Legal Knowledge and Information Systems 119
G. Sileno et al. (Eds.)

© 2023 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230954

Deontics and Time in Contracts: An
Executable Semantics for the L4 DSL

Seng Joe WATT #!, Oliver GOODENOUGH ° and Meng Weng WONG *

4 Singapore Management University Centre for Computational Law
b CodeX The Stanford Center for Legal Informatics and Vermont Law and Graduate
School

Abstract. Existing approaches to modelling contracts often rely on deontic logic to
reason about norms, and only treat time qualitatively. Using L4, a textual domain
specific language (DSL) for the law, we offer a more operational interpretation of
norms, based on states and transitions, that also accounts for the granular timing of
events. In this paper, we present a higher-level rendering of the loan agreement from
Flood & Goodenough in L4, and an accompanying operational semantics amenable
to execution and static analysis. We also implement this semantics in Maude and
show how this lets us visualize the execution of the loan agreement.

Keywords. formal specification, contract automation, norm operationalization

1. Introduction

Thus far, much of the work on analysing and reasoning about norms has been facilitated
by encoding them into deontic logic and logic programs, see for instance [1]. On the
other hand, Flood & Goodenough [2] propose that many financial contracts are inher-
ently computational in nature, and can be formalized via deterministic finite automata
(DFA). This is demonstrated by encoding a simple loan agreement as a DFA, with states
representing various situations contemplated in the contract and transitions between them
denoting events triggering a change in situation. While this approach is a useful and im-
portant demonstration of how one can obtain an executable model of a contract, the DFA
formalism has limitations. Perhaps the most apparent is that the DFA is arguably far-
removed from a human’s intuitive understanding of a contract, which is often expressed
textually, via normative language. Finding a practical approach to move from the DFA
to another executable formalism that addresses these issues is an obvious next step.

In this paper, we introduce the L4 DSL for law and show how its textual syntax
enables concepts like deontics and deadlines to be expressed more naturally, in the style
of a controlled natural language. We propose an operational semantics for L4 that allows
us to execute contracts, and lays the foundation for future work on formal analysis. To

ICorresponding Author: sjwatt@smu.edu.sg. This research/project is supported by the National Research
Foundation, Singapore under its Industry Alignment Fund — Pre-positioning (IAF-PP) Funding Initiative. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation, Singapore.

120 S.J. Watt et al. / Deontics and Time in Contracts: An Executable Semantics for the L4 DSL

illustrate the usefulness of this approach, we implement this semantics in Maude and
apply this to visualize the loan agreement in [2].
Limitations of the DFA approach. While one can easily encode consequences of real-
world events as transitions in a DFA as in [2], it is common in many legal traditions to
reason about and specify contracts in terms of normative requirements that need to be
fulfilled by various actors [1]. We believe that normative language embodies the psychol-
ogy that many humans bring to questions of contractual compliance, with such language
acting as a small “widget” for what could be broken out into a chain of smaller steps
around a logic of event and consequence. L4’s syntax serves some of this purpose.
Contracts also frequently embody some notion of time and deadline. These domain-
specific concepts are an integral part of contract drafting, as are the notions of actors
and actions. Unfortunately, these are not primitives of DFAs, so they must be encoded
manually, and in ways that may appear unnatural to a lay reader. For example, the passage
of time is usually explicitly reflected as an achieved event.

2. The L4 approach

The L4 language [3,4] for encoding legal texts addresses these shortcomings, using a nat-
ural language-based structure and syntax which allows the detailed, if artificially struc-
tured, expression of the obligations and consequences that need to be set out in most
legal specifications, at a higher level than the DFA formalism allows. L4, as with Legal-
RuleML [5], distinguishes between two kinds of rules: (i) constitutive, and (ii) regula-
tive (or prescriptive) rules. The former encodes static decision logic, which are similar
to Horn clauses in logic programs. The focus of this work is on the latter, i.e. regulative
rules, which concern the norms specifying expected actions in a legal text. These are a
central component in the computational structure of contracts like the loan agreement.
They govern the conditions and situations in which an actor is obliged, permitted or pro-
hibited from performing an action, as well as the consequences of fulfilling and violating
the given norms.
Syntax of regulative rules. Below is a EBNF grammar of the syntax of regulative rules
in L4. Here we use the following metavariables: actor, action and ruleName range
over strings, while n ranges over all natural numbers.
(rule) — (regulative) | ruleName "MEANS" (ruleNames)
(regulative) —
(§ | "RULE") ruleName “PARTY" actor (deontic)
action (deadline) [(henceClause)] [(lestClause)]
(deontic) — “MUST" | “MAY" | "SHANT"
(deadline) — (“ON" | “WITHIN) n "DAY”
(henceClause) — “HENCE" (ruleNames)
(lestClause) — “LEST" (ruleNames)

