Fuzzy Systems and Data Mining IX
A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.)
© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). doi:10.3233/FAIA231003

The Level Cardinality of Fuzzy Module Under \mathbb{Z} -Module Homomorphism on \mathbb{Z}_n into \mathbb{Z}_m Where gcd(n,m) Is Product of Primes

Manju VARGHESE^{b, a}, Shery FERNANDEZ^{c,1}

^aResearch Scholar, Cochin University of Science and Techonology
 ^bAssistant Professor, Mar Thoma College for Women, Perumbavoor
 ^c Professor, Cochin University of Science and Techonology

Abstract. The homomorphic image of a fuzzy module of an *R*-module is a fuzzy module[1]. In one of our papers [2] we have proved that if $f : \mathbb{Z}_n \to \mathbb{Z}_m$ is a \mathbb{Z} -module homomorphism with gcd(n,m) = p, a prime and λ is any fuzzy module on \mathbb{Z}_n with any level cardinality then the fuzzy module $f(\lambda)$ on \mathbb{Z}_m has level cardinality atmost 3. In this paper, we are considering the fuzzy module homomorphism between the \mathbb{Z} -modules \mathbb{Z}_n and \mathbb{Z}_m where $n, m \in \mathbb{Z}^+$ with gcd(n,m) = pq, where p and q are primes and trying to find the level cardinality of the fuzzy module $f(\lambda)$ on \mathbb{Z}_m when λ is a fuzzy module on \mathbb{Z}_n .

Keywords. Fuzzy module, level submodule, Fuzzy module homomorphism

1. Introduction

The idea of fuzzy set on a nonempty set was first introduced by L A Zadeh [3] in 1965. He defined the fuzzy subset of a nonempty set *X* as a membership function $\lambda : X \to [0, 1]$. In 1971 a milestone in the development of fuzzy group was laid by Rosenfeld [4]. The level set or *a*-cut [1] of a fuzzy set λ for $a \in [0, 1]$ is defined as $\lambda_a = \{x/x \in X, \lambda(x) \ge a\}$. In 1975 Negoita and Ralescu [5] came up with the concept of fuzzy module. The module homomorphism is a mapping between modules which preserves the module structure. The image of a fuzzy module of an *R*-module is a fuzzy module under module homomorphism [1]. In our previous paper [2] we have studied the level cardinalities of image of fuzzy modules of \mathbb{Z} -module \mathbb{Z}_n , $n \in \mathbb{Z}$. Also the level cardinalities of image of fuzzy module under \mathbb{Z} -module homomorphism of \mathbb{Z}_n into \mathbb{Z}_m when gcd(n,m) = p, a prime and when gcd(n,m) = 1. Now we are checking the level cardinality of the image of the fuzzy module on \mathbb{Z}_n where *f* is a homomorphism of \mathbb{Z}_n into \mathbb{Z}_m when gcd(n,m) = pq, p,q are primes.

¹Corresponding Author: Shery Fernandez, Professor, Cochin University of Science and Techonology; Email: sheryfernandezaok@gmail.com.

2. Preliminaries

Definition 2.1. [6] Let *R* be a ring. A left *R*-module is a set *M* together with

- 1. a binary operation + on M under which M is an abelian group, and
- 2. an action of *R* on *M* (that is, a map $R \times M \to M$) denoted by *ax*, for all $a \in R$ and for all $x \in M$ which satisfies
 - (a) (a+b)x = ax+bx, for all $a, b \in R, x \in M$
 - (b) (ab)x = a(bx), for all $a, b \in R, x \in M$ and
 - (c) a(x+y) = ax + ay, for all $a \in R, x, y \in M$ If the ring *R* has a unity '1' we impose the additional axiom:

(d) 1.x = x, for all $x \in M$

Definition 2.2. [7] Let *R* be a ring, *M* and *N* be *R*-modules. An *R*-module homomorphism from *M* to *N* is a map $f: M \to N$ which respects addition and scalar multiplication of these modules and satisfies the following axioms

