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Abstract. Semi-supervised support vector machine (S3VM) algorithms can effec-
tively deal with the problem of a few labeled instance and a large number of un-
labeled instances due to its good performance. The solution of the existing semi-
supervised support vector machine algorithms requires the use of many types of
optimization strategies because it takes all the training data as parameters to partic-
ipate in iterative optimization, which makes it difficult to efficiently process large-
scale data. Although simple random sampling is an effective means to consider
efficient modeling from the perspective of data preprocessing, the problem that it
determines the sample size in advance is difficult to process for the existence of
sampling randomness and sample difference. To fully characterize the original un-
labeled data and ensure the robustness of the model, we have proposed an adaptive
sampling to train the model on the labeled set and the sampled unlabeled set. The
fixed size unlabeled instances are continually sampled from the original unlabeled
set until the proposed statistics on the obtained sample meet the stopping condition,
where the statistics and stopping condition are generated by the density estimation.
This method solves the problem of subjectively determining the sample size in ad-
vance, the robustness of the proposed algorithm has been proved with the probably
approximately correct learning theory.

Keywords. Semi-supervised classification, support vector machine, sample size,
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1. Introduction

Semi-supervised learning is a paradigm that incorporates both labeled and unlabeled
data during the learning process. Semi-supervised support vector machines (S3VMs) ex-
tend the SVM framework by incorporating both labeled and unlabeled data during the
training process. The idea is that the unlabeled data can provide additional information
about the underlying structure of the data, potentially improving the classifier’s perfor-
mance [1,2,3,4,3]. In recent years, advances in hardware and software have enabled re-
searchers to develop scalable algorithms for large-scale semi-supervised SVMs. There
exist popular algorithms for large-scale semi-supervised SVMs, including transductive
SVMs (TSVMs)[5], Laplacian SVMs (LapSVMs)[6], and online SVMs (OS3VMs)[7].

Transductive support vector machines (TSVMs) were introduced by Vapnik as a
semi-supervised extension of SVMs. The core idea of TSVMs is to find a decision bound-
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ary that separates not only the labeled data but also the unlabeled data. This can be
achieved by minimizing a cost function that accounts for both labeled and unlabeled
data. The most popular TSVM algorithm is the S3VM by Joachims [5], which scales
well to large datasets. Laplacian support vector machines (LapSVMs) were introduced
by Belkin et al. [6] as another approach to semi-supervised SVMs. LapSVMs utilize a
graph-based representation of the data to incorporate unlabeled data into the training pro-
cess. The algorithm minimizes a cost function that includes a regularization term based
on the graph Laplacian, which encourages the smoothness of the decision function over
the data manifold. Facing large-scale stream data, Liu et al. [7] propose an online least
squares support vector machine based on flow pattern regularization, which uses some
key samples to construct regularization factors to achieve the decomposition of higher-
order matrices, thereby greatly improving the solving efficiency of the algorithm.

Moreover, several optimization techniques have been proposed to improve the scal-
ability of semi-supervised SVM algorithms. Some of the most popular techniques in-
clude the decomposition method [8], stochastic gradient descent [9], and parallelization
[10]. These techniques have been shown to significantly improve the computational ef-
ficiency of semi-supervised SVMs, making them more suitable for large-scale appli-
cations. Large-scale semi-supervised SVMs have been applied in various domains, in-
cluding text classification, image recognition, bioinformatics, and speech recognition.
These applications have demonstrated the potential of semi-supervised SVMs to effec-
tively handle large datasets and improve classification performance when labeled data
are scarce.

The current research work simply considers the efficient approximation solution of
discriminant semi-supervised classification algorithm from the perspective of optimiza-
tion, but it is difficult to efficiently process massive data because it requires multiple alter-
nating iterative optimizations and all data as parameters to participate in optimization. In
addition, label-free data not only provides parametric optimization information, but also
contains rich feature information, and how to use this information to consider efficient
modeling from the perspective of data granulation is the key means to solve large-scale
complex problems. In this paper, we have proposed a scalable learning dreamwork for
semi-supervised SVM. The proposed method can efficiently deal with large-scale data
with comparable classification performance.

