
Executing United States Bills into Law: A

House

Sela MADOR-HAIM a,1 and Ari HERSHOWITZ b

a XCiteDB LLC
b Govable

Abstract. We describe a system to execute U.S. federal bills into law, as part of
a working application for the United States House. This system is based on a for-
mal grammar we developed, which achieves greater than 94% accuracy in parsing
amendatory phrases in bills; it is in production at the United States House of Rep-
resentatives and is used to produce official ‘Comparative Print’ reports showing
how a bill would amend current law. The grammar consists of two components:
CItation Modeling and Processing Language (CIMPL), which captures citations
to current law as they are found in bill amendments, and AMendment Processing
Language (AMPL), which includes directive language to amend the text referred
to by the CIMPL phrase. Here, we describe the analysis that led to development of
the grammar, and provide an overview of how the grammar is applied to execute
proposed amendments in the Comparative Print Suite of the U.S. House of Repre-
sentatives. This application is available to all Members and staff at the internal site,
compare.house.gov. Both the executable grammar and the full, point-in-time U.S.
law dataset upon which they act, are publicly described here in technical detail for
the first time.

Keywords. legislation, congress, Natural Language Processing, Amendment,

1. Introduction

The “Ramseyer Rule”, dating to January 28, 1929, requires committees of the U.S. House
of Representatives to prepare a report for any bill that passes out of committee, showing
how that bill would affect the current law [1]. The report, called a “Ramseyer Report”,
has traditionally been produced in a labor-intensive process, involving a great deal of leg-
islative research and manual execution of amendments. In the case of large bills, commit-
tee experts spend weeks applying thousands of amendments to hundreds of statutes. The
process was partially automated more than a decade ago, using a pattern-matching tool
based on regular expressions. While it was a great improvement over manual amendment
execution, the pattern matching approach has several limitations: it does not model the
semantics of the amendatory instruction; it may fail on simple variations of the amenda-
tory grammar; and it requires the addition of new patterns when new amendatory phrases

1Corresponding Author: Sela Mador-Haim, selama@gmail.com

Working Application in the United States

Legal Knowledge and Information Systems
G. Sileno et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230969

237

are encountered. Starting in the 115th Congress, the House Clerk’s Office embarked on
a project to build a software tool for producing reports showing how a bill would change
current law.

The formal grammar we developed for this project shows significant improvement
over the previous pattern-matching system. It has been successfully implemented in a
software tool called the “Comparative Prints Suite” that was released to staff and Mem-
bers of the U.S. House of Representatives beginning in October 2022 [2]. The tool is
used to produce official reports showing how a bill would amend current law. This is a
valuable asset to analysts and Members of Congress, because bills are written in a way
that often lacks context of the law to be amended.

We started this work by analyzing amendatory phrases in U.S. Congressional bills
over a 13-year period to develop a Categorial Grammar lexicon that could express the
semantics of amendments in two inter-related executable languages, CItation Modeling
and Processing Language (CIMPL) and AMendment Processing Language (AMPL). We
also developed an amendment processing engine (runAMPL) to execute these languages,
using a new point-in-time XML database (XCiteDB) to retrieve and store the target text.
This paper focuses on the analysis of amendatory phrases and the structure of CIMPL
and AMPL. The runAMPL processing engine and database design may be described in
future publications.

2. Related work

2.1. Natural Language Processing of Amendments

NLP (Natural Language Processing) has been effectively applied to extract references
[3] and to parse the hierarchical structure of legislative texts [4]. However, there has
been relatively little practical work to process amendments. One early work describes
APS [5], which uses ATN (Augmented Transition Network) to parse amendments in
natural language and execute them. The result is relatively limited in its expressive power
and types of amendments supported due to the limitations of the encoding. In OPAL [6]
and Menslegis [7], amendments are extracted (and in case of OPAL, parsed), but not
executed.

There are also two older systems, mostly undocumented, that were used by the
U.S. Congress to parse and execute amendments: the mini-Ramseyer tool, and the AIP
(Amendment Impact Program) tool. These tools have not been formally described, but
based on our knowledge of them, both use pattern-matching based on regular expressions
to parse amendments. Their accuracy has been highly limited, leading the U.S. House to
seek improved methods [8].