- 1. f(m+n) = f(m) + f(n) for all $m, n \in M$
- 2. f(rm) = rf(m) for all $m \in M$ and $r \in R$

Definition 2.3. [8] Let *R* be a ring and let *M* be an *R*-module, then a fuzzy module on *M* is a map $\lambda : M \to [0, 1]$ satisfying the following conditions

1. $\lambda(m_1+m_2) \ge \min\{\lambda(m_1), \lambda(m_2)\}, \forall m_1, m_2 \in M$ 2. $\lambda(-m_1) = \lambda(m_1) \forall m_1 \in M$ 3. $\lambda(rm_1) \ge \lambda(m_1) \forall m_1 \in M, r \in R$ 4. $\lambda(0) = 1$

Definition 2.4. [9] Let μ and λ be two fuzzy modules of an *R*-module *M*, then λ is called a fuzzy submodule of μ if $\lambda \subseteq \mu$ (i.e $\lambda(m) \leq \mu(m) \quad \forall m \in M$)

Definition 2.5. [1] Let *f* be a mapping from *X* into *Y* and let λ be a fuzzy subset on *X* then the fuzzy subset $f(\lambda)$ on *Y* is defined by $\forall y \in Y$,

$$f(\lambda)(y) = \begin{cases} \forall \{\lambda(x)/x \in M, f(x) = y\} & \text{if } f^{-1}(y) \neq \emptyset\\ 0 & \text{otherwise} \end{cases}$$

is called the image of λ under f, where \vee denotes the maximum or supremum.

Theorem 2.6. Let f be an \mathbb{Z} -module homomorphism of \mathbb{Z}_n into \mathbb{Z}_m where $n, m \in \mathbb{Z}$ then

- 1. f(0) = 0.
- 2. f(h) = hf(1) for all $h \in \mathbb{Z}$ i.e, The module homomorphism is determined by the value of $f(1) \in \mathbb{Z}_m$.
- 3. order of $f(h) \in \mathbb{Z}_m$ divides order of h for all $h \in \mathbb{Z}_n$.
- 4. If *H* be a submodule of \mathbb{Z}_n then f(H) is a submodule of \mathbb{Z}_m .

Theorem 2.7. [2] The level cardinality of any fuzzy module of an \mathbb{Z} -module \mathbb{Z}_n where $n = p_1^{r_1} . p_2^{r_2} ... p_k^{r_k}$, $p_i's$ are distinct primes and $r = r_1 + r_2 + \cdots + r_k$ is less than or equal to r + 1.

Theorem 2.8. [10] Let gcd(n,m) = d and suppose that d divides l, then the linear congruence $na \equiv l \pmod{m}$ has exactly d solutions modulo m and the solutions are $t, t + \frac{m}{d}, t + \frac{2m}{d}, \dots, t + \frac{(d-1)m}{d}$ where t is the solution, unique modulo $\frac{m}{d}$, of the linear congruence $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$.

Remark 2.9. From (2) of theorem 2.6, we have the \mathbb{Z} -module homomorphism is determined by the value of $f(1) = a \in \mathbb{Z}_m$ and also we have $na \equiv 0 \pmod{m}$. So the number of homomorphisms from $\mathbb{Z}_n \to \mathbb{Z}_m$ is equal to the possible values of a. By theorem 2.8 there are gcd(n,m) = d possible values for a and they are $0, \frac{m}{d}, 2\frac{m}{d}, \ldots, (d-1)\frac{m}{d}$. So there are $'d' \mathbb{Z}$ -module homomorphisms from $\mathbb{Z}_n \to \mathbb{Z}_m$, where gcd(n,m) = d and the module homomorphisms are $f_k(x) = \frac{m}{d}kx \pmod{m}, k = 0, 1, \ldots, d-1$.

Theorem 2.10. [2] Let M_1 and M_2 be *R*-modules and *f* be an *R*-module homomorphism of M_1 into M_2 . If λ is a fuzzy module on M_1 then $f(\lambda)$ is a fuzzy module on M_2 .