2. Main Content

2.1. Basic Description

For the given training set T which is the union of the labeled instance set L =

{x1,x2, · · · ,xl} and the unlabeled instance set U = {xl+1,xl+2, · · · ,xl+u}, where each in-
stance xi = {xi1,xi2, · · · ,xim}� is expressed by a m-dimension vector, l and u are the num-
ber of labeled instances and unlabeled instances, and i = 1,2, · · · , l+u. Semi-supervised
classification algorithms simultaneously use the labeled instance set L and unlabeled in-
stance set U to train a classifier f (x) with good performance.
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2.2. Learning Curve

Traditional learning curve mainly is widely used for supervised classification problem, it
describes the relationship between the classification performance of the learner and the
training set size. Generally speaking, the classification performance of the learner grad-
ually improves as the increasing training set at the beginning stage, and it then reaches
the top and then no longer increases significantly. Tradition SVM algorithm is fit for the
learning curve, while the adaptability of semi-supervised SVM for it needs to be verified.
Different from supervised methods, we use the labeled set L and the sampled labeled
instances from U to construct the increasing training set. Therefore, we have used a real
dataset with LapSVM algorithm to study this problem.

Figure 1. The learning curve under different sampling ratio

Fig. 1 shows the classification accuracy of LapSVM algorithm under the fixed la-
beled set and different sampled ratio of unlabeled instances on the real dataset. It can be
found that classification accuracy increases until the sampled ratio is 0.7, and then it tends
to stabilize. This phenomenon can be also verified for other kinds of semi-supervised
SVM algorithms, because they have the same assumption that the hyperplane passes
through a low-density region in the input space, where the instances close to the deci-
sion surface contribute more than instances farther from the decision boundary. This val-
idates the feasibility of sampling several unlabeled instances with the labeled instances
to obtain an SVM classifier with good performance.

Therefore, we have proposed a scalable learning framework for semi-supervised
SVM to deal with large-scale unlabeled instances. In this framework, the subset S of
the original unlabeled instance set U combined with the labeled set L are used to train
the classifier. Owning to the fact that the execution efficiency is positively correlated to
the size of the training set, then the obtained classifier with a smaller training set has
high execution efficiency. On the other hand, the learning curve has confirmed that the
obtained classifier can achieve a similar classification performance as the one trained
on the original set as long as the sample is enough. The pseudocode of the proposed
framework is listed in Algorithm 1.
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Algorithm 1 Scalable learning framework under sampling for semi-supervised SVM
Input: The training set T which is the union of the labeled instance set L =

{x1,x2, · · · ,xl} and the unlabeled instance set U = {xl+1,xl+2, · · · ,xl+u}, semi-
supervised SVM algorithm A.

Output: The classifier f .
1: Obtain a subset S form the set U using sampling, where S keeps the most distribution

information of U ;
2: Train the classifier f on the union of L and S using algorithm A ;
3: return f .

2.3. Adaptive Sampling

The sample size is critical for the random sampling method, and it decides the equal-
ity of the sample. As random sampling exists randomness, the obtained sample of the
fixed size has significantly different instances. Moreover, different unlabeled instances
take different degrees of contribution to the classifier and the randomness of sampling,
then the same amount of sampled unlabeled instances also have larger differences. So
the sample size cannot be pre-determined before sampling, it should be chosen by the
features of the data and task.

For semi-supervised classification task, there exists a hypothesis that the probabil-
ity distribution P(x) of the input instance x takes valuable information to the posterior
probability distribution P(y|x). If we want to reduce the unlabeled instance set U to be
a smaller S while keeping the information, the difference in probability distribution be-
tween U and S is smaller. Therefore, it needs a measurement to evaluate the difference.
The kernel function is widely used to estimate the density function, where the density
estimation is the average value of the kernel function on the given set. Therefore, we use
the difference in the density estimation between U and S to obtain the subset S of high
quality.

