
Scalable Interactive Keyword Query

Interface over Knowledge Graph

Xin Hu, Jiangli Duan*, Sulan Zhang

Yangtze Normal University, Chongqing, China

Abstract. Abstract goes here. Existing keyword query systems over knowledge
graph can produce interesting results and are easy to use. However, they cannot
handle the ambiguities that have matches in the knowledge graph, namely, multiple
interpretations may be correct so that they cannot determine which interpretation is
what the user expects. And they cannot scale to handle the knowledge graphs with
more than billions of triples or thousands of types/predicates. On the one hand, we
construct an interactive interface in which the above ambiguities will resort to the
user. To enhance the user experience, we formalize the interaction problem and then
propose an algorithm to find a best scheme of interaction (i.e., a verifying sequence
with lowest interaction times and candidates) based on the dependency relations
between mappings. On the other hand, we propose a new schema graph, i.e., type-
predicate graph, which has good scalability while containing complete information
for building query graph. No matter how large the knowledge graph is, the size of
type-predicate graph is always very small because its size depends on the number
of types and predicates whose number are far less than that of triples in knowledge
graph. Finally, we have demonstrated our contributions with several well-directed
experiments over real datasets (DBpedia and Yago).

Keywords. Artificial intelligence; knowledge graph; keyword query; interactive

interface; type-predicate graph

1. Introduction

Keyword query is a useful tool for exploring large knowledge graphs, as it is user-

friendly. Without requiring users to master the domain knowledge of the data schema

and syntax of SPARQL, the keyword query technique can easily return satisfactory query

results by only specifying a few enquiry keywords, e.g., “China capital”. Existing

keyword query systems over knowledge graph can produce interesting results, but they

suffer from limitations as follows.

Existing keyword query systems [1-12] enable users to query information in

knowledge graph by returning the subgraph containing the keywords, but they may

return unwanted answers because there are too many possible interpretations. For query

“Feng_xiaogang films”, it is not easy to answer this query since there are too many paths

between the entity “Feng_xiaogang” and the instances of the type “Film” (e.g., the paths

“-direct/starringIn-,”“-direct-,” “-starringIn-,” “-award-,” “-FilmDirector,” “-spouse-x-

starringIn-” as shown in Figure 6). Existing techniques can filter out some false and

valueless interpretations, but for valuable interpretations matching knowledge graph,

* Corresponding author. Jiangli Duan, Yangtze Normal University, Chongqing, China; E-mail

addresses: duanjl@yznu.edu.cn

Fuzzy Systems and Data Mining IX
A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA231019

174

they could do no more. For instance, the entity recognition technique can recognize the

entity “Feng_xiaogang”, the phrase mapping technique can map “films” to the type

“Film”, and the backward search technique can filter out the interpretation

“Feng_xiaogang-FilmDirector” and “Feng_xiaogang-spouse-x-starringIn-film” by score

and so on. However, the 4 interpretations in Figure 1 cannot be filtered out by existing

techniques because each interpretation has at least one matching subgraph in the

knowledge graph, that is, any one may be users’ expectation.

Figure 1. Possible interpretations

Figure 2. RDF(S) and existing schema graph

Existing keyword query systems cannot scale to handle the knowledge graphs with

more than billions of triples or thousands of types/predicates. They can be divided into

two categories: 1) data index. The prevalent approaches [1-8] building on dedicated

indexing techniques aim at finding substructures that connect the data elements which

match the keywords. With the explosive growth of knowledge graph, it is obvious that

the dedicated data index will be faced with bottleneck, especially knowledge graph with

billions of triples. 2) schema graph. Some systems [9-12] build schema graph to capture

the “schema” information in knowledge graph and then automatically generate query

graphs (which is used to produce SPARQL statements) by schema graph. However, these

systems capture all relations without standardizing them, so that each type/predicate will

appear many times in schema graph as Figure 2(b), which will lead to that the volume of

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph 175

schema graph will increase exponentially. Moreover, the schema-free nature of RDFS

enables knowledge graph has great power of expression, while it also makes RDFS more

complex, as shown in Figure 2(a): 1) The types have multiple levels in RDFS; 2) One

entity may have multiple types; 3) The RDFS contains a large amount of data.

