
Min-Leader Optimal Scheduling Algorithm

in Kubernetes Clusters

Yongkang DING, Junnan LIU1, Xin HE

School of Software, Henan University, Kaifeng, 475001, China

Abstract: The development of containerization and virtualization technologies has

made Kubernetes a popular container orchestration platform that allows multiple

replicas for scalability and availability. For stateful applications, each replica

requires persistent storage, and a leader must be elected among the replicas to

handle client requests and ensure data consistency. However, leaders for multiple

stateful applications can become unbalanced across nodes, leading to inefficient

resource utilization and load imbalance. This paper proposes the Min-Leader

optimal scheduling algorithm that balances leader distribution across nodes during

the scheduling phase of Pods. The algorithm considers the number of leaders on

each node and prioritizes nodes with the least number of leaders with the goal of

improving cluster availability and stability. The algorithm is integrated into the

default Kubernetes scheduler as a plugin and validated using experiments. The

algorithm effectively balances workload between nodes, improving cluster

availability and stability.

Keywords: Kubernetes, stateful, Min-Leader optimal scheduling algorithm, load

balancing

1. Introduction

The adoption of container technology for application deployment has grown in

popularity, in part due to the emergence of cloud computing and microservice

architecture [1]. Containers are lightweight, provide strong isolation, and high

portability, enabling fast creation, startup, and destruction. These aspects make them

ideal for constructing distributed applications on a large scale. However, managing a

large number of containers, guaranteeing their communication and collaboration, and

enhancing their security and reliability has been a challenging task for container

technology. Large-scale applications require a container orchestration system to

implement standardized deployment, management, and monitoring of containers. One

of the most commonly used and stable container orchestration systems in industry is

Kubernetes [2]. Originally created and led by Google, it is an open-source framework.

Kubernetes operates using a master-slave architecture, consisting of one or more master

nodes and several worker nodes. The master node is responsible for managing the state

and configuration of the cluster, while the worker node runs the application containers,

reports node status, and communicates resource information to the master node.

Kubernetes clusters categorize applications as either stateful or stateless. Stateful

applications require stored and persistent data states, unlike stateless applications that

1Corresponding author: Junnan LIU, School of Software, Henan University;

e-mail: 18637874722@163.com

Advances in Artificial Intelligence, Big Data and Algorithms
G. Grigoras and P. Lorenz (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230909

977

do not require any data storage and can be created or destroyed without impacting

quality of service. Stateful applications usually rely on a leader-based consistency

maintenance mechanism [3] to maintain consistency between replicas. To implement a

leader-based consistency maintenance mechanism using the Kubernetes leader election

algorithm [4], stateful applications elect a leader among the replicas to manage client

requests. The system controls the transfer of leader power through the Lease resource

lock.

StatefulSet serves as an API object used to manage stateful applications as a

workload effectively. With StatefulSet, the deployment and scaling of a group of Pods

can be managed, with the advantage of ensuring their order and uniqueness. Pods get

deployed sequentially and compete for control over the Lease resource lock, with the

first replica that gains control of the lock becoming the leader. The Scheduler uses a

scheduling algorithm to determine the node on which these replicas run, introducing

randomness into the selection process of the node. There is a possibility of workload

imbalances, underutilized cluster resources, and other related issues caused by the

uneven distribution of multiple stateful applications leaders among nodes. Resource

scarcity and quality reduction of other services on that node are possible when multiple

leaders converge on that specific node.

This article presents the Min-Leader optimal scheduling algorithm as a solution to

balance the distribution of leaders among nodes during the Pod scheduling phase. The

algorithm introduces novel evaluation indicators to assess the number of leaders on

nodes during the Optimal Scoring Phase of Pod scheduling. Nodes with lower

leadership density receive a higher score, leading to the pod being scheduled on those

nodes to achieve a relatively equitable distribution of leaders in the cluster. The Min-

Leader scheduling algorithm requires no modifications to the properties or labels of

Pod or StatefulSet objects, Lease resource lock, or leader election algorithm. Instead, it

necessitates adding a new optimal scheduling plugin to the Scheduler and incorporating

it into the Optimal Scoring Phase.

In this paper, the contents will be organized as follows: Section 2 will provide an

introduction to the research work related to this paper. Section 3 will provide a detailed

discussion of the design and implementation of the Min-Leader optimal scheduling

algorithm. Section 4 will present the experimental results and analysis. Finally, Section

5 will summarize the findings of the paper and provide suggestions for future research.