Let K(x) be the kernel function. Then g = ∑
xi∈U

K(xi)/u and ĝ = ∑
xi∈S

K(xi)/s are the

density estimation for the set U and its subset S ⊆ U using simple random sampling
without replacement, where s is the size of the set S. In this way, the difference in density
estimation between the set U and its subset S can be measured by |g− ĝ|. If the sample S
is a good subset of U with high equality, the difference is small. The absolute difference is
difficult to be used because its value always changes greatly for different data. Therefore,
the condition |g− ĝ| ≤ γ|g| to judge, where γ ∈ (0,1). Owning to the fact that g cannot be
efficiently computed for large-scale data. On other hand, the stability of g on the sample
S under fixed size is also difficult to be guaranteed due to the presence of randomness.
To solve this problem, we have proposed an adaptive sampling algorithm which is one
kind of multiphase sampling. In this method, the unlabeled instances are continuously
sampled from the set U to form the subset S until the estimation g on the obtained subset
S satisfies the stopping condition. The stooping condition is related to the number of
iterations and the range of the kernel function on the set U . Moreover, fixed-volume
unlabeled instances are drawn during each iteration to accelerate the satisfaction of the
termination condition. Though the estimation is continuously computed in the process of
iteration, it can be efficiently calculated using the by linearly weighting of the results of
the previous iteration and but the current results. The pseudocode of adaptive sampling
algorithm is listed in algorithm 2.
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Algorithm 2 Adaptive Sampling algorithm
Input: The unlabel set U = {xl+1,xl+2. · · · ,xl+u}, the batch size b.
Output: The subset S.

1: Initialization: S = /0, r = 0, ĝ = 1, βr =−∞;
2: while ĝ > βr(1+1/ε) do

3: r = r+1, βr = λ
√

ln(r(r+1)/δ )/(2r ∗b);
4: Sampling b unlabeled instance without replacement from the set U to be Sr ;
5: S = S

⋃
Sr, and compute ĝ on the set S ;

6: end while

7: return S

2.4. Robustness

Supposed that the unlabeled instance set U is the population, then S is one sample set of
U . Obviously, the expectation of ĝ is that E(ĝ) = g. According to the Hoeffding inequal-
ity, we can get the following lemma.

Lemma 1 Let S ⊆U be the set of the fixed size s instances independently sampled from
the set U. For any real number ε > 0, it has P(|ĝ− g| ≤ ε) ≤ 2exp(−2sε2/λ 2), where
λ = max

xi∈U
K(xi,)−min

xi∈U
K(xi).

Proof Let zi = K(xi) be the random variable on the sample space {xl+1,xl+2, · · · ,xl+u},
ĝ is the mean of zi value on the sample S, and E(ĝ) = g. According to the Hoeffding
inequality, P(ĝ− g ≤ ε) ≤ exp(−2sε2/λ 2) and P(g− ĝ ≤ ε) ≤ exp(−2sε2/λ 2), then
the lemma can be obtained by combining these two inequations.

The final number of iterations r of algorithm 2 depends on the randomness of the
sampled instances, and it is a random variable. Two number r0 and r1 are defined, r0 =
min

r
{βr ≤ ε|g|}, and r1 = min

r
{βr ≤ ε|g|/(1+2ε)}. Because β (r) is a strictly decreasing

function, then r0 and r1 are uniquely determined. Similar to the result of the paper [11],
we can get these two lemmas.

Lemma 2 [11] For any ε > 0, the probability that adaptive sampling algorithm 2 stops
before t0 − th iteration is smaller than δ (1−1/r0).

Lemma 3 [11] For any ε > 0 and δ ∈ (0,1), the probability that adaptive sampling
algorithm 2 stops after t1 − th iteration is smaller than δ/(2r0).

Combining Lemma 2 and Lemma 3, we have the following lemma.

Lemma 4 For any ε > 0 and δ ∈ (0,1), the probability that adaptive sampling algorithm
2 stops between t0 − th iteration and t1 − th iteration is larger than 1−1−δ +δ/(2r0).