2.2. Amendment Processing Languages

To our knowledge, no formal languages exist for processing legislative amendments.
However, some languages describe document changes in other domains. For instance,
Google’s diff-match-patch [9] uses offsets and strings to describe changes, but it lacks
features like tree structure handling, requires the original text for offsets, and breaks if
text offsets are changed. Conversely, stylesheet or query languages such as XSLT [10]

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application238

and XQuery [11] can describe any transformation, but are harder to generate and read.
Tools that compare structured-text documents [12,13,14] use Edit Scripts to capture
changes between two documents. These scripts emphasize document structure with lim-
ited support for text changes within nodes.

3. Analysis

Our analysis covered amendatory language from U.S. federal bills between 2005 to 2018,
excluding bills only at the “introduced” stage. We focused on later-stage bills due to their
standardized drafting. Of the 28,014 bills analyzed, we identified amendatory phrases
using keywords like “is amended.” This resulted in 284,094 amendatory phrases. After
normalizing each phrase by removing specifics like quoted text and numbers, we found
606 keywords with 10 or more occurrences. A subset of 130 words covered 97.3% of all
phrases. We then categorized these keywords based on their role in amendments. The list
below provides some categories:

Action verbs inserting, striking, adding, redesignating, deleting, transferring
Other verbs appears, relating, amending
Character period, semicolon, comma, colon, dash
Location paragraph, section, subsection, heading, item, sentence
Other nouns place, sequence, term, matter, order, time, word
Pronouns it, this, those, either, their
Prepositions before, after, through, in, except, up
Adjectives following, new, all, such, first
Adverbs respectively, further, accordingly, appropriately
Function words by, and, the, at, as, of, to, for

We examined the context of each word in the amendment phrase, by collecting 3-
grams (three word phrases). We defined a lexicon based on this analysis that would cap-
ture nearly all of the desired variation in amendatory phrases. Below we describe the
lexicon and elements of the grammar; the full grammar files are available upon request.

4. CIMPL and AMPL

Our approach is to translate each English-language amendment into an executable
machine-readable language. Since no existing formalized language fit our needs, we de-
signed two formal languages with similar syntax and semantics: AMendment Processing
Language (AMPL) for text and document transformations, and CItation Modeling and
Processing Language (CIMPL) for specifying the citation, or the part of the law that is
amended. Every CIMPL expression is also an AMPL expression, making CIMPL a subset
of AMPL. We separate the two grammars, in order to allow independent pre-processing
and retrieval of citations as needed. As an example, consider the amendment:

Section 983(f)(8) of title 18, United States Code, is amended— by striking “or” at
the end of subparagraph (C);

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application 239

Title

title designation title description Table of contents Part I Part II

item1 item2 item3 Chapter 1 Chapter 2 Chapter 3

Section 1 Section 2 Section 3 Section 10

Section heading Subsection a Subsection b Subsection c Subsection a Subsection b Subsection c

Clause i Clause ii Clause iii

Figure 1. Structure tree of a legal document

The first part, before “is amended”, specifies what is amended, and it is translated
to the CIMPL expression: select law("united states code"): title("18"):

section("983(f)(8)"); The second part, following “by”, states how the text is
amended, and it is translated to the following AMPL expression:

strike is_end_of([subparagraph("(C)")] ,search("or"));

As seen above, a CIMPL expression is usually straightforward. It starts with a
select, followed by a location expression starting with law() function, specifying the
amended law. Then it goes down the hierarchical structure using a colon operator. The
AMPL code consists of one or more statements. In this example, the statement is strike,
with the parameter is_end_of([subparagraph("(C)")] specifying the text ‘‘or’’
at the end of subparagraph (C).

A challenge in defining amendments is handling the law’s hierarchical structure. The
United States Code, for example, is typically organized into some combination of: Title,
Subtitle, Division, Chapter, Subchapter, Part, Subpart, Section, Subsection, Paragraph,
Subparagraph, Clause, Subclause, Item, Subitem. As shown in the diagram in Fig. 1, the
document’s structure is represented as a tree, where the subdivisions are the nodes, and
each node can have multiple children ordered by label. Some special leaf nodes describe
elements such as table of contents and headings that do not represent subdivisions. For
example, in Fig. 1, the title designation and description are leaf nodes under Title, as well
as the Title’s table of contents (with table items as children).

Amendments work in both structured text mode and flat text mode. Structured text
amendments work on the tree structure, deleting and inserting nodes, or replacing node’s
content. Flat text amendments view the document (or part of it) as a sequence of charac-
ters, ignoring structure, and select, strike and insert text using this flat-text view.

