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Abstract. Abstract goes here. Existing keyword query systems over knowledge 
graph can produce interesting results and are easy to use. However, they cannot 
handle the ambiguities that have matches in the knowledge graph, namely, multiple 
interpretations may be correct so that they cannot determine which interpretation is 
what the user expects. And they cannot scale to handle the knowledge graphs with 
more than billions of triples or thousands of types/predicates. On the one hand, we 
construct an interactive interface in which the above ambiguities will resort to the 
user. To enhance the user experience, we formalize the interaction problem and then 
propose an algorithm to find a best scheme of interaction (i.e., a verifying sequence 
with lowest interaction times and candidates) based on the dependency relations 
between mappings. On the other hand, we propose a new schema graph, i.e., type-
predicate graph, which has good scalability while containing complete information 
for building query graph. No matter how large the knowledge graph is, the size of 
type-predicate graph is always very small because its size depends on the number 
of types and predicates whose number are far less than that of triples in knowledge 
graph. Finally, we have demonstrated our contributions with several well-directed 
experiments over real datasets (DBpedia and Yago). 
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interface; type-predicate graph 

1. Introduction 

Keyword query is a useful tool for exploring large knowledge graphs, as it is user-

friendly. Without requiring users to master the domain knowledge of the data schema 

and syntax of SPARQL, the keyword query technique can easily return satisfactory query 

results by only specifying a few enquiry keywords, e.g., “China capital”. Existing 

keyword query systems over knowledge graph can produce interesting results, but they 

suffer from limitations as follows.  

Existing keyword query systems [1-12] enable users to query information in 

knowledge graph by returning the subgraph containing the keywords, but they may 

return unwanted answers because there are too many possible interpretations. For query 

“Feng_xiaogang films”, it is not easy to answer this query since there are too many paths 

between the entity “Feng_xiaogang” and the instances of the type “Film” (e.g., the paths 

“-direct/starringIn-,”“-direct-,” “-starringIn-,” “-award-,” “-FilmDirector,” “-spouse-x-

starringIn-” as shown in Figure 6). Existing techniques can filter out some false and 

valueless interpretations, but for valuable interpretations matching knowledge graph, 
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they could do no more. For instance, the entity recognition technique can recognize the 

entity “Feng_xiaogang”, the phrase mapping technique can map “films” to the type 

“Film”, and the backward search technique can filter out the interpretation 

“Feng_xiaogang-FilmDirector” and “Feng_xiaogang-spouse-x-starringIn-film” by score 

and so on. However, the 4 interpretations in Figure 1 cannot be filtered out by existing 

techniques because each interpretation has at least one matching subgraph in the 

knowledge graph, that is, any one may be users’ expectation. 

Figure 1. Possible interpretations 

Figure 2. RDF(S) and existing schema graph 

Existing keyword query systems cannot scale to handle the knowledge graphs with 

more than billions of triples or thousands of types/predicates. They can be divided into 

two categories: 1) data index. The prevalent approaches [1-8] building on dedicated 

indexing techniques aim at finding substructures that connect the data elements which 

match the keywords. With the explosive growth of knowledge graph, it is obvious that 

the dedicated data index will be faced with bottleneck, especially knowledge graph with 

billions of triples. 2) schema graph. Some systems [9-12] build schema graph to capture 

the “schema” information in knowledge graph and then automatically generate query 

graphs (which is used to produce SPARQL statements) by schema graph. However, these 

systems capture all relations without standardizing them, so that each type/predicate will 

appear many times in schema graph as Figure 2(b), which will lead to that the volume of 
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schema graph will increase exponentially. Moreover, the schema-free nature of RDFS 

enables knowledge graph has great power of expression, while it also makes RDFS more 

complex, as shown in Figure 2(a): 1) The types have multiple levels in RDFS; 2) One 

entity may have multiple types; 3) The RDFS contains a large amount of data.  