In our daily communication, if we are not sure of the meaning of a question, we will

make the question clear by asking some related questions back to the asker. Inspired by

the daily communication habits [13,14], we propose an interactive keyword query

interface, which filters out the query graphs (i.e., query interpretations) that has matches

in knowledge graph but don’t correspond to expectation of the user. Different from

existing interactive query methods [15-17] that has a bad user experience because they

build query almost entirely depended on user, in our framework, most of the process of

building query is resorted to computer, and the ambiguousness that existing techniques

cannot filter out are resorted to user, which can improve user experience. Moreover, we

propose a scalable schema graph (i.e., a type-predicate graph) to support the process of

producing query graph, where query graph is the bridge between keyword query and

SPARQL statement. We make the following contributions in this paper:

1) In the offline phase, we propose a scalable schema graph (i.e., a type-predicate

graph) over knowledge graph, which contains complete information for building query

graph and has good scalability because its size depends on the types and predicates.

2) To handle the ambiguities that have matches in knowledge graph, we construct an

interactive interface, in which part of the process of building query be resorted to

computer, and the ambiguities that existing method cannot handle will resort to the user

by presenting user with the ambiguous candidates and letting user make choice.

3) To enhancing the user experience during the verification of the ambiguities, we

formalize the interaction problem and propose an algorithm to find a best scheme of

interaction (i.e., a verifying sequence with lowest interaction times and candidates) based

on dependency relations between mappings.

2. Type-Predicate Graph

As mentioned in the motivating example, existing methods concerning schema graph

cannot scale to handle the knowledge graph with more than thousands of types or

predicates. In contrast, we construct a type-predicate graph consisting of relationships

between types and predicates, which has a smaller amount of data and contains complete

information for building query graph. With the type-predicate graph, adjacent predicates

and types for any type or predicate can be efficiently retrieved from small amounts of

data rather than knowledge graph with billions of triples.

2.1 Extracting Relationship Subgraph

Relationship subgraph consists of types and predicates from the triples. For instance, as

shown in Figure 2(a), the entity “Feng_Xiaogang” has three types, i.e., “Person,”

“FilmDirector” and “Actor”. Except for “type”, “Feng_Xiaogang” has four predicates

(i.e., “spouse,” “direct,” “starringIn” and “award”) corresponding to four entities (i.e.,

“F1,” “F3,” “F4” and “Xu_Fan”), and these entities also have their own type set, i.e.,

“Person,Actor,” “Film,ComedyFilm,” “Film, HorrorFilm” and “FilmAward”. From

these, we can obtain the first adjacent relationships subgraph between types and

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph176

predicates as shown in Figure 3. In the same way, for entities P1/Xu_Fan, two other

relationship subgraphs in Figure 3 can be obtained.

Figure 3. Extracted Relationship Subgraph

2.2 Standardization

The number of types is far less than that of triples in knowledge graph, so the amount of

data in the relationship subgraphs will be small if any type only has one corresponding

relationship subgraph. For the relationship subgraphs with same type, by combining all

outgoing adjacent predicates and counting the number of repeat times for each outgoing

edge, we can obtain one standardized relationship subgraph, e.g., Figure 4.

Figure 4. Standardized Relationship Subgraph

2.3 Type-Predicate Graph

All standardized relationship subgraphs form the type-predicate graph, where these

subgraphs link to each other by the same types, but we do not actually connect them, as

shown in Figure 5. From the type-predicate graph, for any type or predicate, all its

adjacent types or predicates can be found easily.

Figure 5. Type-Predicate Graph

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph 177

3. Interactive Keyword Query Interface

As mentioned in motivating example, although existing methods concerning keyword

query can filter out false interpretations, they cannot handle the ambiguities that have

matches in knowledge graph. In contrast, we will construct an interactive interface in

which the ambiguities will resort to the user by presenting the ambiguous candidates and

letting user make choice. Furthermore, to enhance the user experience, we formalize the

interaction problem and then propose an algorithm to find a best scheme of interaction.

In this section, we first introduce the general process of keyword query in existing

methods and then propose the scheme of interaction.

