
New Horizons of Legal Judgement
Predication via Multi-Task Learning and

LoRA

REN-DER SUN a, CHIA-HUI CHANG b,1, and KUO-CHUN CHIEN c

a renkensun40@gmail.com
b chiahui@g.ncu.edu.tw

c qk0614@gmail.com
ORCiD ID: Ren-Der Sun https://orcid.org/0009-0008-2351-5353, Chia-Hui Chang

https://orcid.org/0000-0002-1101-6337, Kuo-Chun Chien
https://orcid.org/0009-0000-0441-0363

Abstract.

Legal Judgment Prediction (LJP) aims to predict the judgement results (such
as legal article, charge and penalty) based on the criminal facts of the case. Most
previous research in this field was based on criminal statements from court ver-
dicts. However, each verdict actually is based on the content from indictments.
For prosecutors, will the case be dismissed or processed? If the case is accepted,
is the penalty a jail sentence or a fine? What is the charge and article violated?
In this study, we therefore define three novel LJP tasks for prosecutors, includ-
ing prosecution outcome prediction (LJP#1), imprison prediction (LJP#2) and fine
prediction (LJP#3). We explore various multi-task learning (MTL) framework
based on Word2Vec and BERT language model (LM) with either topology-based
or message-passing mechanism. Moreover, we employed the LoRA (Low-Rank
Adaptation) technique to save both computation time and resources during fine-
tuning. Experimental results demonstrated that Word2Vec-based model combined
with message passing architecture still has the potential to outperform large LM
like BERT, while BERT-based models with a simple parallel architecture generally
performed well. Finally, using LoRA for fine-tuning not only reduced training time
(by 45%) but also improved performance (2.5% F1) in some LJP tasks.

Keywords. Legal Judgement Prediction, Large Language Model, LoRA, PEFT

1. Introduction

Legal artificial intelligence (AI) has a wide range of applications, including legal judg-
ment prediction, similar case matching, legal question answering, etc. In this study, we
focus on the task of Legal Judgment Prediction (LJP). A typical LJP task involves pre-
dicting the legal articles, charge, and term of penalty simultaneously based on given
criminal fact, thus it often require a multi-task learning (MTL) framework. In the past,

1Corresponding Author: Chia-Hui Chang, Dept. of Computer Science & Information Engineering, National
Central University, Taiwan. Email: chia@csie.ncu.edu.tw

Legal Knowledge and Information Systems
G. Sileno et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230966

207

most related studies use the fact description recorded in the court verdicts as input (e.g.
the CAIL dataset [1]In practice, both indictments and verdicts of criminal cases are
open data from Ministry of Justice Procuratorate Agency Public Document Query Sys-
tem. Although using the criminal facts in the judgment as input may more accurately pre-
dict the outcome of the case, the judgments could not be used as input in real situation.
Rather, we are more concerned with the consequences of prosecution. In this study, our
main goal is to predict possible outcomes following prosecution, which can assist young
prosecutors in anticipating potential judgment results. For example, will the case be sus-
tained or dismissed? If the case is dismissed, what are the grounds for its rejection? If
sustained, what judgment the defendant might face, will the punishment involves impris-
onment or fined? The first three questions formulate our first LJP task, prosecution out-
come prediction (LJP#1). Furthermore, in criminal sentencing, judges can impose fines
instead of imprisonment for less serious cases. Therefore, the second and third LJP tasks
deal with imprisonment cases (LJP#2) and fine (LJP#3) penalties respectively. Similar
to the CAIL dataset, the two LJP tasks include three subtasks: legal article, charge, and
term prediction. Since Taiwan’s criminal law consists of general laws and special laws,
such as the Securities Exchange Law and the Law on the Administration of Firearms,
Ammunition and Knives, we introduced the subtask of law prediction. The definitions
of the three LJP tasks are illustrated in Figure 1, where the numbers under each subtask
indicate the number of labels in each subtask. Besides, predicting charges has a very im-
portant purpose, because the ”charge” charged by the prosecutor during the prosecution
stage may be different from the ”charge” decided by the judge during the sentencing
stage.