Theorem 2.11. [2] Let $f : \mathbb{Z}_n \to \mathbb{Z}_m$ be an \mathbb{Z} -module homomorphism with gcd(n,m) = p, a prime and let λ be any fuzzy module on \mathbb{Z}_n then the level cardinality of $f(\lambda)$ is at most 3.

3. Fuzzy module homomorphism

Theorem 3.1. Let $f : \mathbb{Z}_n \to \mathbb{Z}_m$ be an \mathbb{Z} -module homomorphism with gcd(n,m) = pq, product of primes p and q and let λ be any fuzzy module on \mathbb{Z}_n then the level cardinality of $f(\lambda)$ is at most 4.

Proof. By remark 2.9 the only \mathbb{Z} -module homomorphisms of \mathbb{Z}_n into \mathbb{Z}_m are $f_k(x) = \frac{m}{pq}kx \pmod{m}$ where $k = 0, 1, 2, \dots, pq-1$, as gcd(n,m) = pq. There are pq homomorphisms. By theorem 2.10 $f_k(\lambda)$ is a fuzzy module on \mathbb{Z}_m . Now the \mathbb{Z} -module homomorphisms are divided into 4 according to the value of k = 0 and values of gcd(pq,k). Let in the prime factorisation of n, the highest power of p is r_1 and q is r_2 . Without loss of generality we can assume that p < q.

I k = 0. It is the trivial homomorphism, $f_0(x) = 0$ for all $x \in \mathbb{Z}_n$, then only $0 \in \mathbb{Z}_m$ has preimage in \mathbb{Z}_n under f_0 . Let λ be any fuzzy module on \mathbb{Z}_n then the fuzzy module $f_0(\lambda)$ is defined by,

$$f_0(\lambda)(y) = \begin{cases} 1 & \text{if } y \in <0 > \\ 0 & \text{if } y \in <1 > \setminus <0 > \end{cases}$$

Hence the level cardinality of $f_0(\lambda)$ on \mathbb{Z}_m is 2.

 $\mathbf{II} \ gcd(k, pq) = p.$

When gcd(k, pq) = p we can write the homomorphisms $f_k(x) = \frac{m}{pq}kx \pmod{m}$ as $f_k(x) = \frac{m}{q}k'x \pmod{m}$ where k = k'p and gcd(k',q) = 1. So there are $\phi(q) = q - 1$ such k' and hence q - 1 homomorphisms. In these homomorphisms $f_k(x) = 0$ if x is a multiple q or 0. Hence the submodule $\langle q \rangle = \{0, q, 2q, \dots, (\frac{n}{q} - 1)q\}$ of \mathbb{Z}_n of order $\frac{n}{q}$ is mapped

to 0 in \mathbb{Z}_m under these f_k s. So the elements in \mathbb{Z}_n having non zero images under these f_k s has orders which are not factors of $\frac{n}{q}$. The possible orders of elements in \mathbb{Z}_n with non zero images under these f_k are lq^{r_2} where $l \mid (\frac{n}{q'^2})$. Also by theorem 2.6 order of $f_k(h)$ divides both order of h and m for all $h \in \mathbb{Z}_n$, hence $|f(h)| \mid gcd(n,m) = pq$. But in the \mathbb{Z} -module homomorphisms $f_k(x) = \frac{m}{q}k'x(\mod m)$ where k = k'p and gcd(k',q) = 1, the order of $\frac{m}{q}k'x(\mod m)$ is 1 or q for all $x \in \mathbb{Z}_n$. So if $x \in \langle q \rangle$ *i.e* order of x, $|x| = \frac{n}{q}$ or its divisor then $\frac{m}{q}k'x(\mod m) = 0 \in \mathbb{Z}_m$ and if $x \in \langle 1 \rangle \setminus \langle q \rangle \subset \mathbb{Z}_n$ or $|x| = lq'^2$ such that $l \mid (\frac{n}{q'^2})$ then $\frac{m}{q}k'x(\mod m) = a \in \langle \frac{m}{q} \rangle \setminus \langle 0 \rangle$ in \mathbb{Z}_m and the submodule $\langle \frac{m}{q} \rangle = \{0, \frac{m}{q}, 2\frac{m}{q}, \dots, (q-1)\frac{m}{q}\}$ of \mathbb{Z}_m of order q has only preimage under these f_k 's.