Figure 6. Query graphs for sample query

3.1 The General Process of Keyword Query

Existing methods first find all candidate mappings for each keyword in keyword query,

then construct query graphs by schema graph and finally translate query graphs into

SPARQL statements [18].

Example 1. For sample query “Feng_xiaogang films”, firstly, existing methods obtain

candidate entities (e.g., “Feng_Xiaogang” and “Feng_xiaogangX”) and their

corresponding types (e.g., “FilmDirector,” “Actor” and “Person” for the former, and

“Book” for the latter) for the keyword “Feng_xiaogang”, and candidate types (e.g.,

“FilmDirector,” “FilmAward,” “ComedyFilm,” “HorrorFilm” and “Film”) for the

keyword “films”. Secondly, they combine candidate mappings of all keywords to obtain

a set of query graphs by schema graph. During combination, the ambiguities without

matches in knowledge graph and some query graphs with low value are deleted, e.g.,

Figure 6(e) and Figure 6(f). Thirdly, they translate remained query graphs, e.g., Figure

6(a)/(b)/(c)/(d), to SPARQL statements and then return answers.

3.2 Scheme of Interaction

Existing methods can delete valueless candidates, i.e., ambiguities that has no matches

in knowledge graph and query graph with low value (Example 1). However, if multiple

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph178

query graphs match the subgraphs in the knowledge graph, they cannot recognize which

one is user’s expectation. This paper will resort to user by presenting the ambiguous

candidates and letting user make choice. To enhance the user experience, we formalize

the interaction problem and propose an algorithm to find a best scheme of interaction.

Definition 1. (Interaction Diagram) An interaction diagram is a tuple G=(V, E, N). 1)

Each vertex v∈V represents an object that needs to be verified. 2) E includes directed

edges and undirected edges. Directed edge <��, ��>∈E means we don’t need to verify

�� if �� is verified to be true. Undirected edge <��, ��> ∈E represents that �� and ��

are adjacent in query graph, which will be omitted if there is a directed edge. 3) c(v)∈N

represents the number of candidate mappings of vertex v.

Figure 7. An interaction diagram

Example 2. Figure 7 presents an example of interaction diagram, where �� (2)

represents that vertex �� has 2 candidate mappings (e.g., keyword “films” has two

mappings “Film” and “FilmAward” in retained valuable query graphs in Figure 6, where

Figure 6(e) and Figure 6(f) were deleted in Example 1).

Since each vertex v∈V represents an object that needs the user to verify which

candidate mapping is correct. For a set of vertices V= {��, ��, …, ��}, in general, there

are n! possible verifying sequences.

Definition 2. (Possible/Verifying Sequence, ps/vs). ps is a set of all vertices in an

interaction diagram G, and these vertices have a deterministic order. All vertices that

need to be verified form a verifying sequence vs.

Definition 3. (Calls/Candidates of a verifying sequence, Calls/Cans). Given a

verifying sequence vs, we count the interaction times, denoted as Calls(vs), and the

number of candidates of necessary interaction, denoted as Cans(vs).

Example 3. Table 1 presents all verifying sequences for the interaction diagram in

Figure 7. From Figure 7, verifying �� doesn’t affect other vertex (i.e., undirected edge

(��, ��)) so that we only consider the order for other three vertices ��/��/�� in Table 1.

For the possible sequence ps= {��, ��, ��, ��}, there are two directed edges (i.e., <��,

��> and <��, ��>) so that both �� and �� don’t need to be verified after verifying ��.

Thus, we obtain the verifying sequence vs= {��, ��}, and then Calls(s)=2 and Cans(s)=9

(i.e., �� and �� have 4 and 5 candidate mappings, respectively). Moreover, to find a

best verifying sequence, we first find the verifying sequences that have lowest Calls (i.e.,

Calls(vs)=2), and then we select one of them with lowest Cans (i.e., Cans(vs)=8), so

verifying sequence with lowest Calls/Cans is vs= {��, ��}.

Table 1. A set of verifying sequences

ps vs Calls Cans

��, ��, ��, (��) ��, �� 2 9

��, ��, ��, (��) ��, �� 2 9

��, ��, ��, (��) ��, �� 2 8

��, ��, ��, (��) ��, �� 2 8

��, ��, ��, (��) ��, ��, �� 3 11

��, ��, ��, (��) ��, ��, �� 3 12

��(4) ��(3)

��(5) ��(2)

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph 179

 Definition 4. (Interaction Problem). Given an interaction diagram, interaction problem

is to find a verifying sequence with lowest Calls/Cans.