Figure 1. Three LJP Tasks (The numbers indicate the number of labels for each subtask.)

Since LJP is essentially a multi-task learning (MTL) framework and there are topo-
logical dependencies between these legal subtasks, Zhong et al. [2] proposed a topolog-
ical multi-task learning framework named TopJudge to improve judgment prediction by
incorporating dependencies through directed acyclic graph (DAG). On the other hand,
He et al. [3] introduced iterative message passing networks (IMN) to pass information
through shared latent variables between subtasks of sentiment analysis to make better
predictions. However, both TopJudge and IMN were proposed based on shallow (small)
language models such as Word2Vec. It is unclear whether these topology-based struc-
tures or message-passing networks are still useful for the transformer-based language
model BERT. Meanwhile, since we have three LJP tasks, if we train a large language
model separately for each LJP task by fully fine-tuning all parameters, the cost is triple
in terms of time, memory and storage. To save the cost, we introduce the LoRA (Low-
Ranked Adaptation) [4] architecture, a technique in PEFT (Parameter Efficient Fine-
tuning) [5], which can reduce trainable parameters without sacrificing performance, thus
save computing resources and reducing training time, or even gain better performance

R.-D. Sun et al. / New Horizons of Legal Judgement Predication208

https://psue.moj.gov.tw/psiqs/index.jsp
https://psue.moj.gov.tw/psiqs/index.jsp

than full tuning. To sum up, we study the Multi-Task Learning (MTL) framework and
try several MTL structures such as TopJudge, IMN, and their combinations, along with
various language models including Word2Vec and BERT. We analyze the performance
of different topologies and language model combination to find the optimal configuration
for three LJP tasks defined in this paper. Additionally, we apply LoRA for fine-tuning to
the prediction of above tasks. The experimental results show that the Word2Vec-based
model and appropriate topology architecture still have the potential to outperform large-
scale language models (in LJP1), but BERT-based models usually only require the sim-
plest parallel architecture model to perform well (LJP2 and 3). Finally, fine-tuning with
LoRA not only reduces training time (by 45%) but also improves performance on a spe-
cific LJP task (2.5% F1). The contributions of this paper are as follows:

• We define three novel LJP tasks from prosecutors perspective to address practical
scenarios encountered by prosecutors in their work, including prosecution result
prediction, fined prediction, and imprisonment prediction.

• We explore various multi-task learning architectures with different language mod-
els. By leveraging the dependencies between different subtasks, we transfer rele-
vant knowledge to dependent subtasks.

• We exploit the advantage of LoRA to reduce the training time and storage space
requirements caused by large language models.

2. Related Work

Multi-task learning is a machine learning paradigm where a model is trained to perform
multiple related tasks simultaneously, rather than training separate models for each in-
dividual task. The idea is that jointly learning multiple tasks can improve the model’s
overall performance compared to training separate models. This is achieved by sharing
and leveraging common features or representations across tasks, which can help tasks re-
inforce each other and lead to better generalization. In classic MTL, all tasks are parallel
and independent. However, when there are dependencies between tasks, the prediction
results of other tasks may help predictions for other tasks. Therefore, Zhong et al. [2]
proposed a MTL framework called TopJudge, which uses inter-task dependencies to help
predict the results of other sub-tasks within the model. The dependencies between sub-
tasks are connected with nodes to form a directed acyclic graph (DAG). The information
flows to other subtasks along the connection established by the directed graph, realizing
information sharing between subtasks and assisting the model to make legal judgment
predictions. In addition to MTL, Xu et al. [6] proposed an graph neural network called
GDL and an attention mechanism to extract discriminative features from fact descrip-
tions to overcome the difficulties of distinguish confusing articles. On the other hand,
Gan et al. [7] injected the legal knowledge as a set of first-order logic rules and integrate
these rules into a co-attention network-based model, which enhances model with explicit
logical reason capabilities and makes the prediction result even more interpretable.

