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Abstract. The homomorphic image of a fuzzy module of an R-module is a fuzzy
module[1]. In one of our papers [2] we have proved that if f : Z, — Z,, is a Z-
module homomorphism with ged(n,m) = p, a prime and A is any fuzzy module on
Z, with any level cardinality then the fuzzy module f(1) on Z,, has level cardi-
nality atmost 3. In this paper, we are considering the fuzzy module homomorphism
between the Z-modules Z, and Z,, where n,m € Z with gcd(n,m) = pq, where p
and ¢ are primes and trying to find the level cardinality of the fuzzy module f (1)
on Z,, when A is a fuzzy module on Z,,.
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1. Introduction

The idea of fuzzy set on a nonempty set was first introduced by L A Zadeh [3] in 1965.
He defined the fuzzy subset of a nonempty set X as a membership function A : X — [0, 1].
In 1971 a milestone in the development of fuzzy group was laid by Rosenfeld [4]. The
level set or a-cut [1] of a fuzzy set A for a € [0, 1] is defined as A, = {x/x € X, A (x) > a}.
In 1975 Negoita and Ralescu [5] came up with the concept of fuzzy module. The module
homomorphism is a mapping between modules which preserves the module structure.
The image of a fuzzy module of an R-module is a fuzzy module under module homo-
morphism [1]. In our previous paper [2] we have studied the level cardinalities of image
of fuzzy modules of Z-module Z,, n € Z. Also the level cardinalites of image of fuzzy
module under Z-module homomorphism of Z, into Z,, when gcd(n,m) = p, a prime and
when gcd(n,m) = 1. Now we are checking the level cardinality of the image of the fuzzy
module on Z, where f is a homomorphism of Z, into Z,, when gcd(n,m) = pq, p,q are
primes.
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2. Preliminaries

Definition 2.1. [6] Let R be a ring. A left R-module is a set M together with

1. abinary operation + on M under which M is an abelian group, and
2. an action of R on M (that is, a map R x M — M ) denoted by ax, for all a € R and
for all x € M which satisfies

(@) (a+b)x=ax+bx,foralla,b e R, xeM
(b) (ab)x = a(bx), for all a,b € R,x € M and
(¢) a(x+y)=ax+ay,foralla e R,x,ye M
If the ring R has a unity 1’ we impose the additional axiom:
(d lx=x,forallxeM

Definition 2.2. [7] Let R be a ring, M and N be R-modules. An R-module homomor-
phism from M to N is amap f : M — N which respects addition and scalar multiplication
of these modules and satisfies the following axioms

1. f(m+n)=f(m)+ f(n) forallmmne M
2. f(rm)=rf(m)forallm e M andr € R

Definition 2.3. [8] Let R be a ring and let M be an R-module, then a fuzzy module on M
isamap A : M — [0, 1] satisfying the following conditions

1 l(m1—|—m2)>min{7L(m1),7L(m2)}, Vmy,my € M
A(=mi) = A(my) Vmy €M
(rm1)>7L(m1) VYm €M, reR
A(0) =

Definition 2.4. [9] Let u and A be two fuzzy modules of an R-module M, then A is
called a fuzzy submodule of u if A C u (i.e A(m) < u(m) VYm € M)

Definition 2.5. [1] Let f be a mapping from X into Y and let A be a fuzzy subset on X
then the fuzzy subset f(1) on Y is defined by Vy € Y,

VIA(x)/x e M, f(x) =y} iff1()#0
0 otherwise

F)G) ={

is called the image of A under f, where V denotes the maximum or supremum.

Theorem 2.6. Let f be an Z-module homomorphism of Z,, into Z,, where n,m € Z then

1. f(0)=0.

2. f(h) =hf(1) for all h € Z i.e, The module homomorphism is determined by the
value of f(1) € Z

3. order of f(h) € Zy, divides order of h for all h € Zy,.