During solving interaction problem, several issues are worthy of considering: 1)

different from topological graph, in interaction diagram or its subgraph, the loop may

exist, and the vertex whose indegree is zero may not exist; 2) to obtain a verifying

sequence, we should delete the vertices that doesn’t need to be verified from the possible

sequences; 3) it is necessary to obtain all verifying sequences with lowest Calls, because

Cans needs to be contrasted when several verifying sequences has same lowest Calls.

Therefore, we divide the process of solving interaction problem into two stages that

correspond to two sub-algorithms, i.e., Algorithm FPS and Algorithm FVS. Algorithm

FPS outlines the process of finding all possible sequences from interaction diagram.

Based on recursive function FPS(), if there is a vertex whose indegree is zero, adding it

to ps should be a top priority. Otherwise, we select suboptimal scheme, namely, adding

the vertex whose outdegree is not zero to ps, which lead to that we can delete one vertex

at least in the process from ps to vs. Moreover, if there is no directed edge in G, we add

all vertices to ps and stop the recursion of this branch.

 Algorithm FVS outlines the process of finding the verifying sequences with lowest

Calls/Cans: 1) obtaining the verifying sequences by deleting the vertices that doesn’t

need to be verified from possible sequences; 2) retaining the verifying sequences with

lowest Calls; 3) for the verifying sequences with same lowest Calls, calculating their

Cans and then retaining the verifying sequence with lowest Cans.

Algorithm FVS (Finding Verifying Sequence with lowest Calls)

Input: E: the set of directed edges
 PS: the set of all possible sequences
Output: BVS: the set of verifying sequences with lowest Calls/Cans

Values: count_min: currently minimum; VS: a set of verifying sequences; count_ps: the number of possible
sequences; ps: the i-th possible sequence in PS; count_v: the number of vertices in ps; ��,��: a vertex in ps.

1: count_min=∞; VS={}
2: count_ps=Get_count_ps(PS)
3: For (i=0; i<count_ps; i++)
4: ps=PS[i]; count_v=Get_count_vertices(ps);
5: For (i=count_v-1; i>0; i--)
6: For (j=count_v-2; j>0; j--)

7: If(directed edge <��, ��>∈E) Delete �� from ps; count_v--; Break;

8: If(count_v<count_min) count_min=count_v; Deleting all ps in VS; Adding ps to VS;
9: Else if (Count_v==Count_min) Adding ps to VS;
10: Calculating Cans of all ps in VS
11: Selecting the ps with lowest Cans as BVS

Algorithm FPS (Finding all possible sequences)

Input: G: the interaction diagram
Output: PS: the set of all possible sequences
Values: ps: a possible sequence; n: the number of vertices in G; ��: the i-th vertex in G.
1: ps={};n=Get_count_vertices(G);
2: FPS(n, G, ps);
3: If (n>0)
4: If (there is no directed edge in G)
5: For (i=0; i<n; i++)
6: ps=ps+��;
7: Adding ps to PS;
8: Else For (flag=0, i=0; i<n; i++)
9: If (indegree of �� is zero) FPS(n-1, G-��, ps+��); flag=1;
10: If (flag == 0)
11: For (i=0; i<n; i++)
12: If (outdegree of �� is not zero) FPS(n-1, G-��, ps+��);
13: Else Adding ps to PS;

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph180

4. Experimental Evaluation

We have demonstrated our contributions with several well-directed experiments over real

datasets (DBpedia and Yago). First, we propose the type-predicate graph that has good

scalability and was used to build query graph, so we explain the scalability and the

filtering capability of the type-predicate graph. Second, we construct an interactive

interface to handle the ambiguities that have matches in the knowledge graph, so we

contrast keyword query with or without interaction to demonstrate the interaction

capability. Third, we propose an algorithm to find a best verifying sequence, so we show

the optimization capability of the algorithm.