3. Problem Definition of three LJP task

Given D = {F1,F2, · · · ,Fn} as a dataset containing n cases from indictments, where
each case Fi is composed of a series of m words, Fi = (wi

1,w
i
2, · · · ,wi

m). Depending

R.-D. Sun et al. / New Horizons of Legal Judgement Predication 209

on the judgement outcome from court verdicts, a case is associated with three la-
bels: si ∈ {Sustained,Dismissed}, ri ∈ {Innocent, Immunity,Denied,Sustained}, and
pi ∈ {Imprisonment,Fine,Dismissed}. If a case is rejected, then pi is labeled with
Dismissed. If a case is sustained, then ri is labeled with Sustained. The case description
Fi and the three labels form the LJP#1 task. For LJP#2 task, all cases with pi = Imprison
will also be processed to obtain the associated law li ∈ Rp, articles ai ∈ Rr, charge ci ∈ Rq

and prison term ti ∈ R, where p and q denote the size of the one-hot vector for law and
charge, while ai is a multi-hot vector of articless with dimension r. Finally, LJP#3 has
similar labels as that of LJP#2 but a fine value instead of prison sentence value.

4. Method

In this paper, we introduce an alternative approach based on message passing to exploit
subtask dependency, and low rank adaptation (LoRA) for large language models to re-
duce the number of parameters to be fine-tuned. As with other MTL models, all cate-
gorical subtasks (including all subtasks in LJP#1 as well as the law, articles, and charge
prediction task) are optimized with cross entropy loss function as shown in Eq.(1), where
M denotes the number of classes, yo,c is a binary indicator (0 or 1) representing whether
class label c is the correct classification for observation o, and po,c is the predicted prob-
ability that observation o is of class c.

Cross Entropy Loss =
M

∑
c=1

yo,c log(po,c) (1)

As for imprisonment and fine prediction tasks, log square loss function is used as shown
in Eq.(2), where yo is the true value of the example o and ŷo is the predicted value.

Log Square Loss = (log(yo +1)− log(ŷo +1))2 (2)

4.1. Message-Passing Model

Message passing is a commonly used mechanism in graph neural networks. It has also
been applied in interactive multi-task networks (IMN)[3] for aspect-based sentiment
analysis. As shown in Figure 2, the feature extraction component encode input fact de-
scriptions into embedding vectors, which is then fed to each task-specific component for
prediction. The output results of each task are returned and combined to the shared la-
tent vector through the message passing mechanism. After completing the update of the
shared latent vector, the next round of iterations starts until the given number of iterations
is completed. In addition, subtasks with interdependencies, the dependence of articles on
law, the dependence of charges on articles, the dependence of penalty on articles, will be
linked by attention mechanism.

4.2. IMN+TopJudge

The IMN model is specifically designed to address the issue of insufficient interaction be-
tween independent subtasks in multi-task learning. It employs a Message-Passing mecha-

R.-D. Sun et al. / New Horizons of Legal Judgement Predication210

Figure 2. Message Passing Architecture Figure 3. IMN+TopJudge Architecture

nism to enhance interaction by allowing the shared embedded vector to propagate among
subtasks. This interaction is critical to improving the performance of the LJP model in
gathering information from different subtasks. However, the mutual dependencies among
subtasks cannot be fully enforced even if we incorporate sentencing logic into the model
through attention mechanisms. Therefore, we integrate IMN and TopJudge to ensure the
final judgement predictions. As shown in the figure, the fact representation output of the
IMN module is input into the TopJudge module, which uses the topological relationship
between subtasks to enhance predictions. It is hoped that this integration, in addition
to utilizing sub-task interactions, will also be consistent with the final sentencing logic,
ensuring the prediction accuracy and interpretability of the LJP task.