In our daily communication, if we are not sure of the meaning of a question, we will 

make the question clear by asking some related questions back to the asker. Inspired by 

the daily communication habits [13,14], we propose an interactive keyword query 

interface, which filters out the query graphs (i.e., query interpretations) that has matches 

in knowledge graph but don’t correspond to expectation of the user. Different from 

existing interactive query methods [15-17] that has a bad user experience because they 

build query almost entirely depended on user, in our framework, most of the process of 

building query is resorted to computer, and the ambiguousness that existing techniques 

cannot filter out are resorted to user, which can improve user experience. Moreover, we 

propose a scalable schema graph (i.e., a type-predicate graph) to support the process of 

producing query graph, where query graph is the bridge between keyword query and 

SPARQL statement. We make the following contributions in this paper: 

1) In the offline phase, we propose a scalable schema graph (i.e., a type-predicate 

graph) over knowledge graph, which contains complete information for building query 

graph and has good scalability because its size depends on the types and predicates.  

2) To handle the ambiguities that have matches in knowledge graph, we construct an 

interactive interface, in which part of the process of building query be resorted to 

computer, and the ambiguities that existing method cannot handle will resort to the user 

by presenting user with the ambiguous candidates and letting user make choice. 

3) To enhancing the user experience during the verification of the ambiguities, we 

formalize the interaction problem and propose an algorithm to find a best scheme of 

interaction (i.e., a verifying sequence with lowest interaction times and candidates) based 

on dependency relations between mappings. 

2. Type-Predicate Graph 

As mentioned in the motivating example, existing methods concerning schema graph 

cannot scale to handle the knowledge graph with more than thousands of types or 

predicates. In contrast, we construct a type-predicate graph consisting of relationships 

between types and predicates, which has a smaller amount of data and contains complete 

information for building query graph. With the type-predicate graph, adjacent predicates 

and types for any type or predicate can be efficiently retrieved from small amounts of 

data rather than knowledge graph with billions of triples. 

2.1 Extracting Relationship Subgraph 

Relationship subgraph consists of types and predicates from the triples. For instance, as 

shown in Figure 2(a), the entity “Feng_Xiaogang” has three types, i.e., “Person,” 

“FilmDirector” and “Actor”. Except for “type”, “Feng_Xiaogang” has four predicates 

(i.e., “spouse,” “direct,” “starringIn” and “award”) corresponding to four entities (i.e., 

“F1,” “F3,” “F4” and “Xu_Fan”), and these entities also have their own type set, i.e., 

“Person,Actor,” “Film,ComedyFilm,” “Film, HorrorFilm” and “FilmAward”. From 

these, we can obtain the first adjacent relationships subgraph between types and 
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predicates as shown in Figure 3. In the same way, for entities P1/Xu_Fan, two other 

relationship subgraphs in Figure 3 can be obtained.  

Figure 3. Extracted Relationship Subgraph 

2.2 Standardization 

The number of types is far less than that of triples in knowledge graph, so the amount of 

data in the relationship subgraphs will be small if any type only has one corresponding 

relationship subgraph. For the relationship subgraphs with same type, by combining all 

outgoing adjacent predicates and counting the number of repeat times for each outgoing 

edge, we can obtain one standardized relationship subgraph, e.g., Figure 4. 

Figure 4. Standardized Relationship Subgraph 

2.3 Type-Predicate Graph 

All standardized relationship subgraphs form the type-predicate graph, where these 

subgraphs link to each other by the same types, but we do not actually connect them, as 

shown in Figure 5. From the type-predicate graph, for any type or predicate, all its 

adjacent types or predicates can be found easily. 

Figure 5. Type-Predicate Graph 
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3. Interactive Keyword Query Interface 

As mentioned in motivating example, although existing methods concerning keyword 

query can filter out false interpretations, they cannot handle the ambiguities that have 

matches in knowledge graph. In contrast, we will construct an interactive interface in 

which the ambiguities will resort to the user by presenting the ambiguous candidates and 

letting user make choice. Furthermore, to enhance the user experience, we formalize the 

interaction problem and then propose an algorithm to find a best scheme of interaction. 

In this section, we first introduce the general process of keyword query in existing 

methods and then propose the scheme of interaction. 

Figure 6. Query graphs for sample query 

3.1 The General Process of Keyword Query 

Existing methods first find all candidate mappings for each keyword in keyword query, 

then construct query graphs by schema graph and finally translate query graphs into 

SPARQL statements [18]. 

