ ,

   
1 1

1

,    h=1,...,H,    k=1,...,K

h

k k

h v

v

 

 



 ,  1 1
,1

k
Gamma a ∼ ,  

1
2
,1

v

k
Gamma a



∼ . 

And consider that the prior of dynamic coefficient is:    0, ,    1,...,
m m
t GP c m M ∼ , where, 

m
c  is the square exponential correlation function     2, exp

m i j m i j
c t t k t t   ,   0

m
k  . 

Consider the a priori of shared and layer-specific potential coordinates on a finite-

time grid 
1
,...,

n
t t  as follows. 

      1

1
,..., 0,ir ir

n n r x
x t x t N 



∼  (8) 

      1

1
,..., 0,

k k k

ih ih n n h x
x t x t N 



∼

 (9) 

independently for 1,..., ,  r=1,...,R,  h 1,..., ,    1,...,i V H k K   . In equations (8) and (9), 

the n n  variance and covariance matrices 
 x ij

  and  x ij
  have elements 

    2exp
i jx ij x

k t t     and     2exp
x i jx ij
k t t    , which also apply to the baseline process 

of       1
,..., 0,

n n
t t N


 



∼ . 

3.2. Posterior distribution  

Based on the above a priori settings, the posterior distribution of the model parameters 

is represented as follows. 
parameter to be estimated posterior 

   1 1
,...,

B B
Dirichlet n n    

 k

pq t  

 , ,       100PG b c b   

 2

2 3

1
, ,       100

2 4 2

bb b
N b

c c c

 



 
  
 
 

 

   ,
n

N
 

 
 

px   ,

p p
n R x x

N 


  

k

px   ,k k
p p

T H x x
N 


  

1


 

 1 1

1

1 1

,1 0.5
2

R B

pm pml x
l p

B T R
Gamma a x K x

 

 

  
   

 
   
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i
z

  iCategorical   

The posterior computation utilizes P´olya-gamma data augmentation for Bayesian 

logistic regression, which allows for simple and easy-to-handle Gibbs samplers of the 

conjugate full conditionals. In this paper, the Gibbs sampler algorithm is utilized to 

sample the joint posterior of all model parameters with the following main steps. 

 Calculate the number of clusters given the current assignment z. 

 Sample the corresponding P´ olya-gamma enhanced data  k

pq t . 

 Update inter-block dynamic averages. Update      1
,...,

n
t t t  



     from its fully 

conditional multivariate Gaussian distribution process.  

 Update cross-layer block coordinates. Sample the coordinate vector 

   1
,...,p p

n
x t x t  for each block and layer. 

 Update the intra-layer coordinates. Sample the coordinate vector    1
,...,

k k

p p nx t x t  

for each block and layer. 

 Update the covariate coefficients 
m

  according to the posterior distribution.  

 The update of the gamma parameter characterizing the prior in equations 

1 1

1

r

r u

u

 
 



  and    
1 1

1

h

k k

h v

v

 

 



  follows conjugate analysis, proving the gamma 

full conditions. 

 Updates the dynamic average within the block. Sample the vector 

     1
,...,

k k k

p p p nt t t  


     for each block and layer. 

 Dynamic multilayer block probabilities are updated by applying equation (3) to 

samples of the baseline process, cross-layer coordinates, and intra-layer 

coordinates. 

 Update the block allocation. Sample potential block allocations z  in order and 

indicate i
z


 if the allocation of node i  has been updated and i
z  otherwise.  

Repeat the above steps until the algorithm converges. 
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4. Experimental data and result analysis  

4.1. Data sets and network description  

In order to evaluate the effectiveness and adaptability of this method, this paper 

selects a set of real business relationship data sets (https://data.world/datasyndrome/ 

relatobusiness-graph-database) collected by Relato. Based on these data, a large business 

relationship network structure diagram is created as shown in Figure 1. The pairs of 

relationships include 'partners', 'customers', 'competitors', and 'investments'. The dataset 

is processed into a K=4-layer network. Finally, 151 companies were selected as nodes, 

and retained the 5 largest industries, such as 'health care' and 'finance', as node covariates, 

resulting in a multi-layer network of 151*151*4, and considered a time step of T = 6. 

This paper aims to combine the node covariates to examine the dynamic evolution of the 

business relationship network structure, the pairwise relationship between companies 

over time, and the detection of corporate communities. 

 

Figure 1. Business relationship network structure diagram. 

The above diagram shows the business relationship network structure of 151 

companies. The 5 colors in the diagram represent the 5 different industries to which the 

company belongs. And the more connections exist the larger the node of the company is, 

and vice versa the smaller it is. 

4.2 Experimental results and analysis  

4.2.1 Construction of dynamic multi-layer block network 

T=4

202104

T=1

202101

T=2

202102

T=6

202106  

Figure 2. Multi-layer block business relationship network at time t=1,..., 6. 
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In the constructed dynamic multi-layer block network, the node covariate industry will 

be regarded as its community label. Figure 2 shows the multi-layer network structure 

diagram in June 2021. In the first layer of competitor network layer, if there is a 

competitor relationship between the two companies, there is a connection between them, 

and it is clear that companies in the same industry often have a competitor relationship, 

because companies of the same color are mostly close to each other, and only a very 

small number of companies are in an abnormal position. And with the evolution of time, 

the multi-layer network structure is also constantly changing, indicating that the pairwise 

relationship between companies will change within a certain period of time. The relevant 

network statistics are shown in Table 1. 