4.3. Low Rank Adaptation for Large Language Model

Please note that both TopJudge and IMN are models proposed before BERT, and their
input is encoded using shallow word embedding model, Word2Vec. Therefore, the model
parameters are fewer and is difficult to capture rich contextual information and seman-
tic nuances. On the other hand, BERT [8] is a deep learning model based on the Trans-
former architecture. The bidirectional attention mechanism and deep architecture en-
able it to capture complex linguistic relationships and dependencies, while also produc-
ing models with hundreds of millions or even billions of parameters. Although the pre-

Figure 4. BERT+Parallel Architecture Figure 5. LoRA Architecture

train and fine-tune paradigm of large language models has been widely accepted, fine-
tuning all parameters usually requires a large amount of computing resources. In order
to overcome the challenges in fine-tuning LLM, we introduce Parameter-Efficient Fine-

R.-D. Sun et al. / New Horizons of Legal Judgement Predication 211

Tuning[5] technique, which freezes the pre-trained language model (PLM) by selectively
updating only a subset of parameters and enabling you to get performance comparable
to full fine-tuning. In this paper, we specifically utilize Low-Rank Adaptation (LoRA) to
enhance PLM by converting attention mechanisms into low-rank representations, result-
ing in fewer trainable parameters. As shown in Figure 5, by incorporating LoRA mod-
ules within the Transformer architecture, the input data is transformed into embeddings
and passed to subtasks, and connected through Fully-Connected Layers to offer a more
efficient approach to Fine-Tuning models.

5. Experiment

We collected criminal prosecution cases and their corresponding first-instance judgments
from the Judicial Yuan’s judgment system in Taiwan, spanning from June 15, 2018, to
June 30, 2021 through web scraping. Fortunately, most legal text structures have regu-
larity, we observe the text structure and use regular expressions to extract the charges,
articles, law recorded in the indictment and combined with the penalty recorded in the
corresponding first-instance judgment. This information was then stored in JSON for-
mat. The code that we extract these labeled can be viewed in the following link 2. In
addition, since the interpretation of the law may change over time, we use cases before
2021 as training data and cases after 2021 as testing data. It’s important to note that in
practice, a single case might violate multiple article, but prosecutors typically list the
most severe charge in the indictment. Therefore, while we have more article than charge
names, predicting charges is more challenging than predicting article.

Task #Cases #Law #Articles #Charges #Train #Valid #Test

TWLJP#1 356,588 - - - 285,183 35,640 35,765

TWLJP#2 280,402 33 165 94 224,326 28,039 28,087

TWLJP#3 46,292 9 64 24 37,024 4,627 4,641
Table 1. TWLJP Dataset

Table 1 describes the datasets we prepared for the three LJP tasks. TWLJP#1 is
used to predict prosecution results, including three subtasks: Task1 - whether there is
punishment (2 labels), Task2 - reasons for not punishing (3+1 labels), Task3 - punishment
type (2+1 labels) . TWLJP#2 contains all cases with prison terms, including the violated
laws (33 tags), articles (164 tags), charges (94), and prison terms. Finally, TWLJP#3
focuses on cases where only fines are imposed as penalties. The subtasks in TWLJP#3
resemble those in TWLJP#2, except for the fine prediction task. Besides, it is worth
noting that the number of legal articles (64), charges (24) is comparatively smaller in
TWLJP#3. For the evaluation of law, article, charge, or subtasks in TWLJP#1, we use
Macro F1 as shown in Eq.(3) as the evaluation metric. As for the prediction of fines and
term of imprisonment, we employ Log-Distance[9] as shown in Eq.(4) as the evaluation
metric, where Oi is the output value and Li is the Label value.

2https://drive.google.com/file/d/12BHkJKTuQ_JJDrKvTIuM9aKJEUKQhr09/view?usp=

sharing

R.-D. Sun et al. / New Horizons of Legal Judgement Predication212

https://drive.google.com/file/d/12BHkJKTuQ_JJDrKvTIuM9aKJEUKQhr09/view?usp=sharing
https://drive.google.com/file/d/12BHkJKTuQ_JJDrKvTIuM9aKJEUKQhr09/view?usp=sharing

Macro F1 =
1
n

n

∑
i=1

(
2∗Precisioni ∗Recalli

Precisioni +Recalli
) (3)

Log Distance = Σn
i=1(

|log(Oi +1)− log(Li +1)|
n

) (4)

In the following experiment, we conduct LJP#1 and LJP#2 for 10 epoch and LJP#3
for 50 training epoch. While using BERT as Language model, we set the hidden size
with 768 and maximum length with 512. The optimizer is BERT Adam with learning
rate 1e-5; When using LoRA for fine-tuning the BERT model, the value of rank is set
to 8. And we choose AdamW as the optimizer with the learning rate of 3e-4, maximum
length of 512 and hidden size of 768 for the parameters of pre-trained language model.
While using Word2Vec as the Language model, the hidden size is 768 but the maximum
length change to 1024 and we use Adam as the optimizer with the learning of 1e-4.
In each experiment, we selected the epoch with the best performance on the validation
dataset and measured the performance on the testing dataset. The performance shown
in the tables is the average performance of the model over three experiments with its
standard deviation.