4.1. Context Selection and CIMPL

To model an amendment, we specify the document, and which part of the document is
being amended. This is typically provided by the citation, translated into CIMPL. As
stated earlier, CIMPL is a subset of AMPL, or more precisely, a CIMPL expression is a
sequence of select statements in AMPL. For example, consider the amendment:

Section 321 of the Energy Policy and Conservation Act (42 U.S.C. 6291) is
amended— in paragraph (4), by striking “, determined in accordance with test pro-
cedures under section 323”;

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application240

The text ‘‘Section 321 of the Energy Policy and Conservation Act’’

is the citation, translated into the CIMPL expression: select (law(”Energy Policy and
Conservation Act”):section(”321”));. The language ‘‘in paragraph (4)’’ appears
after the is amended phrase. This additional phrase is generally not considered as part
of the citation, but further refines the scope of the amendment. We translate this phrase
into an additional select statement:

select paragraph "(4)";|

Which is equivalent to adding the paragraph to the CIMPL expression, as in:

select (law("Energy Policy and Conservation Act"):section("321")):

paragraph "(4)";

4.2. Text Strike Statements

In flat text mode, there are two types of basic actions: strike and insert. In AMPL, a
strike is expressed with a strike statement consists of the keyword strike followed by an
expression that specifies which text should be removed. For example, the amendment:

by striking “test procedures under section 323”;

would be translated into the AMPL statement:

strike search("test procedures under section 323");

In this example, we search for a string in the text, and strike it. However, a string
may occur more than once in the text. For example, in strike search("President"),
if the word “President” appears multiple times, striking all occurrences may not reflect
drafter’s intent. Generally, when the drafter expects to strike multiple occurrences of the
same text, they use language such as by striking the word “President” each place it ap-
pears. Without the phrase each place it appears, the word “President” should appear only
once. We capture this distinction by using the directive #all. Semantically, the state-
ments strike search("President"); and strike search("President")#all

are the same, except that in the first case (where the “all” directive is absent), it would
perform an additional check and produce either a warning or an error.

In addition to simple search expressions, AMPL supports other, more complicated
expressions to specify ranges of text we can strike. Due to space limitations, we do not
list all the supported functions here, but a few examples include:

1. by striking “and” at the end
2. by striking “and” at the end of clause (iv)
3. by striking “the Director” the first place it appears
4. by striking “North Country Trail” and all that follows through “June 1975.”

The resulting AMPL statements are,

1. strike is_end(search("and"));

2. strike is_end_of(clause("iv"), search("and"));

3. strike nth(1,search("the Director"));

4. strike search("North Country Trail") through search("June 1975");

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application 241

4.3. Text Insertion Statements

An amendment that inserts text inside a provision gets translated into an insert statement.
In general, an insert statement has two parameters: an expression that specifies where to
insert the text (position), and the text string that we want to insert. For example, when
we have the amendment:

by adding at the end the following: “and”

the AMPL code for the insertion is:

insert end "and";

In this case, the keyword end specifies inserting the text at the end of the se-
lected provision. Instead of end, we can use other AMPL expressions to describe
the location. For example begin, for inserting at the beginning of the provision. We
can write insert after(search("this")) "and that";, for inserting “and that“
right after the word “this”, and similarly use before(...) for inserting text before a
string. Furthermore, AMPL allows more complex position expressions. For example,
before(is_end(search(’;’)) specifies a position right before the semicolon at the
end of the provision. And the expression after(nth(2,sentence())) specifies the
position following the second sentence.

4.4. Text Replacement

Text replacement is implemented in AMPL as a strike statement followed by an insert.
For example:

is amended by striking “hearing impairments” and inserting “deaf or hard of hear-
ing,”.

This is translated into:

strike search("hearing impairments"); insert "deaf or hard of hearing";

Here, we have a strike followed by an insert statement that does not specify a posi-
tion. An insert without a position inserts the text at the place of the previous statement
(typically a strike, but can also be a previous insert). As discussed in Section 4.2, a strike
range expression can match multiple occurrences of the same phrase. In this case, the
subsequent insert statement inserts the new text in each of the matching positions for the
strikes.