$$f_k(x) = \begin{cases} 0 & \text{if } |x| = \frac{n}{q} \text{ or its divisors} \\ a & \text{if } |x| = lq^{r_2} \text{ such that } l \mid (\frac{n}{q^{r_2}}) \text{ and } a \text{ is any element in } < \frac{m}{q} > \backslash < 0 > \subset \mathbb{Z}_m \end{cases}$$

Now let λ be a fuzzy module on \mathbb{Z}_n then $f_k(\lambda)(y) = 0$ for all $y \in \langle 1 \rangle \setminus \langle \frac{m}{q} \rangle \subset \mathbb{Z}_m$.

1. If $\lambda(0) = t \neq 0$ where $t = \forall \{\lambda(x) \mid x \in \mathbb{Z}_n, |x| = lq^{r_2}, l \mid (\frac{n}{q'^2})\}$ then $f_k(\lambda)$ have level submodule of order q, Also $f_k(\lambda)$ on \mathbb{Z}_m is

$$f_k(\lambda)(y) = \begin{cases} 1 & \text{if } y \in < \frac{m}{q} > \\ 0 & \text{if } y \in < 1 > \backslash < \frac{m}{q} > \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 2.

2. If $\lambda(0) \neq t \neq 0$ where $t = \forall \{\lambda(x) \mid x \in \mathbb{Z}_n, |x| = q^{r_2}, l \mid (\frac{n}{q^{r_2}})\}$ then $f_k(\lambda)$ have level submodules of order 1 and q, Also $f_k(\lambda)$ on \mathbb{Z}_m is

$$f_k(\lambda)(y) = \begin{cases} 1 & \text{if } y \in <0 > \\ t & \text{if } y \in <\frac{m}{q} > \setminus <0 > \\ 0 & \text{if } y \in <1 > \setminus <\frac{m}{q} > \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 3.

So the level cardinality of $f_k(\lambda)$ is either 2 or 3 when gcd(k, pq) = p.

III gcd(k,pq) = q. This is similar to II gcd(k,pq) = p, as the homomorphisms $f_k(x) = \frac{m}{pq}kx \pmod{m}$ can be written as $f_k(x) = \frac{m}{p}k'x \pmod{m}$ where k = k'q and gcd(k',p) = 1 and the submodule $\langle \frac{m}{p} \rangle = \{0, \frac{m}{p}, 2\frac{m}{p}, \dots, (p-1)\frac{m}{p}\}$ of \mathbb{Z}_m of order p has only preimage under these f_k 's. So the level cardinality of $f_k(\lambda)$ is either 2 or 3 when gcd(k,pq) = q.

IV gcd(k, pq) = 1. There are $\phi(pq) = (p-1)(q-1)$ such *k* and hence (p-1)(q-1) homomorphisms. The \mathbb{Z} -module homomorphisms are $f_k(x) = \frac{m}{pq}kx$ (mod *m*) with gcd(k, pq) = 1. So $f_k(x) = 0$ if and only if *x* is a multiple of pq or 0 and hence the submodule of \mathbb{Z}_n , $< pq >= \{0, pq, 2pq, \dots, (\frac{n}{pq}-1)pq\}$ of order $\frac{n}{pq}$ is mapped to 0 in \mathbb{Z}_m under these f_k . So the elements of \mathbb{Z}_n under f_k having non zero images will have order either lp^{r_1} with $l \mid (\frac{n}{p'_1})$ or lq^{r_2} with $l \mid (\frac{n}{q'_2})$. Also by theorem 2.6 order of $f_k(h)$ divides both order of *h* and *m* for all $h \in \mathbb{Z}_n$, hence |f(h)| | gcd(n,m) = pq. So the possible values