5.1. Experiment Result of LJP#1

Table 2 presents the experimental results of two language models combined with differ-
ent topology on LJP#1 dataset. It is surprising to see that small (53M) traditional mod-
els based on Word2Vec with appropriate topology architecture design could outperform
large-scale language models. One possible explanation is that the task of LJP#1 is sim-
ple, so large language models do not take advantage. As for fine-tuning the BERT-based
models using low-rank adaptation, the training time is significantly reduced (39 to 49%)
in all cases, as shown in Table3. In terms of prediction performance, LoRA can improve
the performance of most subtasks, but sometimes sacrifices the performance of other
subtasks.

TWLJP1-Prosecution Result Prediction-Apply different topology

LM Topology #Para Time
Task1(Punish) Task2(Reason) Task3(Penalty)

MacroF1 MacroF1 MacroF1

Word2Vec
TopJudge 140M 45mins 98.96±0.05 95.66±0.75 71.53±0.41

IMN 91M 66mins 98.53±0.11 94.66±0.40 73.90±0.17
IMN+TopJudge 141M 46mins 98.63±0.25 71.96±0.35 66.93±0.64

BERT
TopJudge 153M 198mins 95.03±0.37 87.36±0.15 69.96±0.87

IMN 103M 197mins 94.80±0.10 64.83±0.40 65.20±1.24
IMN+TopJudge 154M 205mins 98.76±0.15 67.20±0.62 63.30±0.17
Table 2. TWLJP#1-Prosecution Result Prediction-Apply different topology

5.2. Experiment Result of LJP#2

For the more challenging task of LJP#2, the performance of IMN+TopJudge architecture
based on Word2Vec performs the best, surpassing the individual performance of IMN

R.-D. Sun et al. / New Horizons of Legal Judgement Predication 213

TWLJP#1-Prosecution Result Prediction-Apply LoRA or not

Topology/Embedding LoRA #Para Time
Task1 Task2 Task3

MacroF1 MacroF1 MacroF1

Parallel/BERT
N/A 102M 192 mins 93.13±1.75 64.26±1.43 51.03±4.74

+LoRA 0.3M 98 mins 95.20±0.17 78.13±0.8 74.33±1.62

TopJudge/BERT
N/A 153M 198 mins 95.03±0.37 87.36±0.15 69.96±0.87

+LoRA 51M 110 mins 95.13±0.20 85.90±1.05 70.76±0.47

IMN/BERT
N/A 103M 197 mins 94.80±0.10 64.83±0.40 65.20±1.24

+LoRA 1.5M 115 mins 95.20±0.17 76.56±1.30 69.13±0.11

IMN+TopJudge/BERT
N/A 155M 205 mins 98.76±0.15 67.20±0.62 63.30±0.17

+LoRA 52M 125 mins 95.43±0.11 87.53±0.15 70.33±0.23

Table 3. TWLJP#1-Prosecution Result Prediction-Apply LoRA or not

and TopJudge (see Table 4). As for the BERT-based models, a simple TopJudge archi-
tecture outperforms the others, highlighting that LLM-based models do not necessitate
overly complex structures. Overall, the IMN+TopJudge architecture based on Word2vec
also outperforms TopJudge based on Bert (except for penalty prediction). On the other
hand, as shown in Table 5, the performance improvement of LoRA for simple architec-
tures is not as good as that for complex architectures. In other words, for simple architec-
tures such as Parallel and TopJudge architectures, models without LoRA perform better
than models with LoRa. For complex architectures, such as IMN and IMN+TopJudge,
models using LoRA perform better than models without LoRA. Furthermore, when us-
ing BERT-based models, the simplest parallel architecture outperforms other models,
just like LJP#1.