4. If H be a submodule of Z,, then f(H) is a submodule of Zy,.

Theorem 2.7. [2] The level cardinality of any fuzzy module of an Z-module Z,, where
n=p\'.py...pk, pis are distinct primes and r = ry +ry+ -+ ry. is less than or equal
tor+1.
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Theorem 2.8. [10] Let gcd(n,m) = d and suppose that d divides I, then the linear

congruence na =1 (mod m ) has exactly d solutions modulo m and the solutions are

tLt+ 7.t + 27’”, N <d;11>m where t is the solution, unique modulo %, of the linear

congruence §x = g (mod 7 ).

Remark 2.9. From (2) of theorem 2.6, we have the Z-module homomorphism is deter-
mined by the value of f(1) = a € Z,, and also we have na =0 ( mod m ). So the num-
ber of homomorphisms from Z, — Z,, is equal to the possible values of a. By theorem
2.8 there are ged(n,m) = d possible values for a and they are 0, %,2%,...,(d —1)%. So
there are 'd’ Z-module homomorphisms from Z, — Z,,, where gcd(n,m) = d and the
module homomorphisms are fi(x) = Zkx (modm ), k=0,1,...,d — 1.

Theorem 2.10. /2] Let M| and M, be R-modules and f be an R-module homomorphism
of My into My. If A is a fuzzy module on My then f(A) is a fuzzy module on M.

Theorem 2.11. [2] Let f : Z;,, — Zy, be an Z-module homomorphism with gcd(n,m) = p,
a prime and let A be any fuzzy module on Z, then the level cardinality of f (1) is atmost
3.

3. Fuzzy module homomorphism

Theorem 3.1. Let f : Z, — Z,, be an Z-module homomorphism with gcd(n,m) = pq,
product of primes p and q and let A be any fuzzy module on Z, then the level cardinality
of f(A) is atmost 4.

Proof. By remark 2.9 the only Z-module homomorphisms of Z, into Z,, are fi(x) =
%kx (mod m ) where k =0,1,2,..., pqg— 1, as gcd(n,m) = pq. There are pqg homomor-
phisms. By theorem 2.10 f;(A) is a fuzzy module on Z,,. Now the Z-module homomor-
phisms are divided into 4 according to the value of k = 0 and values of gcd(pg,k). Let
in the prime factorisation of n, the highest power of p is r; and ¢ is r,. Without loss of
generality we can assume that p < g.

I k= 0. It is the trivial homomorphism, f(x) = 0 for all x € Z,, then only 0 € Z,,
has preimage in Z, under fy. Let A be any fuzzy module on Z, then the fuzzy module
Jfo(A) is defined by,

1 ifye<0>
0 ifye<I>\<0>

fo()) :{

Hence the level cardinality of fy(A) on Z,, is 2.

Il gcd(k, pq) = p.
When gcd(k, pg) = p we can write the homomorphisms fi(x) = »gkx (‘mod m ) as

Jilx)= %k’x (mod m ) where k =K' p and gcd(k',q) = 1. So there are ¢(gq) = g — 1 such
k' and hence g — 1 homomorphisms. In these homomorphisms f;(x) = 0 if x is a multiple
g or 0. Hence the submodule < ¢ >={0,4,2q, ..., (% —1)q} of Z, of order 5 is mapped
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to 0 in Z,, under these fis. So the elements in Z, having non zero images under these
fxs has orders which are not factors of g The possible orders of elements in Z,, with non
zero images under these f; are I¢"2 where [ | (q%) Also by theorem 2.6 order of fi(h)
divides both order of i and m for all h € Z,, hence |f(h)| | gcd(n,m) = pg. But in the
Z-module homomorphisms f;(x) = %k’ x(mod m ) where k = k'p and gcd(K',q) = 1, the

order of %k’x( mod m ) is 1 or g for all x € Z,. So if x €< g > i.e order of x,
or its divisor then Zk'x(mod m ) =0 € Z,, and if x e< 1 >\ < g >C Z, or |x| = Ig"
such that 7 | ( rz) then '"k’x( modm)=ae< P> \ < 0> in Z, and the submodule

< ';’ >={0, ’;’,2’” ,( — 1)';’} of Z,, of order g has only preimage under these f’s.

Al 0 if |x| = £ or its divisors
X)=
¢ a if|x| = lq’2 such that /| (;7;) and a is any element in < 2 >\ <0>C Zy,

Now let A be a fuzzy module on Z, then f(A)(y) =0forally e< 1 >\ < % >C L.