4.1 The Scalability of The Type-Predicate Graph

Type-predicate graph has good scalability because its size depends on the number of

types and predicates. Table 2 shows the sizes of Yago (core) dataset, DBpedia (infobox)

dataset and the type-predicate graph. From triples ratio, the number of triples in type-

predicate graph is far less than that in Yago and DBpedia. Moreover, the number of

relationship subgraphs is equal to the number of types because the relationship subgraph

is dominated by the types, and the size of graph triples depends on the number of types

and predicates because graph triples are the combinations of types and predicates. Since

the number of types and predicates is far less than the number of triples in a knowledge

graph, the size of type-predicate graph is far smaller than that of knowledge graph.

Table 2. Data size

 YAGO (core) DBpedia (infobox)

knowledge graph Data triples 45453166 64813068
Types 347868 418
Predicates 70 46510

Type-predicate graph Relationship Subgraphs 347868 418
Graph triples 1978891 126637
Triples Ratio 4.35% 0.19%

4.2 The Filtering Capability of The Type-Predicate Graph

During building query graph, type-predicate graph can filter out some inappropriate

candidate mappings as shown in Table 3. For instance, for the mappings of keyword

“produce” in query “feng_xiaogang, produce, film”, there are 182 predicates containing

the string “produce” in DBpedia (infobox) dataset. Among of them, in the relationship

subgraph whose main type is “Film”, there are 73 predicates containing the string

“produce” so that we can delete 109 (182-73) predicates. Furthermore, between type

“Film” and “Person”, there are only 24 predicates containing string “produce”. And then,

we use existing techniques (e.g., similarity scores, interaction and so on) to select

candidate mappings. In conclusion, type-predicate graph has filtering capability so that

we can obtain more suitable candidate predicates than existing methods.

Table 3. The filtering capability of type-predicate graph

triples whose predicate contains string “produce” in DBpedia number

?subject, ***produce***, ?object 182

?subject(whose type is “Film”), ***produce***, ?object 73

?subject(whose type is “Film”), ***produce***, ?object(whose type is “Person”) 24

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph 181

Table 4. The sample queries

Keyword queries Query intention

Feng Xiaogang, film All film whose actor (or director) is Feng xiaogang.

Free University, Amsterdam, students The number of students in the Free University, Amsterdam.

car, Germany All cars that are produced in Germany.

people, born, Vienna, die, Berlin All people that were born in Vienna and died in Berlin.

actor, movie, direct, starring, William Shatner All actors starring in movies directed by and starring William Shatner.

4.3 The Interaction Capability

With interaction, users can fully express their expectations. Existing keyword query

methods (i.e., keyword query method without interaction) always return top-k results for

one keyword query, and if the top-k set contains the correct one, it is considered to be

able to answer this keyword query. In contrast, during the process from query to result,

our method enable user to select query graph that satisfies their expectations by

interaction, so the correct one can be always selected. As shown in Figure 8, we show

the rank number of correct query graph in top-k set by existing methods (i.e., without

interaction) and our method (i.e., with interaction), where the keyword queries come

from Table 4.

Figure 8. The interaction capability Figure 9. The optimization capability of algorithm

4.4 The Optimization Capability of Algorithm

To enhance the user experience, we formalize the interaction problem and then propose

an algorithm to find a verifying sequence with lowest Calls/Cans. For an interaction

diagram, there are multiple possible verifying sequences. We show the number of calls

(i.e., interaction times) in worst/optimal case as shown in Figure 9, and the algorithm

always can obtain the optimal verifying sequence for the keyword queries come from

Table 4. Moreover, the increasing number of keywords in queries leads to increase

number of possible candidate combinations, so interaction times (i.e., calls) will increase,

but it is not absolute (e.g., Q2 and Q4 have 3 and 5 keywords, respectively. However,

they have same number of calls.).

5. Conclusions

Although existing keyword query systems over knowledge graph can produce interesting

results and are easy to use, they cannot handle the ambiguities that have matches in

knowledge graph and cannot scale to handle the knowledge graph with more than billions

of triples or thousands of types/predicates. So, we propose an interactive keyword query

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph182

interface with type-predicate graph, which handle above ambiguities by a best scheme

of interaction, and type-predicate graph enables keyword query can scale to handle

various huge knowledge graphs. At last, we have demonstrated our contributions with

several well-directed experiments over real datasets (DBpedia and Yago).