TWLJP2-Imprisonment Prediction-Apply different topology

LM Topology #Para Time
Law Article Charge Term

MacroF1 MacroF1 MacroF1 LD

Word2Vec
TopJudge 140M 56mins 89.05±0.21 66.00±0.56 64.75±0.49 0.76±0.01

IMN 91M 90mins 89.90±0.65 69.90±0.36 63.90±0.26 0.75±0.01
IMN+TopJudge 142M 142mins 93.46±0.20 74.53±0.41 67.16±0.40 0.75±0.00

BERT
TopJudge 153M 207mins 93.33±0.87 64.80±0.98 65.33±1.40 0.72±0.01

IMN 103M 205mins 81.20±0.36 50.96±0.32 54.53±0.37 0.76±0.01
IMN+TopJudge 154M 221 mins 89.03±0.23 49.10±0.36 56.40±0.36 0.75±0.01

Table 4. TWLJP#2-Imprisonment Prediction-Apply different topology

5.3. Experiment Result of LJP#3

Finally, the LJP#3 task has the smallest training data set (37K instances) among the three
problems. Therefore, we train the model for 50 epochs. Overall, when using Word2Vec
as the language model, all topologies perform better than their corresponding topolo-
gies based on BERT (see Table 6). However, when using BERT as the LM, a simple
parallel structure can achieve better performance than complex topologies such as IMN,
TopJudge, IMN+TopJudge. In addition, freezing BERT-based LM and adding LoRA still
have comparable performance / or will not drop much in performance, but it will reduce
a lot of training time and computing resources (as shown in Table 7).

R.-D. Sun et al. / New Horizons of Legal Judgement Predication214

TWLJP#2-Imprisonment Prediction-Apply LoRA or not

Topology/Embedding LoRA #Para Time
Law Article Charge Term

MacroF1 MacroF1 MacroF1 LD

Parallel/BERT
N/A 102M 201 mins 93.33±0.25 73.20±0.40 68.06±0.45 0.74±0.01

+LoRA 0.7M 115 mins 93.16±0.20 70.70±0.17 69.80±0.30 0.72±0.01

TopJudge/BERT
N/A 153M 207 mins 93.33±0.87 64.80±0.98 65.33±1.40 0.72±0.01

+LoRA 51M 116 mins 90.63±0.41 66.20±0.55 62.03±0.66 0.77±0.01

IMN/BERT
N/A 104M 205 mins 81.20±0.36 50.96±0.32 54.53±0.37 0.76±0.01

+LoRA 2.8M 120 mins 92.96±1.04 63.30±0.98 63.30±0.98 0.75±0.01

IMN+TopJudge/BERT
N/A 154M 221 mins 89.03±0.23 49.10±0.36 56.40±0.36 0.75±0.01

+LoRA 52M 135 mins 89.93±0.37 64.60±1.24 59.66±0.25 0.74±0.01

Table 5. TWLJP#2-Imprisonment Prediction-Apply LoRA or not

TWLJP3-Fined Prediction-Apply different topology

LM Topology #Para Time
Law Article Charge Term

MacroF1 MacroF1 MacroF1 LD

Word2Vec
TopJudge 141M 10mins 96.67±0.40 76.07±2.15 72.43±1.04 8.32±0.02

IMN 91M 15mins 95.03±1.72 68.83±3.37 68.67±1.36 8.44±0.02
IMN+TopJudge 143M 20mins 96.87±0.38 74.13±2.19 71.33±0.68 8.30±0.01

BERT
TopJudge 153M 28mins 96.87±0.61 68.73±4.24 69.67±2.25 8.21±0.04

IMN 104M 27mins 90.33±4.80 63.30±3.36 67.30±1.91 8.28±0.05

IMN+TopJudge 155M 27mins 95.77±2.42 64.00±2.33 66.57±1.97 8.31±0.10
Table 6. TWLJP#3-Fined Prediction-Apply different topology