Example 1. For sample query “Feng_xiaogang films”, firstly, existing methods obtain 

candidate entities (e.g., “Feng_Xiaogang” and “Feng_xiaogangX”) and their 

corresponding types (e.g., “FilmDirector,” “Actor” and “Person” for the former, and 

“Book” for the latter) for the keyword “Feng_xiaogang”, and candidate types (e.g., 

“FilmDirector,” “FilmAward,” “ComedyFilm,” “HorrorFilm” and “Film”) for the 

keyword “films”. Secondly, they combine candidate mappings of all keywords to obtain 

a set of query graphs by schema graph. During combination, the ambiguities without 

matches in knowledge graph and some query graphs with low value are deleted, e.g., 

Figure 6(e) and Figure 6(f). Thirdly, they translate remained query graphs, e.g., Figure 

6(a)/(b)/(c)/(d), to SPARQL statements and then return answers. 

3.2 Scheme of Interaction 

Existing methods can delete valueless candidates, i.e., ambiguities that has no matches 

in knowledge graph and query graph with low value (Example 1). However, if multiple 
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query graphs match the subgraphs in the knowledge graph, they cannot recognize which 

one is user’s expectation. This paper will resort to user by presenting the ambiguous 

candidates and letting user make choice. To enhance the user experience, we formalize 

the interaction problem and propose an algorithm to find a best scheme of interaction. 

Definition 1. (Interaction Diagram) An interaction diagram is a tuple G=(V, E, N). 1) 

Each vertex v∈V represents an object that needs to be verified. 2) E includes directed 

edges and undirected edges. Directed edge <��, ��>∈E means we don’t need to verify 

�� if �� is verified to be true. Undirected edge <��, ��> ∈E represents that �� and �� 

are adjacent in query graph, which will be omitted if there is a directed edge. 3) c(v)∈N 

represents the number of candidate mappings of vertex v. 

Figure 7. An interaction diagram 

Example 2. Figure 7 presents an example of interaction diagram, where �� (2) 

represents that vertex ��  has 2 candidate mappings (e.g., keyword “films” has two 

mappings “Film” and “FilmAward” in retained valuable query graphs in Figure 6, where 

Figure 6(e) and Figure 6(f) were deleted in Example 1). 

Since each vertex v∈V represents an object that needs the user to verify which 

candidate mapping is correct. For a set of vertices V= {��, ��, …, ��}, in general, there 

are n! possible verifying sequences. 

Definition 2. (Possible/Verifying Sequence, ps/vs). ps is a set of all vertices in an 

interaction diagram G, and these vertices have a deterministic order. All vertices that 

need to be verified form a verifying sequence vs. 

Definition 3. (Calls/Candidates of a verifying sequence, Calls/Cans). Given a 

verifying sequence vs, we count the interaction times, denoted as Calls(vs), and the 

number of candidates of necessary interaction, denoted as Cans(vs). 

Example 3. Table 1 presents all verifying sequences for the interaction diagram in 

Figure 7. From Figure 7, verifying �� doesn’t affect other vertex (i.e., undirected edge 

(��, ��)) so that we only consider the order for other three vertices ��/��/�� in Table 1. 

For the possible sequence ps= {��, ��, ��, ��}, there are two directed edges (i.e., <��, 

��> and <��, ��>) so that both �� and �� don’t need to be verified after verifying ��. 

Thus, we obtain the verifying sequence vs= {��, ��}, and then Calls(s)=2 and Cans(s)=9 

(i.e., �� and �� have 4 and 5 candidate mappings, respectively). Moreover, to find a 

best verifying sequence, we first find the verifying sequences that have lowest Calls (i.e., 

Calls(vs)=2), and then we select one of them with lowest Cans (i.e., Cans(vs)=8), so 

verifying sequence with lowest Calls/Cans is vs= {��, ��}. 

Table 1. A set of verifying sequences 

ps vs Calls Cans 

��, ��, ��, (��) ��, �� 2 9 

��, ��, ��, (��) ��, �� 2 9 

��, ��, ��, (��) ��, �� 2 8 

��, ��, ��, (��) ��, �� 2 8 

��, ��, ��, (��) ��, ��, �� 3 11 

��, ��, ��, (��) ��, ��, �� 3 12 

��(4) ��(3) 

��(5) ��(2) 
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  Definition 4. (Interaction Problem). Given an interaction diagram, interaction problem 

is to find a verifying sequence with lowest Calls/Cans. 