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.

62106024, No. 62006029), the China Postdoctoral Science Foundation (No.

2022M711458), the Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-

BHX0018), the Chongqing Language Research Project (No. yyk22105), and the youth

project of Chongqing Education Commission of China (No. KJQN202201410, No.

KJQN202201413, KJQN202001434).

References

[1] Cheng G, Li S, Zhang K, Li C. Generating compact and relaxable answers to keyword queries over knowledge

graphs. Proceedings of the 19th International Semantic Web Conference; 2020. p.110-127.

[2] Hu X, Duan J, Dang D. Natural language question answering over knowledge graph: The marriage of SPARQL

query and keyword search. Knowledge and Information Systems. 2021; 63(4): 819-844.

[3] Nikas C, Fafalios P, Tzitzikas Y. Open domain question answering over knowledge graphs using keyword

search, answer type prediction, sparql and pre-trained neural models. Proceedings of the International Semantic

Web Conference; 2021. p.235-251.

[4] Shan Y, Li M, Chen Y, Constructing target-aware results for keyword search on knowledge graphs. Data &

Knowledge Engineering. 2017; 110:1-23.

[5] Shi Y, Cheng G, Kharlamov E. Keyword search over knowledge graphs via static and dynamic hub labelings.

Proceedings of the International World Wide Web Conference; 2020. p.235-245.

[6] Shi Y, Cheng G, Tran TK, Tang J, Kharlamov E. Keyword-based knowledge graph exploration based on

quadratic group steiner trees. Proceedings of the Thirtieth International Joint Conference on Artificial

Intelligence; 2021. p.1555-1562.

[7] Shi Y, Cheng G, Tran TK, Tang J, Kharlamov E, Shen Y. Efficient computation of semantically cohesive

subgraphs for keyword-based knowledge graph exploration. Proceedings of the International World Wide Web

Conference; 2021. p.1410-1421.

[8] Yang Y, Agrawal D, Jagadish HV, Tung KH, Wu S. An efficient parallel keyword search engine on knowledge

graphs. Proceedings of the 35th IEEE International Conference on Data Engineering; 2019. p.338-349.

[9] Feddoul L. Semantics-driven keyword search over knowledge graphs. Proceedings of the 19th International

Semantic Web Conference; 2020. p.17-24.

[10] Lin X, Ma Z, Yan L. RDF keyword search using a type-based summary. Journal of Information Science and

Engineering. 2018; 34(2):489-504.

[11] Sinha SB, Lu X, Theodoratos D. Personalized keyword search on large RDF graphs based on pattern graph

similarity. Proceedings of the 22nd International Database Engineering & Applications Symposium; 2018.

p.12-21.

[12] Yan W, Ding Y. RDF knowledge graph keyword type search using frequent patterns. Journal of Intelligent &

Fuzzy Systems. 2021; 41(1):2239-2253.

[13] Gupta S, Pandey K, Yadav J, Sharma R. Keystroke dynamics based authentication system with unrestricted

data collection. Proceedings of the 10th International Conference on Contemporary Computing; 2017. p.1-6.

[14] Yadav J, Pandey K, Gupta S, Sharma R. Keystroke dynamics based authentication using fuzzy logic.

Proceedings of the 10th International Conference on Contemporary Computing; 2017. p.1-6.

[15] Ferré S. Analytical queries on vanilla RDF graphs with a guided query builder approach. Proceedings of the

14th International Conference on Flexible Query Answering Systems; 2021. p.41-53

[16] Zafar H, Dubey M, Lehmann J, Demidova E. IQA: Interactive query construction in semantic question

answering systems. Journal of Web Semantics. 2020; 64:100586.

[17] Papadaki ME, Spyratos N, Tzitzikas Y. Towards interactive analytics over RDF graphs. Algorithms.

2021;14(2):1-22.

[18] Hu X, Duan J, Dang D. Scalable aggregate keyword query over knowledge graph. Future Generation Computer

Systems. 2020; 107:588-600.

X. Hu et al. / Scalable Interactive Keyword Query Interface over Knowledge Graph 183