of order of f(h) are 1, p, q, pq. Hence the elements in \mathbb{Z}_m of order 1, p, q, pq can only have preimages *i.e* the submodule $\langle \frac{m}{pq} \rangle = \{0, \frac{m}{pq}, 2\frac{m}{pq}, \dots, (pq-1)\frac{m}{pq}\}$ of \mathbb{Z}_m of order pq only have preimage in \mathbb{Z}_n under these f_k and $f_k(\lambda)(y) = 0$ for all $y \in \langle 1 \rangle \langle \frac{m}{pq} \rangle$ for every fuzzy module λ on \mathbb{Z}_n , if $m \neq pq$. When m = pq, the \mathbb{Z} -module homomorphism is ONTO. If $x \in \langle pq \rangle$ i.e $|x| = \frac{n}{pq}$ or its divisors then $\frac{m}{pq}kx = 0 \in \mathbb{Z}_m$, if $x \in \langle p \rangle \langle pq \rangle$ or $|x| = lq^{r_2}$ with $l \mid (\frac{n}{pq^{r_2}})$ then $\frac{m}{pq}kx \pmod{m} = a_1$ is any element in $\langle \frac{m}{q} \rangle \langle 0 \rangle$, if $x \in \langle q \rangle \langle pq \rangle$ or $|x| = lp^{r_1}$ with $l \mid (\frac{n}{p^{r_1}q})$ then $\frac{m}{pq}kx \pmod{m} = a_2$ is any element in $\langle \frac{m}{p} \rangle \langle 0 \rangle$ and if $x \in \langle 1 \rangle \langle (or <math>|x| = lp^{r_1}q^{r_2}$ with $l \mid (\frac{n}{p^{r_1}q^{r_2}})$ then $\frac{m}{pq}kx \pmod{m} = a_3$ is any element in $\langle \frac{m}{p} \rangle \langle (< \frac{m}{p} \rangle \rangle \langle m \rangle$.

$$f_k(x) = \begin{cases} 0 & \text{if } |x| = \frac{n}{pq} \text{ or its divisor} \\ a_1 & \text{if } |x| = lq^{r_2} \text{ with } l \mid (\frac{n}{pq'^2}) \\ a_2 & \text{if } |x| = lp^{r_1} \text{ with } l \mid (\frac{n}{p'^1q}) \\ a_3 & \text{if } |x| = lp^{r_1}q^{r_2} \text{ with } l \mid (\frac{n}{p'^1q'^2}) \end{cases}$$

Now let λ be a fuzzy module on \mathbb{Z}_n , then the fuzzy module $f_k(\lambda)$ on \mathbb{Z}_m is defined as follows

1. If $\lambda(0) = t_1 = t_2 \neq 0$ where $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lq^{r_2}, l \mid (\frac{n}{pq'^2})\}$ or $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lp^{r_1}, l \mid (\frac{n}{p'^1q})\}$ and $t_2 = \vee \{\lambda(x_2) \mid x_2 \in \mathbb{Z}_n, |x_2| = lp^{r_1}q^{r_2}, l \mid (\frac{n}{p'^1q'^2})\}$ then $f_k(\lambda)$ have level submodule of order pq, Also $f_k(\lambda)$ on \mathbb{Z}_m is

)

$$f_k(\lambda)(y) = \begin{cases} 1 & \text{if } y \in < \frac{m}{pq} > \\ 0 & \text{if } y \in < 1 > \backslash < \frac{m}{pq} > \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 2 if $m \neq pq$ and has level cardinality 1 if m = pq.

2. If $\lambda(0) \neq t_1 = t_2 \neq 0$ where $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lq^{r_2}, l \mid (\frac{n}{pq'^2})\}$ or $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lp^{r_1}, l \mid (\frac{n}{p'^1q})\}$ and $t_2 = \vee \{\lambda(x_2) \mid x_2 \in \mathbb{Z}_n, |x_2| = lp^{r_1}q^{r_2}, l \mid (\frac{n}{p'^1q'^2})\}$ then $f_k(\lambda)$ have level submodules of orders 1 and pq, Also $f_k(\lambda)$ on \mathbb{Z}_m is

$$f_k(\boldsymbol{\lambda})(y) = \begin{cases} 1 & \text{if } y \in <0 > \\ t_1 & \text{if } y \in <\frac{m}{pq} > \setminus <0 > \\ 0 & \text{if } y \in <1 > \setminus <\frac{m}{pq} \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 3 if $m \neq pq$ and has level cardinality 2 if m = pq.