Proof P(r0 ≤ t ≤ r1) = 1−P(r < r0)−P(r > r1) ≥ 1− δ/(2r0)− δ (1− 1/r0) = 1−
δ +δ/(2r0)

Lemma 5 [11] For any ε > 0 and δ ∈ (0,1), the output of adaptive sampling output ĝ
satisfies P(|g− ĝ| ≤ εg|r0 ≤ t ≤ r1)> 1−2δ/r0.
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Theorem For any ε > 0 and δ ∈ (0,1), the output of adaptive sampling output ĝ satisfies
P(|g− ĝ| ≤ εg)> 1−δ .

Proof Combining the lemma 5 and lemma 4, we have P(|g− ĝ| ≤ εg) ≥ P(|g− ĝ| ≤
εg,r0 ≤ t ≤ r1) = P(|g − ĝ| ≤ εg|r0 ≤ t ≤ r1) ∗ P(r0 ≤ t ≤ r1) > (1 − 2δ/r0) ∗ (1 −
2δ/r0) = 1−δ +δ 2/(2r0)−δ 2/(4r2

0)> 1−δ .

3. Experiments

To test the effectiveness and efficiency of the proposed algorithm, the comparison in the
performance between the classifier trained using the original unlabeled instance set and
the classifier using the unlabeled instance subset obtained by adaptive sampling is made.
LapSVM algorithm [6] and HGSVM algorithm [12] are selected for their representative-
ness to be the basic classifier, where the classifiers trained on the sampled subset denotes
LapSVM-AS and HGSVM-AS. Meanwhile, a large dataset named phonme size of 5404
is also used, it is divided into the training set and test set in a ratio of 7 to 3, where the la-
beled instances account for 10% of the training set. The parameters of adaptive sampling
algorithm ε = 0.5,δ = 0.2, and other parameters of LapSVM algorithm and HGSVM al-
gorithm are set as default parameters. All the codes of the adopted algorithms are written
by Python3.10, and they are executed on a server of Intel(R) Xeon(R) Silver 4208 CPU
@ 2.10GHz and 160GB RAM. Classification accuracy (Acc) and execution time (ET) in
seconds of two kinds of algorithms are listed in Table 1.

Table 1. Performance comparison of the two algorithms

LapSVM VS LapSVM-AS HGSVM VS HGSVM-AS
LapSVM LapSVM-AS HGSVM-AS HGSVM-AS

Acc ET Acc ET Acc ET Acc ET
81.36 2650.32 80.51 1527.95 87.19 2740.33 86.51 1583.58

Table 1 shows that LapSVM-AS algorithm has a slightly lower classification ac-
curacy than LapSVM algorithm, and the difference between them is 0.85% which is
tiny compared with the original classification accuracy. Meanwhile, HGSVM-AS algo-
rithm gets a very similar classification accuracy to HGSVM algorithm, and the differ-
ence between them is 0.68%. The experience result indicates two representative algo-
rithms trained on the sampled subset obtained by adaptive sampling achieve very similar
classification accuracy, and it also validates that the proposed sampling method can get
enough distribution information as the original unlabeled instances.

Besides classification performance, execution time is also an important performance
evaluation metric. The less execution time, the much higher efficiency. The execution
time of LapSVM algorithm and LapSVM-AS algorithm are 2650.32 and 1527.95, where
LapSVM-AS algorithm obtains nearly half the time savings compared to algorithm
LapSVM algorithm. Meanwhile, HGSVM-AS algorithm also obtains nearly half the time
savings compared to algorithm HGSVM algorithm. So the proposed sampling method
has high execution efficiency.
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4. Conclusions

For the problem that massive unlabeled instances bring a great challenge to efficiently
train semi-supervised semi-supervised support vector machine algorithms, this paper has
developed an adaptive sampling algorithm. Different from the previous approaches from
the view of algorithm optimization, it takes advantage of data reduction to avoid the
difficulty of using domain knowledge to improve the efficiency of algorithms. The pro-
posed method continually samples the fixed number of unlabeled instance from the un-
labeled set until the estimation on the obtained subset meets the stopping condition, and
its robustness has been proved by related lemmas. Moreover, its effectiveness and effi-
ciency have been validated by the experience results on the real dataset. In the future, the
proposed algorithm will be popularized and applied to many pattern recognition fields
such as question classification, sentiment classification and face recognition in intelligent
question answering.
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