4.5. Structure-altering Statements

There are several actions we support on the structured document level. One of these
actions is rename, which corresponds to changing the provision number (in bills this is
commonly expressed as ‘redesignate’). rename l1 as l2 renames an element indicated by
l1 as l2 by changing its label, but doesn’t move it in the tree. For example:

rename Clause("iii") as Clause("vi"); // Example 1

rename Clause({"i","ii","iii"}) as Clause({"vi","iii","v"}); // Example 2

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application242

In example 1, the label of Clause iii becomes Clause vi, but otherwise the tree
remains unchanged. Example 2 shows multi-element rename, were Clause i becomes
Clause vi, Clause ii becomes Clause iii and Clause iii becomes Clause v. Note that this
would leave the nodes out of order, where Clause iii is after Clause vi.

We can also strike a structure element, which works just like striking a range.
strike Subsection(”1”) is equivalent to strike rangeo f (Subsection(”1”)). Similarly, in-
sert can work on the structured document, either after striking of an element, or at a pro-
vided location. The location for insert is either be f ore(element) a f ter(element) or end.
And finally, striking an element followed by an insert for a new element can be shortened
as a rewrite statement. For example, rewrite Subsection(”1”) as < text > is equivalent
to strike Subsection(”1”); insert < text >;. We use the rewrite for brevity.

5. Parsing amendments to CIMPL and AMPL

The list of words identified in Section 3 allows us to use a compositional semantics [15]
approach for parsing plain text amendments into a formal representation of the amend-
ments grammar. Compositional semantics allows us to formally specify the semantics for
each lexical item. We derive the semantics of the whole phrase as a composition of the
individual lexical items. The formalism we use for specifying the compositional seman-
tics for our lexicon is called Categorial Grammar [16]. In Categorial Grammar, words are
categorized based on their grammatical roles. For each entry in the lexicon, we provide
the text (which could be a word or a short phrase), the syntactic category of the item, and
its semantics. A key attribute of Categorial Grammar is the correspondence between the
syntax and semantics of each lexical element.

The syntactic categories we use correspond to the role of each lexical item in the
amendment phrase, and also to the semantics of AMPL and CIMPL (see Section 4).
Instead of broad grammatical categories such as nouns, we use finer categories such as
string, elements, ranges, positions, location and action.

As an example, here are the entries for the word “before” in the lexicon:

"before" Positions/Ranges \rns.before(rns);

"before" Loc/Elements \elements.before_loc(elements);

"before" (Ranges\Ranges)/Ranges \rns.\rns1.is_before(rns,rns1);

As seen in this example, there are three entries for “before”, each of them with differ-
ent syntactic categories and semantics. The first has the category Positions/Ranges.
The forward slash means that we expect a “ranges” phrase after the word “before”, and
the result is a Positions phrase. The expression \rns.before(rns) is a lambda ex-
pression, defining the semantics of this lexical item. The result is the function before()

with the ranges phrase as argument. The next entry, with the category Loc/Elements is
similar, when there is an elements phrase instead of a ranges phrase after the preposition.

In the third entry, the category (Ranges\Ranges)/Ranges means that it expects
a “ranges” phrase after the preposition “before”, and another “ranges” phrase before it.
For example, if we have the amendment striking \and" before \the plan", for
the phrase \and" before \the plan", the “and” is a “ranges” phrase, and so is “the
plan”. The result is is before(search("the plan"), search("and")).

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application 243

6. Workflow and Implementation

We process bills in a custom, multi-stage Python-based, pipeline as follows:

1. Identify and extract amendments (XMLextract)
2. Parse English to CIMPL and AMPL
3. Retrieve target text from the current law database (XCiteDB)
4. Amend target text by executing the AMPL expression
5. Store back amended text

6.1. Extracting Amendments

As a starting point to process amendatory language in bills, we developed a tool called
XMLextract. It uses pattern matching to identify amendments within a bill. Our analysis
identified several trigger phrases that are used primarily in amendments, including: “is
amended”, “is further amended”, and “are amended”. To extract the amendments, we
look for such phrases. We benefit from the fact that the bills we process are in XML, and
use the structural information to retrieve the full amendment for each phrase.

6.2. Parse to CIMPL and AMPL

After extracting the amendments in a bill, we parse each amendment, and generate the
CIMPL and AMPL expressions for each amendment. The citation is the part that comes
before the trigger phrase, and the amendment action is the part that comes after it, as
described in Section 4. The two grammars are handled separately to allow citations to be
retrieved and amended independently by different amendment phrases.