(ruleNames) — {ruleName “AND" } ruleName

Briefly, the intended meaning of a regulative rule is that the actor MUST/MAY/SHANT
perform the action according to the deadline. For deontics, MUST, MAY and SHANT,
denote obligations, permissions and prohibitions respectively. Note that these deontic
modalities have specific characteristics which are not fully in alignment with their use
in other systems. henceClause and lestClause specify the consequences of fulfilling
and violating the rule, in terms of which new rules that get triggered, i.e. become active.

S.J. Watt et al. / Deontics and Time in Contracts: An Executable Semantics for the L4 DSL 121

Deadlines are relative to the time when the rule is triggered, with WITHIN n DAY (resp.
ON n DAY) indicating that the action may occur at any time within the next n-days (resp.
only on the n-th day).

The rule names in a henceClause (resp. lestClause) denote rules that are trig-
gered when the obligation or prohibition is fulfilled (resp. violated). We identify the ful-
filment of an obligation with whether the actor performed the prescribed action within
the deadline, and violation is identified with the deadline passing before the actor per-
forms the action. These are defined symmetrically for prohibitions. Permissions can only
be fulfilled and not violated, and rules in the henceClause (resp. lestClause) are trig-
gered when the permission is exercised (resp. not exercised within the deadline). Finally,
the MEANS construct is used to combine rules, so that triggering the rule to the left of the
MEANS effectively triggers all those to its right.

The loan agreement in L4. Currently, the input format of L4 is comma-separated values
(CSV) rendered from a spreadsheet, with Google Sheets forming the primary interface
for interacting with L4. The L4 encoding of the contract can be found here 2.

§ Contract Commencement § Repay in two halves

PARTY Borrower PARTY Borrower

MAY request funds MUST repay first half
WITHIN 1 DAY ON 5 DAY
HENCE Remit principal HENCE Repay second half

. L. LEST Notify borrower
§ Remit principal

PARTY Lender § Accelerated repayments

MUST remit principal PARTY Borrower
WITHIN 1 DAY MUST repay outstanding amount
HENCE Repayment WITHIN 1 day

Repayment
MEANS Repay in two halves
AND Avoid default

Figure 1. Excerpt from L4 loan agreement

Fig. 1 contains an excerpt, which we use here to give an intuition for our operational,
state-transition based semantics. As a starting point, our encoding of the loan agreement
uses a version of the agreement that has been changed in some provisions from [2] as
we currently lack certain features like fixed dates, which are used as deadlines there. To
cope with this, we specify deadlines in terms of days relative to the time the rule triggers.
And for simplicity, we chose to use a shorter deadline of 5 days for the repayments.

For simplicity, we assume that the first rule in an L4 specification is the starting
rule, so that contract execution begins with only this rule being active. No other rules
in the L4 specification are active at this point, though they may get triggered as part of
the henceClause or lestClause of the starting rule, and of other rules later during
execution. In this case, the starting rule is labelled Contract Commencement, which
says that the actor, Borrower, may perform the request principal action any time
from the time the rule comes into effect up til 1 day later. The henceClause indicates
that if the permission to make a loan is exercised, another rule called Remit Principal

Zhttps://docs.google.com/spreadsheets/d/1_k17mzk2hTyPY2egbEVqXzr8uYAdi6BVqeMYdBxKB_
I/edit#gid=864296175

 https://docs.google.com/spreadsheets/d/1_k17mzk2hTyPY2egbEVqXzr8uYAdi6BVqeMYdBxKB_I/edit#gid=864296175
 https://docs.google.com/spreadsheets/d/1_k17mzk2hTyPY2egbEVqXzr8uYAdi6BVqeMYdBxKB_I/edit#gid=864296175

122 S.J. Watt et al. / Deontics and Time in Contracts: An Executable Semantics for the L4 DSL

is triggered. The lack of a lestClause indicates that no new rule is triggered when
the deadline passes without the permission being exercised. This obliges the lender to
send the principal amount to the borrower once the borrower has requested it; but if no
such request is made, the contract terminates successfully. Currently, we assume that
permissions are used up once the action occurs, so that no repeated actions are allowed.
This assumption mirrors that of [6], in which it is noted that one can also allow for
permissions that may be exercised more than once.