During solving interaction problem, several issues are worthy of considering: 1) 

different from topological graph, in interaction diagram or its subgraph, the loop may 

exist, and the vertex whose indegree is zero may not exist; 2) to obtain a verifying 

sequence, we should delete the vertices that doesn’t need to be verified from the possible 

sequences; 3) it is necessary to obtain all verifying sequences with lowest Calls, because 

Cans needs to be contrasted when several verifying sequences has same lowest Calls.  

Therefore, we divide the process of solving interaction problem into two stages that 

correspond to two sub-algorithms, i.e., Algorithm FPS and Algorithm FVS. Algorithm 

FPS outlines the process of finding all possible sequences from interaction diagram. 

Based on recursive function FPS(), if there is a vertex whose indegree is zero, adding it 

to ps should be a top priority. Otherwise, we select suboptimal scheme, namely, adding 

the vertex whose outdegree is not zero to ps, which lead to that we can delete one vertex 

at least in the process from ps to vs. Moreover, if there is no directed edge in G, we add 

all vertices to ps and stop the recursion of this branch. 

  Algorithm FVS outlines the process of finding the verifying sequences with lowest 

Calls/Cans: 1) obtaining the verifying sequences by deleting the vertices that doesn’t 

need to be verified from possible sequences; 2) retaining the verifying sequences with 

lowest Calls; 3) for the verifying sequences with same lowest Calls, calculating their 

Cans and then retaining the verifying sequence with lowest Cans. 

Algorithm FVS (Finding Verifying Sequence with lowest Calls) 

Input: E: the set of directed edges 
      PS: the set of all possible sequences 
Output: BVS: the set of verifying sequences with lowest Calls/Cans 

Values: count_min: currently minimum; VS: a set of verifying sequences; count_ps: the number of possible 
sequences; ps: the i-th possible sequence in PS; count_v: the number of vertices in ps; ��,��: a vertex in ps. 

1: count_min=∞; VS={} 
2: count_ps=Get_count_ps(PS) 
3: For (i=0; i<count_ps; i++) 
4:    ps=PS[i]; count_v=Get_count_vertices(ps); 
5:    For (i=count_v-1; i>0; i--) 
6:       For (j=count_v-2; j>0; j--) 

7:          If(directed edge <��, ��>∈E) Delete �� from ps; count_v--; Break; 

8:    If(count_v<count_min) count_min=count_v; Deleting all ps in VS; Adding ps to VS; 
9:    Else if (Count_v==Count_min) Adding ps to VS; 
10: Calculating Cans of all ps in VS 
11: Selecting the ps with lowest Cans as BVS 

Algorithm FPS (Finding all possible sequences)  

Input: G: the interaction diagram 
Output: PS: the set of all possible sequences 
Values: ps: a possible sequence; n: the number of vertices in G; ��: the i-th vertex in G. 
1: ps={};n=Get_count_vertices(G); 
2: FPS(n, G, ps); 
3:   If (n>0) 
4:     If (there is no directed edge in G) 
5:        For (i=0; i<n; i++) 
6:           ps=ps+��; 
7:        Adding ps to PS; 
8:     Else For (flag=0, i=0; i<n; i++) 
9:           If (indegree of �� is zero) FPS(n-1, G-��, ps+��); flag=1; 
10:        If (flag == 0) 
11:           For (i=0; i<n; i++) 
12:              If (outdegree of �� is not zero) FPS(n-1, G-��, ps+��); 
13:   Else Adding ps to PS; 
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4. Experimental Evaluation 

We have demonstrated our contributions with several well-directed experiments over real 

datasets (DBpedia and Yago). First, we propose the type-predicate graph that has good 

scalability and was used to build query graph, so we explain the scalability and the 

filtering capability of the type-predicate graph. Second, we construct an interactive 

interface to handle the ambiguities that have matches in the knowledge graph, so we 

contrast keyword query with or without interaction to demonstrate the interaction 

capability. Third, we propose an algorithm to find a best verifying sequence, so we show 

the optimization capability of the algorithm.  