6.3. Retrieve Target Text

After obtaining the CIMPL and AMPL expressions for the amendment, we retrieve the
part of the law to be amended. This presents a significant challenge. As described in
the House Clerk’s report [2], “On the federal level, there is no single unified code like
some of our state legislatures have or other national parliaments. When amending current
law, federal legislation is drafted to several sources including the positive Titles of the
U.S. Code, the Statutes at Large, and named Acts from the HOLC Statutes Compilations
dataset. At this time, the ‘Changes in Existing Law’ application will illustrate changes to
the U.S. Code, the current Statute Compilations, and some Statutes at Large.”

In the above example, we need to retrieve Section 983(f)(8) of Title 18 of the U.S.
Code. An XML database can store all the laws in XML format, and would allow us to
retrieve the specific part of the law that we want to amend (e.g. only Section 983(f)(8),
and not the entire Title 18) at a particular point in time. For data retrieval, we use XCit-
eDB [17], an XML database that supports temporal versioning. This allows us to retrieve
the structured text of the target law according to the bill’s date.

6.4. Execute the AMPL expression

To execute amendments, we use another tool we developed, called runAMPL. This tool
receives an AMPL expression and the XML fragment for the target provision, and amends

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application244

Table 1. Results for 117th congress

Number Percent

Total 194151 100%
AMPL Parse Error 6267 3.23%
CIMPL Parse Error 4403 2.27%
Citation not found 23976 12.35%
Amendment failed 21905 11.28%
Parsed successfully 183481 94.5%
Completed 134254 69.15%

it by executing the provided AMPL code. Where execution of an amendment fails, it
often indicates a drafting error, such as a typo in the amendment, or a conflict with
another amendment. In such cases, the system issues a notification to the user, who can
then correct the amendment.

6.5. Store Back Amended Text

Finally, after getting the amended provision from runAMPL, we store it back into the
law database. XCiteDB supports branches, which allows us to store the amended text in
a branch named after the amended bill (for example, 115hr1067ih), so that we could
retrieve the law as amended by each bill, without overwriting the original law on the main
branch. This system, in theory, would allow us to automatically execute amendments
as part of the consolidation or codification process. In practice, codification is done by
the Law Revision Counsel and involves additional editorial work that requires human
judgment, so this automated system is not currently used in the codificaiton process.

7. Evaluation

Table 1 shows the results when running the bills from the 117th congress. As seen in the
table, only 5.5 percent fail due to amendment language which is not supported in the lex-
icon, and doesn’t parse to AMPL and CIMPL, and 94.5 percent are parsed successfully.
Out of the successfully parsed amendments, about 12 percent fail because the citation is
not found, mostly because the database is incomplete and missing some laws. Similarly,
11.28 percent fail because the retrieved text is different than expected by the amendment
(e.g. searched string not found). This can happen either because of data issues or drafting
error (e.g. typo). The system identifies any potential errors and reports them to the users
to analyze and correct in future versions of the bill, as appropriate.

8. Conclusion and Future work

This paper presents a system that employs a categorial grammar lexicon and two spe-
cially designed formal languages, AMPL and CIMPL, for processing amendments. This
technology is implemented as part of a suite of software tools developed for the House
of Representatives, which extracts and automatically executes amendments within bills.
It also generates comprehensive reports showing the potential impact of these bills on

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application 245

existing legislation. This system achieves greater than 94 percent success rate in parsing
into executable grammar in U.S. bills. Phrases that cannot be automatically processed
by the system often indicate errors in drafting or conflicting amendments, improving the
overall efficiency and accuracy of the legislative process. Future work may extend this
grammar to increase coverage, and support other jurisdictions and languages. We will
also address current weaknesses in the current laws database, and provide more detailed
automated feedback related to drafting errors.

8.0.1. Acknowledgements

We are grateful to Kirsten Gullickson and her team in the House Office of the Clerk,
and E. Wade Ballou, Jr. House Legislative Counsel and his team for their vision and
leadership in this work, and their generosity in sharing their deep expertise. We also
thank colleagues from Xcential Corporation as well as other public sector team members
for their feedback, testing, development and analysis.