2. Related Work

Kubernetes is a popular and mature container orchestration system that faces

challenges in optimizing cluster load balancing. Numerous research works currently

explore and improve on this issue. Some studies specifically focus on optimizing the

design and implementation of the Kubernetes scheduler to improve cluster resource

utilization and application performance. For example, Li et al. [5] discuss the design

and implementation of the scheduler while summarizing dynamic resource

management in Kubernetes, and suggest relevant improvements. Yang et al. [6]

consider resource usage and propose a strategy based on a weighted graph model to

schedule containers on nodes. Zhang et al. [7] propose a Kubernetes-based container

coordination strategy for edge computing systems, which adaptively allocates

computing and storage resources. Qiu et al. [8] suggest a distributed Kubernetes

architecture that supports collaborative work between cloud and edge environments. In

Y. Ding et al. / Min-Leader Optimal Scheduling Algorithm in Kubernetes Clusters978

addition to optimizing the scheduler for load balancing, Vayghan et al. [9] proposed a

solution that is able to automatically direct client requests to healthy pods. This solution

integrates a state controller with Kubernetes, enabling it to determine the status of the

pods and assign "active" or "standby" labels to them. Client requests are redirected to

the pods with the "active" label, and messages containing state data are copied to the

standby pods, to which messages containing state data are copied. Nguyen et al. [3]

propose a leader-based consistency maintenance mechanism for stateful applications.

The mechanism selects a leader among all replicas to process write requests and

synchronize data changes. However, the high workload of the leader and the limitations

of Kubernetes' leader election algorithm can result in an unbalanced resource load in

the cluster. This paper validates the importance of evenly distributing leaders in the

cluster for improving load balancing and scalability.

The paper proposes a novel method to achieve this at the scheduling layer by

evenly distributing multiple application leaders, with the aim of researching and

demonstrating the domestically produced operating system used in the Kunpeng

platform.

3. Design and Implementation of Min-Leader Optimal Scheduling Algorithm

This study addresses the issue of uneven leader scheduling of multiple stateful

applications among nodes by the Kubernetes scheduler by introducing Min-Leader, an

optimal scheduling algorithm, and details its design and implementation.

3.1. Algorithm Design

This paper proposes the Min-Leader optimal scheduling algorithm to alleviate the node

performance degradation issue caused by a disproportionate number of leaders in some

nodes. This algorithm aims at achieving a balanced scheduling of stateful application

leaders among nodes. The algorithm scores the nodes based on the number of leaders,

where nodes with fewer leaders receive higher scores. This prioritizes scheduling of the

first copy of an application to the lowest scoring node, thereby ensuring equitable

distribution of leaders in the cluster.

The algorithm comprises two steps: firstly, acquiring the leader count on each node,

and secondly, scoring the nodes based on such count. Eq. (1) guides the scoring method

wherein i represents the node number,)(iL is the number of leaders on the i-th node,

and sterCL lu represents the total number of leaders in the cluster.

)
)(

1(*10)(c
lusterCL
iLioreS �� (1)

3.2. Algorithm Implementation

The Min-Leader optimal scheduling algorithm consists of two steps.

Step 1 involves obtaining the number of leaders on each node. To do this, we

access the Leases API in Kubernetes API, which grants us access to all the Lease

objects created by stateful applications within the namespace. We then gather the

Y. Ding et al. / Min-Leader Optimal Scheduling Algorithm in Kubernetes Clusters 979

names of the leader replicas from the HolderIdentity property of each Lease object.

Finally, we use the Kubernetes API to query the nodes that comprise each leader and

count how many distinct leaders are on each node, as well as the total number of

leaders in the whole cluster.

Step 2 is where we score the nodes. We only score the first replica of a stateful

application. This is due to the fact that it is the first replica that initializes the

acquisition of the Lease resource lock, ultimately becoming and staying as the leader.

Other replicas are not taken into account during the scoring phase. When the first

replica begins the scheduling process, we obtain the number of leaders within the

cluster and the node that needs to be scored. We then use Formula 1 to calculate the

score of that node within the Min-Leader optimization phase. We repeat the process for

all nodes and select the node with the highest score for binding.

To implement our custom solution, we leveraged the pluggable scheduling

framework of Kubernetes. Our custom scheduler integrated the Min-Leader optimal

scheduling algorithm as a plugin, which would be used for the Score extension point.

We left the other extension points to use Kubernetes' default policies.

4. Experimental Results and Analysis

In order to validate the effectiveness of the Min-Leader scheduling algorithm, a

Kubernetes cluster was constructed on the Kunpeng server for experimental purposes.

The server runs on the ARM architecture with the Kubernetes and Docker versions of

1.23.4 and 20.10.9 respectively. The cluster has a single master node and five worker

nodes. Each worker node has 8 CPU cores and 8GB RAM, whereas the master node

has 16 CPU cores and 16GB of RAM. Various stateful applications were deployed in

the cluster. To test these applications, requests were sent through the Hey stress testing

program [10] using NodePort services.

4.1. Leader Distribution

To evaluate the distribution of leaders, we deployed ten stateful applications using both

the Kubernetes scheduler and the Min-Leader scheduler. Following deployment, we

compared the resulting distribution of leaders between the two schedulers, as presented

in Table 1. Our findings revealed that, after being deployed by the Kubernetes

scheduler, the distribution of leaders was uneven, with five leaders present on node4

but none on node5. This imbalance could heavily overload node4, ultimately

compromising its performance due to the inherent high workload of leaders.