Table 1. Statistical characteristics of business relationship network 

layer node edge 
network 

density 

average 

shortest 

path 

length 

average 

degree 

diameter 

connection 
efficiency connectivity 

1- competitor 312 1519 0.134 1.951 20.119 1 0.433 0.877 

2- customer 312 1508 0.133 1.963 19.987 1 0.312 0.878 

3- investment 312 1501 0.133 1.986 19.881 1 0.416 0.879 

4- partnership 312 1911 0.151 1.801 45.311 1 0.447 0.853 

The dynamic multi-layer block network model is further fitted to a selected subset 

of the complete multi-layer graph shown in Figure 2, including 151 companies in the 

competitor layer and the investment layer (K=2) network. At the same time, the time step 

is still considered as T=6 to estimate its potential coordinates. 

 

Figure 3. Estimated cross-layer coordinates for all companies for April 2021. 

Figure 3 (left) shows the cross-layer coordinates of all companies in April 2021. It 

can be seen from the diagram that there is a clear cluster structure, indicating that the 

analysis of adding block structure can better explain its network structure. From Figure 

3 (right), we can see the dynamic evolution of the cross-layer and intra-layer vertex 

connectivity scores of all companies. It can be clearly seen that the intra-layer scores of 

competitors are growing steadily, while the scores of the partner layer are still high, but 

the downward trend is obvious. 

4.2.2 Dynamic multi-layer prediction of business relationship network  

This paper uses available industry company data to verify the proposed extended model 
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by fitting and predicting a large dynamic multi-layer graph. From the aspects of 

classification accuracy and estimation time, the dynamic multi-layer network model and 

the dynamic multi-layer block network model are compared, and whether the block 

structure of the dynamic multi-layer block network model can implement meaningful 

corporate community detection is studied. 

Firstly, the performance of the dynamic multi-layer network model and the dynamic 

multi-layer block network model is compared. The first 5 months of the sample are used 

to train the model, that is  1 5
,...,t t t , and the data of the last 1 month are used for out-

of-sample prediction. Figure 4 (left) shows the ROC curve of the two-model test data 

with  3,4,5B   blocks.  

 

Figure 4. ROC curves for different block numbers (left) and the model estimation time (right). 

It can be seen from the above diagram that the dynamic multi-layer network model 

is a very accurate classifier, but because it is estimated to be N(N-1)/2KT, the dynamic 

multi-layer block network model is estimated to be B(B+1)/2KT, so the latter calculation 

cost is much lower than the former. It can be clearly seen from the right of Figure 4 that 

the performance of the dynamic multi-layer block network model increases with the 

increase of the number of blocks, and the time spent on estimation is significantly 

reduced. At the same time, Figure 5 shows the dynamic multi-layer block network model 

of B = 5 block and the ROC curve of the dynamic multi-layer model. It can be seen from 

the figure that the worst-structured partner network is the most difficult to predict. 

 

Figure 5. Layer-wise ROC curves from the proposed model with B = 5 (left) and the DMN (right). 
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The five firm industry clusters tested by the dynamic multilayer block model are 

also given. The fourth cluster is the largest, including 43 companies, such as Clearswift, 

Symantec, Imperva, etc., among which there are several abnormal node companies : 

Trace3 (1), Riverbed, Nokia, Trend Micro (2), VMWare (3), Assessment Systems (5) ; 

the first cluster is the smallest, including only 13 companies, including Safend, Institute 

of Asset Management (4) ; the node companies included in clusters 2,3, and 5 are shown 

in the above table. These three clusters also have several abnormal nodes, such as 

Software, FireMon, Dell, AT&T, and Hewlett Packard. 

Finally, this paper compares the prediction performance of the proposed method 

with several popular non-probabilistic algorithms such as Katz Index (Katz), Restarted 

Random Walk (RWR) based on PageRank algorithm. 

 

Figure 6. ROC curves for probabilistic and similarity-based prediction methods. 

Figure 6 illustrates the ROC curves as well as the area under the curve (AUC) for 

DMN, DMBN, etc. with 5 blocks, from which it can be seen that DMBN and Katz index 

are the best probabilistic and similarity-based classifiers, respectively. 

5. Conclusion  

In this paper, we propose a covariate-assisted dynamic multilayer block network model 

that models the edge probabilities between nodes by means of a latent Gaussian process 

to obtain a flexible time series analysis. It not only demonstrates the dynamic evolution 

process of the multilayer network, i.e., the pairwise relationship between the firms 

changes in a certain period of time, but also allows time-series clustering of the 

connection dynamics of the network nodes and related community detection. It also has 

a relatively low estimation time cost and is better able to capture the dynamic, multilayer, 

and other properties of large networks than other models. Secondly, the node covariates 

are incorporated into the multi-layer dynamic network to obtain better community 

detection accuracy. Experiments show that the model has wide applicability and is more 

suitable for large-scale social network analysis. In addition, in terms of model 

comparison, the out-of-sample prediction performance of the dynamic multi-layer block 

network model is much better than that of the dynamic multi-layer network model, and 

the computational cost of the former is much lower than that of the latter. The estimation 

time for the dynamic multilayer block network model ranged from 25 minutes (B=3) to 

1.2 hours (B=5), while the dynamic multilayer network model took more than 6 hours. 
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