3. If $\lambda(0) = t_1 \neq t_2 \neq 0$ where $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lq^{r_2}, l \mid (\frac{n}{pq'^2})\}$ or $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lp^{r_1}, l \mid (\frac{n}{p'^1q})\}$ and $t_2 = \vee \{\lambda(x_2) \mid x_2 \in \mathbb{Z}_n, |x_2| = lp^{r_1}q^{r_2}, l \mid (\frac{n}{p'^1q'^2})\}$ then $f_k(\lambda)$ have level submodules of orders p or q and pq, Also $f_k(\lambda)$ on \mathbb{Z}_m is

$$f_k(\lambda)(y) = \begin{cases} 1 & \text{if } y \in <\frac{m}{p} > \text{or } y \in <\frac{m}{q} > \\ t_2 & \text{if } y \in <\frac{m}{pq} > \setminus <\frac{m}{p} > \text{or } y \in <\frac{m}{pq} > \setminus <\frac{m}{q} > \\ 0 & \text{if } y \in <1 > \setminus <\frac{m}{pq} > \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 3 if $m \neq pq$ and has level cardinality 2 if m = pq.

4. If $\lambda(0) \neq t_1 \neq t_2 \neq 0$ where $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lq^{r_2}, l \mid (\frac{n}{pq'^2})\}$ or $t_1 = \vee \{\lambda(x_1) \mid x_1 \in \mathbb{Z}_n, |x_1| = lp^{r_1}, l \mid (\frac{n}{p'^1q})\}$ and $t_2 = \vee \{\lambda(x_2) \mid x_2 \in \mathbb{Z}_n, |x_2| = lp^{r_1}q^{r_2}, l \mid (\frac{n}{p'^1q'^2})\}$ then $f_k(\lambda)$ have level submodules of orders 1, p or q and pq, Also $f_k(\lambda)$ on \mathbb{Z}_m is

$$f_k(\lambda)(y) = \begin{cases} 1 & \text{if } y \in <0 > \\ t_1 & \text{if } y \in <\frac{m}{p} > \setminus <0 > \text{or } y \in <\frac{m}{q} > \setminus <0 > \\ t_2 & \text{if } y \in <\frac{m}{pq} > \setminus <\frac{m}{p} > \text{or } y \in <\frac{m}{pq} > \setminus <\frac{m}{q} > \\ 0 & \text{if } y \in <1 > \setminus <\frac{m}{pq} > \end{cases}$$

Hence the level cardinality of $f_k(\lambda)$ is 4 if $m \neq pq$ and has level cardinality 3 if m = pq.

Hence the level cardinality of the fuzzy module $f(\lambda)$ on \mathbb{Z}_m is at most 4 where f is an \mathbb{Z} -module homomorphism of \mathbb{Z}_n into \mathbb{Z}_m .

Example 3.2. The \mathbb{Z} -module homomorphisms of \mathbb{Z}_{315} into \mathbb{Z}_{150} are $f_k(x) = 10kx$ (mod 150) $\forall x \in \mathbb{Z}_{105}$ k = 0, 1, 2, ..., 14, by remark 2.9 and since gcd(315, 150) = 15. By theorem 2.7 the maximum level cardinality of fuzzy module on \mathbb{Z}_{315} is 5. Consider a fuzzy module on \mathbb{Z}_{315} with level cardinality 5 and for the \mathbb{Z} -module homomorphisms f_k , where k = 0, 1, 2, ..., 14.