1 If A(0) =1 # O where t = V{A(x) / x € Zn, |x| = Iq", | (7;)} then fi(4) have
level submodule of order g, Also fi (1) on Z,, is

1 ﬁy€<%>
0 ifye<l>\<%>

Se(A)(y) = {

Hence the level cardinality of fi(4) is 2.
2. If A(0) # 1 # 0 where t = V{A(x) / x € Zn, |x| = q", 1| (77)} then fi(A) have
level submodules of order 1 and g, Also fi(1) on Zj, is

1 ifye<0>
— 1 m
filM) )=t ifye<t>\<0>
0 ifye<l>\<2>

Hence the level cardinality of f; (1) is 3.

So the level cardinality of f;(4) is either 2 or 3 when ged(k, pq) = p.

I gced(k, pg) = . This is similar to II ged(k, pg) = p, as the homomorphisms
Sfilx) = Z kx ( mod m ) can be Written as fi(x) = ’"k’x ( mod m ) where k = k'q and
ged (K ,p) = 1 and the submodule < 7 >= {0,2 b2 m L (p— 1)%} of Zy, of order p
has only preimage under these f;’s. So the level cardlnahty of fy(A) is either 2 or 3 when
ged(k,pq) = q.

IV gcd(k, pg) = 1. There are ¢ (pg) = (p —1)(¢— 1) such k and hence (p — 1)(qg —
1) homomorphisms. The Z-module homomorphisms are fj(x) = %kx ( mod m ) with
ged(k,pg) = 1. So fi(x) = 0 if and only if x is a multiple of pg or 0 and hence the
submodule of Z,,, < pg >= {0, pq,2pq, ..., (;—q —1)pgq} of order 5 is mapped to 0 in Z,
under these f;. So the elements of Z, under f; having non zero images will have order
either [p" with [ | (J7r) or g™ with I | (7). Also by theorem 2.6 order of fi(h) divides
both order of & and m for all h € Z,, hence |f(h)|| ged(n,m) = pq. So the possible values
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of order of f(h) are 1, p,q, pq. Hence the elements in Z,, of order 1, p,q, pg can only have
preimages i.e the submodule < ;”—q >= {0, 1’7’;,2[’)’;, ,(pg — l)%} of Z,, of order pq
only have preimage in Z, under these f} and f;,(A)(y) =0forallye< 1 >\ < ;”7 > for
every fuzzy module A on Z,, if m # pq. When m = pq, the Z-module homomorphism is
ONTO.Ifxe< pg>i.e|x| =L g orits divisors then Jbkx =0 € Zy,, if xe< p > \ < pgq>
or x| = lq" with I | (/) then pekx (mod m ) = a; 1s any element in < % >\ < 0>, if
xeE<g>\<pg> or |x\ lp’I w1th 1| (;#5) then J2kx (mod m ) = a; is any element
in<2>\<0>andifxe<1 >\(<p>U<q>) or x| =p"q™ with I | ()
then kx (mod m ) = a3 is any element in < - > \(< >u<? >) Then

0 if|x]= 7q Or its divisor

ap if x| =1g" with | (77)

ay if x| =1p" with [ | (577)

as i x| = 1p"g with I (2r)

Now let A be a fuzzy module on Z,, then the fuzzy module f;(A) on Z,, is defined as
follows

1. If l(O) =1 =0n 75 0 where t; = \/{l(xl) ! x1 € Ly, |)C1| = lqr2, l | (pqrz } or
Hh = \/{),(xl) /x| € Zy, |X1| =Ip",l | (p’nlq)} and 1) = \/{),(xz) ! x0 € Zy, ‘X2| =
Ip"q™, 1] (5177)} then fi(A) have level submodule of order pq, Also fi(2) on

L 18

1 ifye< ﬂ >
A)(v) =
F(A)0) {O ifye< 1 >\< >
Hence the level cardinality of f;(A) is 2 if m # pq and has level cardinality 1 if

m= pq.