4.1 The Scalability of The Type-Predicate Graph 

Type-predicate graph has good scalability because its size depends on the number of 

types and predicates. Table 2 shows the sizes of Yago (core) dataset, DBpedia (infobox) 

dataset and the type-predicate graph. From triples ratio, the number of triples in type-

predicate graph is far less than that in Yago and DBpedia. Moreover, the number of 

relationship subgraphs is equal to the number of types because the relationship subgraph 

is dominated by the types, and the size of graph triples depends on the number of types 

and predicates because graph triples are the combinations of types and predicates. Since 

the number of types and predicates is far less than the number of triples in a knowledge 

graph, the size of type-predicate graph is far smaller than that of knowledge graph.  

Table 2. Data size 

  YAGO (core) DBpedia (infobox) 

knowledge graph Data triples 45453166 64813068 
Types 347868 418 
Predicates 70 46510 

Type-predicate graph Relationship Subgraphs 347868 418 
Graph triples 1978891 126637 
Triples Ratio 4.35% 0.19% 

4.2 The Filtering Capability of The Type-Predicate Graph 

During building query graph, type-predicate graph can filter out some inappropriate 

candidate mappings as shown in Table 3. For instance, for the mappings of keyword 

“produce” in query “feng_xiaogang, produce, film”, there are 182 predicates containing 

the string “produce” in DBpedia (infobox) dataset. Among of them, in the relationship 

subgraph whose main type is “Film”, there are 73 predicates containing the string 

“produce” so that we can delete 109 (182-73) predicates. Furthermore, between type 

“Film” and “Person”, there are only 24 predicates containing string “produce”. And then, 

we use existing techniques (e.g., similarity scores, interaction and so on) to select 

candidate mappings. In conclusion, type-predicate graph has filtering capability so that 

we can obtain more suitable candidate predicates than existing methods. 

Table 3. The filtering capability of type-predicate graph 

triples whose predicate contains string “produce” in DBpedia number 

?subject, ***produce***, ?object 182 

?subject(whose type is “Film”), ***produce***, ?object 73 

?subject(whose type is “Film”), ***produce***, ?object(whose type is “Person”)  24 
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Table 4. The sample queries 

Keyword queries Query intention 

Feng Xiaogang, film All film whose actor (or director) is Feng xiaogang. 

Free University, Amsterdam, students The number of students in the Free University, Amsterdam. 

car, Germany All cars that are produced in Germany. 

people, born, Vienna, die, Berlin All people that were born in Vienna and died in Berlin. 

actor, movie, direct, starring, William Shatner All actors starring in movies directed by and starring William Shatner. 

4.3 The Interaction Capability 

With interaction, users can fully express their expectations. Existing keyword query 

methods (i.e., keyword query method without interaction) always return top-k results for 

one keyword query, and if the top-k set contains the correct one, it is considered to be 

able to answer this keyword query. In contrast, during the process from query to result, 

our method enable user to select query graph that satisfies their expectations by 

interaction, so the correct one can be always selected. As shown in Figure 8, we show 

the rank number of correct query graph in top-k set by existing methods (i.e., without 

interaction) and our method (i.e., with interaction), where the keyword queries come 

from Table 4. 

Figure 8. The interaction capability              Figure 9. The optimization capability of algorithm 

4.4 The Optimization Capability of Algorithm 

To enhance the user experience, we formalize the interaction problem and then propose 

an algorithm to find a verifying sequence with lowest Calls/Cans. For an interaction 

diagram, there are multiple possible verifying sequences. We show the number of calls 

(i.e., interaction times) in worst/optimal case as shown in Figure 9, and the algorithm 

always can obtain the optimal verifying sequence for the keyword queries come from 

Table 4. Moreover, the increasing number of keywords in queries leads to increase 

number of possible candidate combinations, so interaction times (i.e., calls) will increase, 

but it is not absolute (e.g., Q2 and Q4 have 3 and 5 keywords, respectively. However, 

they have same number of calls.).  

5. Conclusions 

Although existing keyword query systems over knowledge graph can produce interesting 

results and are easy to use, they cannot handle the ambiguities that have matches in 

knowledge graph and cannot scale to handle the knowledge graph with more than billions 

of triples or thousands of types/predicates. So, we propose an interactive keyword query 
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interface with type-predicate graph, which handle above ambiguities by a best scheme 

of interaction, and type-predicate graph enables keyword query can scale to handle 

various huge knowledge graphs. At last, we have demonstrated our contributions with 

several well-directed experiments over real datasets (DBpedia and Yago). 
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