$$Let \ \lambda(x) = \begin{cases} 1 & \text{if } x \in <0>\\ 1/2 & \text{if } x \in <63> \setminus <0>\\ 1/3 & \text{if } x \in <21> \setminus <63>\\ 1/4 & \text{if } x \in <7> \setminus <21>\\ 1/5 & \text{if } x \in <1> \setminus <7> \end{cases}$$

then

Cases	k = 0	gcd(k, 15) = 3	gcd(k, 15) = 5	gcd(k, 15) = 1
Number of homomor- phisms	1	$\phi(5) = 4$	$\phi(3) = 2$	$\phi(15) = 8$
Homom- orphisms	fo	f_3, f_6, f_9, f_{12}	f_5, f_{10}	$f_1, f_2, f_4, f_7, f_8, f_{11}, f_{13}, f_{14}$
Fuzzy module	$\begin{cases} f_0(\lambda)(y) = \\ 1 & \text{if } y \in <0 > \\ 0 & \text{if } y \in <1 > \setminus <0 > \end{cases}$	$ \begin{cases} f_3(\lambda)(y) = \\ \begin{cases} 1 & \text{if } y \in <0 > \\ \frac{1}{2} & \text{if } y \in < 30 > \setminus <0 > \\ 0 & \text{if } y \in <1 > \setminus <30 > \end{cases} $	$ \begin{cases} f_5(\lambda)(y) = \\ \begin{cases} 1 & \text{if } y \in <0 > \\ \frac{1}{4} & \text{if } y \in <50 > \setminus <0 > \\ 0 & \text{if } y \in <1 > \setminus <50 > \end{cases} $	$ \begin{array}{l} f_1(\lambda)(y) = \\ \left\{ \begin{array}{ll} 1 & \text{if } y \in <0 > \\ 1/2 & \text{if } y \in <30 > \setminus <0 > \\ 1/4 & \text{if } y \in <10 > \setminus <30 > \\ 0 & \text{if } y \in <1 > \setminus <10 > \end{array} \right. \end{array} $

4. Conclusion

In this paper, We have proved that the level cardinalities of fuzzy module $f(\lambda)$ is atmost 4, where *f* is an \mathbb{Z} - module homomorphism of fuzzy modules of the \mathbb{Z} -module \mathbb{Z}_n into the \mathbb{Z} -module \mathbb{Z}_m where $n, m \in \mathbb{Z}^+$, gcd(n,m) = pq, *p* and *q* are primes. In our future work, we are trying to extend this result in the case of fuzzy module homomorphism from \mathbb{Z}_n into \mathbb{Z}_m $n, m \in \mathbb{Z}$, $gcd(n,m) = p^r q^s$

References

- John N Mordeson and D S Malik, Fuzzy Commutative Algebra, World Scientific Publishing Co. Pte. Ltd.(1998)
- [2] Manju Varghese, Shery Fernandez, The level cardinality of fuzzy module under Z-module homomorphism on Z_n, International conference on Recent Trends in Science, Engineering and Technology ICRTSET-2022 (Presented)
- [3] Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353
- [4] Rosenfeld A, Fuzzy Groups; J.Math. Anal. Appl., 35(1971) 512-517
- [5] Negoiță, C. V.; Ralescu, D. A. âit Applications of fuzzy sets to systems analysis. Translated from the Romanian. ISR Interdisciplinary Systems Research, Vol. 11. Birkhäuser Verlag, Basel-Stuttgart, (1975).
- [6] David M Dummit, Richard M Foote, Abstract Algebra,III Edition John Wiley & Sons, INC(2004).
- [7] M E Keating, A First Course in Module Theory. Imperial College Press.(1998)
- [8] Pan, F. Fuzzy Finitely Generated Modules. *Fuzzy Sets and Systems* 21 (1987) 105-113.
- [9] Shukur Neamah Al-aeashi. Completely semi essential fuzzy submodule. J. Kufa Math. Comput. Vol.2, no.2,(2014)1-7.
- [10] Tom M Apostol, Introduction to Analytic Number Theory, Springer-Verlag New York Inc., (1976).