2. If l(p?# t; =t # 0 where 1] = \/{ﬂ,( ) ! x1 € Ly, |X1| =1q",1 | (pq’Z)} or
11 =V{A(x1) /x1 €Ly, |x1|=1p", 1| ( )} and ty = V{A(x2) / x2 € Zp, |x2| =
Ip"q", 1| (5= )} then fi(A) have level submodules of orders 1 and pg, Also
fi(A) on Zm is

1 ifye<0>
f)y)=qn ifye< >\ <0>
0 1fye<1>\<ﬂ>

Hence the level cardinality of f;(A) is 3 if m # pq and has level cardinality 2 if

m=pq.
3. IfA(0) =11 # 1o # 0 where 11 = V{A(x1) / x1 € Zn, |x1| = 19", I | (57)} or

t1 =V{A(x1) /)C] € Ly, |x1|=1p", 1] ( )} andth = V{A(x2) /x2 € Zn, x| =
Ip"q", 1| (;gz)} then fi(A) have level submodules of orders p or g and pgq,
Also fi(A) on Zy, is
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I ifye<f >orye< >
— 1 m m m m
filQ)(y)=qn ifye< >\ <P >orye< >\ <>
0 ifye<1>\<pﬂq>

Hence the level cardinality of f;(A) is 3 if m # pq and has level cardinality 2 if

m= pq.

4. If A(0) # 11 # 12 # 0 where 11 = V{A(x1) / x1 € Zy, |x1| = 1™, 1| (577)} or
h= \/{l(xl) ! x| € Zy, |X1| =Iph,l | (prqu)} and ) = V{)L(XQ) ! xp € Zy, |XQ| =
Ip"g™, 1] (ﬁ)} then f; (1) have level submodules of orders 1, p or g and pgq,
Also fi(A) on Z,, is

1 ifye<0>
n o ifye<f>\<0>orye<2>\<0>

- m m m m
n ifye< Z>\<Z>orye< Z>\< %>
0 ifye<1>\<£>

Hence the level cardinality of f;(A) is 4 if m # pq and has level cardinality 3 if
m= pq.

Hence the level cardinality of the fuzzy module f(A) on Z,, is atmost 4 where f is an

Z-module homomorphism of Z, into Z,,.
O

Example 3.2. The Z-module homomorphisms of Z3;s into Z;s are fi(x) = 10kx ( mod
150) Vx € Z1ps k=0,1,2,...,14, by remark 2.9 and since gcd(315,150) = 15. By
theorem 2.7 the maximum level cardinality of fuzzy module on Z35 is 5. Consider a
fuzzy module on Z3;s with level cardinality 5 and for the Z-module homomorphisms f;,
where k =0,1,2,...14.

1 ifxe<0>

1h ifxe<63>\<0>
Let A(x)=<15 ifxe<2l>\<63>

Va ifxe<7>\<21>

s ifxe<1>\<7>

then
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Cases k=0 ged(k,15) =3 ged(k,15) =5 ged(k,15) =1
Number of
homomor- 1 o(5)=4 0(3)=2 ¢(15) =38
phisms
Or(l))ﬁz[;s fo S35 f6: Jo, 12 f5: /10 Jus S5 fas fr, 085 11 f13, 14
foA)(y) = HR)G) = 52)0) = AA)0) =
Fuzzy fo(A)(y 1 ifye<o
: 1 ifye<0> 1 ifye<0> ye<0>
module I ifye<0> K k \ iy
0 ifyeci>\<0>| |V2 Hfye<30>\<0>| {14 ifye<so>\<0> fifye<30>\<0>
’ 0 ifye<1>\<30>| |0 ifye<l>\<50> | |'/4 ifye<10>\<30>
0 ifye<l>\<10>

4. Conclusion

In this paper, We have proved that the level cardinalities of fuzzy module f(1) is atmost
4, where f is an Z- module homomorphism of fuzzy modules of the Z-module Z,, into
the Z-module Z,, where n,m € Z*, gcd(n,m) = pq, p and g are primes. In our future

work
from

, we are trying to extend this result in the case of fuzzy module homomorphism
Zy into Zy, n,m € Z, ged(n,m) = p"¢*
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