TWLJP#3-Fined Prediction-Apply LoRA or not

Topology/Embedding LoRA #Para Time
Law Article Charge Money

MacroF1 MacroF1 MacroF1 LD

Parallel/BERT
N/A 103M 27 mins 97.73±0.51 71.93±1.89 73.50±0.35 9.11±0.03

+LoRA 0.4M 16 mins 96.57±0.65 71.77±3.34 71.07±0.55 8.43±0.03

TopJudge/BERT
N/A 153M 28 mins 96.87±0.61 68.73±4.24 69.67±2.25 8.21±0.04

+LoRA 51M 16 mins 95.37±0.99 64.43±4.63 67.40±0.79 8.34±0.02

IMN/BERT
N/A 104M 27 min 90.33±4.80 63.00±3.36 67.30±1.91 8.28±0.05

+LoRA 1.9M 15 mins 95.03±0.50 64.17±2.44 65.87±2.83 8.32±0.03

IMN+TopJudge/BERT
N/A 155M 29 mins 95.77±2.42 64.00±2.33 66.57±1.97 8.31±0.10

+LoRA 53M 16 mins 95.17±1.16 62.33±2.51 61.60±1.23 8.34±0.04

Table 7. TWLJP#3-Fined Prediction-Apply LoRA or not

6. Conclusion and Future Work

In this paper, we define three novel tasks from a prosecutor’s perspective and use indict-
ments as input to address difficulties that prosecutors may encounter in their work. We
explore different topologies and various language models for multi-task learning. Exper-
imental results show that for simple multi-task learning like LJP#1 or when the training
data set is large enough like LJP#2, Word2Vec-based model when combined with appro-
priate topology can outperform BERT-based models. For BERT-based models, simple
parallel structures often outperform other complex architectures. In addition, Bert-based
models also outperform Word2Vec-based models when the amount of training data is
limited. Finally, applying LoRA can reduce the number of trainable parameters by ap-
proximately 24% and save nearly 50% of training time. For future work, we find that the

R.-D. Sun et al. / New Horizons of Legal Judgement Predication 215

performance of current models sometimes sacrifices the performance of some subtasks
to achieve the performance of other subtasks. How to ensure that each sub-task has a
certain effectiveness is the direction of our future efforts.

References

[1] Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong
Sun, Yansong Feng, Xianpei Han, Zhen Hu, Heng Wang, and Jianfeng Xu. Cail2018:
A large-scale legal dataset for judgment prediction, 2018.

[2] Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Chaojun Xiao, Zhiyuan Liu, and Maosong
Sun. Legal judgment prediction via topological learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 3540–
3549, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. . URL https://aclanthology.org/D18-1390.

[3] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An interactive
multi-task learning network for end-to-end aspect-based sentiment analysis. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 504–515, Florence, Italy, July 2019. Association for Computational Lin-
guistics. . URL https://aclanthology.org/P19-1048.

[4] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models, 2021.

[5] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak
Paul. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://

github.com/huggingface/peft, 2022.
[6] Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, and Junzhou Zhao.

Distinguish confusing law articles for legal judgment prediction. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages
3086–3095, Online, July 2020. Association for Computational Linguistics. . URL
https://aclanthology.org/2020.acl-main.280.

[7] Leilei Gan, Kun Kuang, Yi Yang, and Fei Wu. Judgment prediction via injecting legal
knowledge into neural networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(14):12866–12874, May 2021. . URL https://ojs.aaai.org/

index.php/AAAI/article/view/17522.
[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. . URL https://aclanthology.org/N19-1423.

[9] Junyun Cui, Xiaoyu Shen, Feiping Nie, Zheng Wang, Jinglong Wang, and Yulong
Chen. A survey on legal judgment prediction: Datasets, metrics, models and chal-
lenges, 2022.

R.-D. Sun et al. / New Horizons of Legal Judgement Predication216

https://aclanthology.org/D18-1390
https://aclanthology.org/P19-1048
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://aclanthology.org/2020.acl-main.280
https://ojs.aaai.org/index.php/AAAI/article/view/17522
https://ojs.aaai.org/index.php/AAAI/article/view/17522
https://aclanthology.org/N19-1423