Contrastingly, when the Min-Leader scheduler was used, leaders were evenly

distributed across all five nodes, leading us to the conclusion that the algorithm can

successfully balance the distribution of leaders. As a result of this, individual nodes are

not overloaded, and overall load balancing between nodes is maintained.

Table 1. The distribution of leaders among nodes.

Worker Node node1 node2 node3 node4 node5

Kubernetes scheduler 2 2 1 5 0

Min-Leader scheduler 2 2 2 2 2

Y. Ding et al. / Min-Leader Optimal Scheduling Algorithm in Kubernetes Clusters980

4.2. Leader Distribution's Impact on Node Resources

Write requests were sent to each application for 100 seconds using a single client,

while measuring the average CPU utilization of each worker node (refer to Figure 1).

The results indicated that uneven leader distribution through the Kubernetes scheduler

led to some nodes with high CPU utilization rates, specifically, the utilization rate of

node4 reached 74.26%, while others were very low, with node5 at only 3.4%. This

resulted in cluster load imbalance. The results indicated that uneven leader distribution

through the Kubernetes scheduler led to some nodes with high CPU utilization rates,

specifically, the utilization rate of node4 reached 74.26%, while others were very low,

with node5 at only 3.4%. This resulted in cluster load imbalance. In contrast, the Min-

Leader scheduler retained each node's CPU utilization rate at approximately 40%,

while maintaining load balance.

Figure 1. CPU use on each node when clients send write requests.

As a result, the Min-Leader scheduler enables evenly distributed leaders, enhanced

cluster load balancing performance and mitigates risks associated with single-node

failures.

5. Conclusions and Future Directions

This article proposes the Min-Leader optimal scheduling algorithm to improve the

Kubernetes scheduler's load balancing capability for the problem of unevenly

distributed leaders in multiple stateful applications. The algorithm introduces a new

evaluation index, i.e., the number of leaders each node holds, to score the nodes

accordingly. It prioritizes the selection of nodes with the least number of leaders. Its

effectiveness and feasibility have been experimentally proven. However, the newly

elected leader may disrupt the balance between nodes if a previous leader fails. In the

future, we plan to improve the Kubernetes leader election algorithm to ensure that the

load balancing between nodes remains balanced.

Y. Ding et al. / Min-Leader Optimal Scheduling Algorithm in Kubernetes Clusters 981

Acknowledgements

This work was supported by a grant from Postgraduate Education Reform and Quality

Improvement Project of Henan Province Under Grant NO.YJS2022JD26, Postgraduate

Education Reform and Quality Improvement Project of Henan University Under Grant

NO.SYLJD2022008 and NO.SYLKC2022028, the Key Technology Research and

Development Project of Henan Province under Grant 222102210055.Major Science

and Technology Special Project of Henan Province, Research and Demonstration of

Kunpeng Platform-based Domestic Operating System under Grant

201300210400.Supported by Research on Key technologies of resource scheduling and

service High Availability based on ARM architecture, Project No. 232102210199.

References

[1] Wu, Zhixue, "Development and Trends of Virtualization Technology in Cloud Computing." Journal of

Computer Applications, vol. 37, no. 4, pp. 915-923 (2017).

[2] Kubernetes, Kubernetes Documentation. https://kubernetes.io/docs/home/ (accessed Apr. 6, 2023).

[3] N. Nguyen and T. Kim, "Toward Highly Scalable Load Balancing in Kubernetes Clusters." IEEE

Commun. Mag., vol. 58, pp. 78–83 (2020).

[4] Kubernetes leader election algorithm, "Simple Leader Election with Kubernetes and Docker." Available

online: https://kubernetes.io/blog/2016/01/simple-leader-election-with-kubernetes/ (accessed Apr. 10,

2023).

[5] X. Li et al., "Dynamic Resource Management for Kubernetes: A Survey." ACM Computing Surveys,

vol. 53, no. 3, pp. 1-40 (2020).

[6] H. Yang et al., "Resource-Aware Container Scheduling in Kubernetes Cluster." IEEE Transactions on

Parallel and Distributed Systems, vol. 31, no. 4, pp. 866-877 (2020).

[7] S. Zhang et al., "Container Coordination with Kubernetes for Edge Computing Systems." IEEE Internet

of Things Journal, vol. 6, no. 2, pp. 2013-2023 (2019).

[8] W. Qiu et al., "Distributed Kubernetes: Building Hybrid and Edge Clouds." IEEE Network, vol. 33, no.

1, pp. 64-71 (2019).

[9] Vayghan, L.A. et al., "Microservice Based Architecture: Towards High-Availability for Stateful

Applications with Kubernetes." 2019 IEEE 19th International Conference on Software Quality,

Reliability and Security (QRS), Sofia, Bulgaria, July 22-26, 2019.

[10] Hey, "A Tiny Program Sends Some Load to a Web Application." https://github.com/rakyll/hey

(accessed May. 10, 2023).

Y. Ding et al. / Min-Leader Optimal Scheduling Algorithm in Kubernetes Clusters982