The Repayment rule, which represents the main body of the contract, is defined
via MEANS, and is triggered when the Remit principal rule is fulfilled, i.e. when the
lender sends the principal to the borrower. Triggering this Repayment rule then has the
effect of triggering the Repay in two halves and Avoid default rules in parallel.
The former obliges the borrower to make both repayments sequentially, and the latter
prohibits him from defaulting on representations and warranties.

As in [7], we distinguish between the violation of an obligation/prohibition and
the violation of the contract as a whole. Obligations and prohibitions like Remit
principal, which do not have a lestClause, are assumed to be non-compensable.
This means that when this obligation is violated, we deem the contract to have been
breached by the lender. Execution of the contract proceeds no further, so that execution
terminates in a breach state.

In contrast, some rules, like the Repay in two halves obligation, are compens-
able, with compensation mechanisms appearing in the lestClause. In this case, the vi-
olation of the rule results in the rules in the 1estClause being triggered, and the execu-
tion of the contract continues, as opposed to terminating in a breach state.

In the Repay in two halves rule, the ON 5 DAY deadline disallows early pay-
ments, as in the original agreement. The Notify borrower rule grants the lender per-
mission to notify the borrower and encodes the “notice and cure” compensation mecha-
nism. As noted in [2], this indicates the start of the compensation pathway, which gives
the borrower a second chance, by obliging the borrower to cure their default. Should the
borrower still not make amends, the execution of the contract has reached the point of no
return and no further second chances are given. This is embodied by the Accelerated
repayments obligation being triggered.

Unfortunately, our encoding of this rule does not faithfully capture the intuitive read-
ing of its natural language counterpart. That is, when the execution of the contract reaches
this stage, all other existing rules are irrelevant, and so one would like to terminate them
all when this comes into effect. While we would have liked to add support for this, we
encountered various complications and so left this for future work.

3. Transition system semantics and implementation

To define our semantics, we use the mathematical framework of Structural Operational
Semantics (SOS) [8], to describe a transition systems in terms of states, called configu-
rations, and transition rules that describe how one state can transition to another.

Definition [Configuration, Active rule instance] A configuration C is a pair of either:
(i) (Active, R) where Active indicates that the contract is still active (i.e. not breached),
and R, called the set of active rule instances, contains pairs (ruleName,) where ¢ is a
timer tracking the remaining to fulfill (resp. exercise) the obligation/prohibition (resp.

S.J. Watt et al. / Deontics and Time in Contracts: An Executable Semantics for the L4 DSL 123

1 day

Borrower does.request funds

Borrowéﬁibes—request funds /.

1.day

Figure 2. Start of contract

permission), or (ii) (Breached, A), a breach state, where A is the set of actors who
breached the contract.

The above definition for configurations, and that of our transition rules, are inspired
by timed transition systems [9]. Configurations track rules that are active at each point
during execution, along with their corresponding deadline. When a rule r is triggered,
we place a new active rule instance (r, ¢) into R, with ¢ being the initial deadline of r.

For transitions, we distinguish between: (i) action transitions, and (ii) tick transi-
tions, which denote that an actor performed an action, and the passage of one day respec-
tively. Each of these has an associated transition function, Oyciion (2ctor, action, C)
and &ck (C), defined recursively on R to compute the effect of the transition on the cur-
rent configuration C. Due to space constraints, we describe these informally here and
refer the interested reader to [10] for details. Informally, 8,ion removes active rule in-
stances where the corresponding rule of the instance has the same actor and action as
the action which occurred, triggering new rules in henceClause or lestClause ap-
propriately. &k decrements timers ¢ of active rule instances and triggers new rules sim-
ilarly to 8action. In their definitions, we ensure that if a non-compensable rule, i.e. a
MUST or MAY rule without a lestClause is violated, Oyction and ek yield a breach state
(Breached, {actor}) where actor is the actor who violated the rule. With this, we
have the following transition rules in our SOS:

applicable (C, actor,action) tick

action 1 day
C — ik (C)

(actor,action)
B

c Oaction (actor, action, C)

applicable (C, actor,action) is used to restrict action transitions to pairs of
(actor, action) which appear in rules that currently have active rule instances. Our
semantics does not currently allow for one to prioritize or override rules, nor does it
account for deontic inconsistencies. This means that for instance, configurations are al-
lowed to contain active rule instances of say, a MUST and SHANT rule that refer to the
same actor and action. Such a configuration remains active, and execution continues as
normal. Analysing a contract for such inconsistencies is planned for future work.
Executing and visualizing with Maude. We implemented our semantics in Maude [11],
a language grounded in equational and rewriting logic. With Maude, we can naturally
define: (i) our transition functions, O,cion and &ck, and (ii) our transition system with
rewriting rules mirroring our SOS. Such a transition system can then be executed and
model checked using tools such as [12]. While our current work does not account for
deontic inconsistencies, we aim to explore using such tools to detect them in the future.