References

[1] Deschler’s Precedents;. (accessed April 19, 2023). https://www.govinfo.gov/content/

pkg/GPO-HPREC-DESCHLERS-V4/html/GPO-HPREC-DESCHLERS-V4-3-7-3.htm#:~:

text=Sec.%2060.%20Comparative%20Prints;%20The%20Ramseyer%20Rule.
[2] Office USHC. Comparative Print Project: Quarterly report to the Committee on House Ad-

ministration; 2022. https://usgpo.github.io/innovation/resources/reports/

Clerk-QR10-Comparative-Print-Project.pdf.
[3] De Maat E, Winkels R, Van Engers T. Automated Detection of Reference. In: Legal Knowledge and

Information Systems: JURIX 2006: the Nineteenth Annual Conference. vol. 152. IOS Press; 2006. p. 41.
[4] de Maat E. Making Sense of Legal Texts; 2012. Ph.D. thesis, University of Amsterdam.
[5] Arnold-Moore T. Automatically processing amendments to legislation. In: Proceedings of the 5th

international conference on Artificial intelligence and law; 1995. p. 297-306.
[6] Van Gog R, Van Engers TM. Modeling legislation using natural language processing. In: 2001 IEEE

International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in
Cyberspace (Cat. No. 01CH37236). vol. 1. IEEE; 2001. p. 561-6.

[7] Boella G, Di Caro L, Leone V. Semi-automatic knowledge population in a legal document management
system. Artificial intelligence and Law. 2019;27:227-51.

[8] Statement of E. Wade Ballou, Jr., Legislative Counsel Office of the Legislative Counsel U.S. House of
Representatives; 2021. https://www.congress.gov/116/meeting/house/110533/witnesses/
HHRG-116-AP24-Wstate-BallouE-20200303.pdf.

[9] Diff-Match-Patch; 2021. (accessed May 2, 2023). https://github.com/google/

diff-match-patch.
[10] Clark J, et al. Xsl transformations (xslt). World Wide Web Consortium (W3C) URL http://www w3

org/TR/xslt. 1999;103.
[11] Walmsley P. XQuery. O’Reilly Media, Inc.; 2007.
[12] DeltaXML;. (accessed May 2, 2023). https://www.deltaxml.com.
[13] Wang Y, DeWitt DJ, Cai JY. X-Diff: An effective change detection algorithm for XML documents. In:

Proceedings 19th international conference on data engineering (Cat. No. 03CH37405). IEEE; 2003. p.
519-30.

[14] Gutiérrez-Soto C, Barra A, Landaeta A, Urrutia A. Change Detection by Level (CDL): An efficient
algorithm to detect change on XML documents. In: 5th International Conference on Computer Sciences
and Convergence Information Technology. IEEE; 2010. p. 1-7.

[15] Jacobson PI. Compositional semantics: An introduction to the syntax/semantics interface. Oxford
Textbooks in Linguistic; 2014.

[16] Steedman M. Categorial grammar. Lingua. 1993;90(3):221-58.
[17] XCiteDB. XCiteDB A Time Machine for Structured Data; 2023. Https://xcitedb-web.vercel.app/home.

S. Mador-Haim and A. Hershowitz / Executing United States Bills into Law: A Working Application246

https://www.govinfo.gov/content/pkg/GPO-HPREC-DESCHLERS-V4/html/GPO-HPREC-DESCHLERS-V4-3-7-3.htm#:~:text=Sec.%2060.%20Comparative%20Prints;%20The%20Ramseyer%20Rule
https://www.govinfo.gov/content/pkg/GPO-HPREC-DESCHLERS-V4/html/GPO-HPREC-DESCHLERS-V4-3-7-3.htm#:~:text=Sec.%2060.%20Comparative%20Prints;%20The%20Ramseyer%20Rule
https://www.govinfo.gov/content/pkg/GPO-HPREC-DESCHLERS-V4/html/GPO-HPREC-DESCHLERS-V4-3-7-3.htm#:~:text=Sec.%2060.%20Comparative%20Prints;%20The%20Ramseyer%20Rule
https://usgpo.github.io/innovation/resources/reports/Clerk-QR10-Comparative-Print-Project.pdf
https://usgpo.github.io/innovation/resources/reports/Clerk-QR10-Comparative-Print-Project.pdf
https://www.congress.gov/116/meeting/house/110533/witnesses/HHRG-116-AP24-Wstate-BallouE-20200303.pdf
https://www.congress.gov/116/meeting/house/110533/witnesses/HHRG-116-AP24-Wstate-BallouE-20200303.pdf
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://www.deltaxml.com