We have implemented tools to transform L4 CSV specifications into a plain text for-
mat for consumption by Maude, which we then used to execute specifications and visu-
alize the state space. Fig. 2 shows the start of the loan agreement in the generated state

124

S.J. Watt et al. / Deontics and Time in Contracts: An Executable Semantics for the L4 DSL

space, with the leftmost state being the starting one. Action transitions are labelled with
the corresponding actor and action e.g. Borrower does request funds , while tick
transitions are labelled 1 day. Hovering over each state reveals text with more details.
For the initial state, we have the following, with the 1 DAY indicating the remaining time
to fulfill the obligation:

Active (RULE Contract Commencement PARTY Borrower MAY request

funds WITHIN 1 DAY HENCE Remit Principal)

4. Conclusion

In this paper, we report on our explorations on operationalizing regulative rules from a
model contract in L4. We began with the DFA approach of [2] and moved to the more
natural language like formalism that we currently have in L4. We demonstrated how L4
allows us to naturally express key domain concepts like deontics and deadlines, which
are found in these rules. We opted for a timed transition system semantics and showed
how this can be implemented in Maude, in order to visualize contract execution. Future
work includes addressing the limitations mentioned throughout the paper, as well as
integrating Maude’s model checking facilities to detect deontic inconsistencies.

References

(1]

(2]
[3]
(4]

(3]

(6]
(71
(8]

[9]

[10]

[11]

[12]

Robaldo L, Batsakis S, Calegari R, Calimeri F, Fujita M, Governatori G, et al. Compliance check-
ing on first-order knowledge with conflicting and compensatory norms: a comparison among currently
available technologies. Artificial Intelligence and Law. 2023 Jun.

Flood MD, Goodenough OR. Contract as automaton: representing a simple financial agreement in
computational form. Artificial Intelligence and Law. 2021 Oct.

CCLAW. L4 Documentation;. Accessed: 2023-10-26. https://14-documentation.readthedocs.
io/en/latest/index.html.

Mahajan A, Strecker M, Wong MW. Overview of the CCLAW L4 project. In: POPL 2022 - Program-
ming Languages and the Law. Philadelphia, United States; 2022. .

Palmirani M, Governatori G, Rotolo A, Tabet S, Boley H, Paschke A. LegalRuleML: XML-Based Rules
and Norms. In: Olken F, Palmirani M, Sottara D, editors. Rule-Based Modeling and Computing on the
Semantic Web. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 298-312.

Chircop S, Pace G, Schneider G. In: An Automata-Based Formalism for Normative Documents with
Real-Time; 2022. .

Governatori G, Rotolo A. Logic of Violations: A Gentzen System for Reasoning with Contrary-To-Duty
Obligations. Australasian Journal of Logic. 2006 09;4:193-215.

Plotkin GD. A Structural Approach to Operational Semantics. University of Aarhus; 1981. DAIMI
FN-19.

Henzinger TA, Manna Z, Pnueli A. Timed transition systems. In: de Bakker JW, Huizing C, de Roever
WP, Rozenberg G, editors. Real-Time: Theory in Practice. Berlin, Heidelberg: Springer Berlin Heidel-
berg; 1992. p. 226-51.

Deontics and time in contracts: An executable semantics for the L4 DSL;. Accessed: 2023-
10-27. https://www.researchgate.net/publication/375025000_Deontics_and_time_in_
contracts_An_executable_semantics_for_the_L4_DSL.

Clavel M, Duréan F, Eker S, Lincoln P, Marti-Oliet N, Meseguer J, et al., editors. All About Maude -
A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. vol. 4350 of Lecture Notes in Computer Science. Springer; 2007.

Rubio R, Marti-Oliet N, Pita I, Verdejo A. Strategies, model checking and branching-time properties in
Maude. Journal of Logical and Algebraic Methods in Programming. 2021;123:100700.

https://l4-documentation.readthedocs.io/en/latest/index.html
https://l4-documentation.readthedocs.io/en/latest/index.html
https://www.researchgate.net/publication/375025000_Deontics_and_time_in_contracts_An_executable_semantics_for_the_L4_DSL
https://www.researchgate.net/publication/375025000_Deontics_and_time_in_contracts_An_executable_semantics_for_the_L4_DSL

