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Abstract. One of the crucial duties in clinical surgery is medical image

segmentation. Deep learning and fully convolutional neural networks are currently

being employed for image segmentation and have achieved cutting-edge outcomes

on numerous publicly available benchmark datasets. Shape is more significant than

visual texture, and typical CNNs are not robust and interpretable. As a result, we

suggest the Shape Attention Net (DFSNet), a new architecture that emphasizes

robustness and interpretability. This architecture employs a dual-stream method to

simultaneously record rich shape-related information and conventional texture

streams. A dual attention decoder module is used to learn multi-resolution saliency

maps, and a direction field distance prediction pipeline is utilized for fixing

segmentation detail. On two sizable public datasets for heart MRI image

segmentation, SUN09 and ACDC, our technique produced cutting-edge results.

Keywords. Deep learning, CNN, dual-stream method, a direction field distance

prediction pipeline

1. Introduction

The heart is one of the most vital organs in the human body, but heart disease threatens
the lives of many people. The medical community's standard for non-invasive

assessment of cardiovascular function is cardiovascular magnetic resonance imaging

(CMR) [1]. Compared with other techniques, CMR has the advantages of high spatial

resolution and non-ionizing radiation, which are crucial for the diagnosis of

cardiovascular diseases. Therefore, it is essential to achieve automatic and accurate

segmentation of the heart region. The advancement of deep learning has made machine

learning widely used in medical imaging, and convolutional neural networks have been

proven to be very effective in medical image segmentation.

In the field of medical image segmentation, U-Net [2] is one of the most effective

and widely used technologies at present, while nnU-Net [3] mixes 2D and 3D U-Net

models to achieve the most cutting-edge performance in heart segmentation. In order to

solve the problem of MRI artifacts causing interclass confusion and orientation
information [4], we proposed a new method to improve segmentation feature maps by

using orientation information. This technique shows strong robustness between data

sets and significantly reduces inconsistencies within classes and ambiguities between

classes. The effectiveness of this method is verified by experiments.
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2. Method

We propose a new interpretable architecture for natural image segmentation and

medical image segmentation called the Directional Feature Shape Flow Net (DFSNet)

architecture. DFSNet consists of two parts: a fine segmentation part and a direction

field distance prediction part. The direction field learning module and the feature

integration module make up the direction field prediction component. The fault

segmentation network's shared direction field feature is learned by the direction

learning module, and the final segmentation result is obtained by fusing the learned

direction field feature with the initial segmentation feature.
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Figure 1. We propose a directional feature-shaped flow network (DFSNet). The model consists of a shape

flow for processing boundary information, a texture flow, and pipelines for predicting directional field

distances. The directional distance prediction field is introduced under the fine and rough segmentation of

shape flow and texture flow, and feature reconstruction and fusion are used to obtain the final segmentation

results.

2.1 Finely Segmented Parts

The fine segmentation part of DFSNet consists of two flows: the texture flow and the

gated shape flow. The texture flow adopts a U-shaped framework. The encoder part is

composed of dense blocks from DenseNet-121, and the decoder part is composed of

dual-attention decoder blocks. The texture flow learns dense pixel information and

features. Based on generating more precise segmentation, the gated shape flow allows

the model to learn object shapes.

2.1.1 Gated Convolution Layer and a Gated Shape Stream's Output

The feature map x is processed using the normalized 1x1 convolution function C1x1(x)

and the residual block function R(x). The residual block consists of two normalized

3x3 convolutions and a skip connection. The result of C1x1(x)  is  a  feature  map  with

decreased channels and the same spatial dimensions as x. The attention map for the
boundary is determined by a gating convolution layer utilizing data from the shape

stream and texture stream. The layer in the shape stream is marked by the letter l, while

the encoder block that produces the texture stream feature map is denoted by the letter t.

Together, these two descriptors stand for the shape stream feature map and the texture

stream feature map. Bilinear interpolation is used on Tt in order to adjust it if necessary

to match the dimension of Sl. Pooling layers shouldn't be employed in the form stream

to get precise shape limits. In the shape stream, each residual block is designated as a

layer. The calculation method for l is as follows:
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��� = �� � (�(��	�(�� 
 ��	�(��)))) (1)

The 
 denotes the concatenation of feature maps across channels, and the 

symbolizes the sigmoid function. �is the Hadamard product. You can determine the

feature map of the layer beneath the form as follows:

���� = �(���) (2)

�� + 1 can be improved using the same method.

Our model is to accurately learn the class's shape and texture. The initial image and

the result of the gated shape stream are cascaded through the appropriate channel

classes in order to anticipate the shape feature map. The feature mapping of the texture

flow is then coupled with the output of the gated shape flow after being normalized by

a 3x3 convolution.

2.1.2 Double Attention Decoder Block

In order to increase interpretability, the double attention decoding block contains two

interpretability components: an interpretable spatial attention path after a normalized3x3 convolution and an interpretable channel attention path that has been shown to
improve performance by Hu et al. [5].

Enter the spatial attention path through C channels. When a single channel's pixel

values are mapped to the [0, 1] range using a sigmoid, the output is ���.  To match the

output dimension of the channel attention path, ��� is stacked C times along the channel

axis to obtain ��. Finally, element-wise multiplication is performed. The scaling factors

are values between 0 and 1 and are used to scale each channel in the skip-connected

feature map by its corresponding scaling factor, resulting in the scaled feature map ��.

Channel attention and spatial attention are decoded as double attention blocks in output
F:

F = (F� + 1) � F� (3)

Operator � represents the Hadamard product. Adding +1 will restrict the spatial

attention mechanism to only amplify features without zeroing out potentially valuable

features in subsequent convolutions. Additionally, this operation ensures that attention

weights are always greater than zero.

2.2 Direction Field Distance Prediction Part

In image segmentation, a common issue is the inconsistency both between and within

classes. Additionally, segmentation models often only learn individual representations

and therefore do not constrain the relationships between pixels. To address these

problems, we employ a simple yet effective approach that utilizes the directional
relationships between pixels. In order to extract the common feature direction field in

the network, as illustrated in Figure 1, we add a direction field learning module based

on a fine segmentation network. The network's initial fine segmentation feature is

coupled with the learned direction feature in the feature integration module to get the

final segmentation result.
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Figure 2. The DF module schematic diagram is used to predict a new direction field based on the

two-dimensional vector of the image. (a) and (b) represent the vectors from the nearest boundary pixels to the

current pixel. The direction and magnitude information of the direction field on the right can be calculated

and visualized.

We start by describing the direction field symbol, which is depicted in Figure 2(a–

b). On the edge of the heart tissue, we identify each foreground pixel p that corresponds

to the closest background pixel b, and we then distance-normalize the direction vector

from b to p. Formally, each pixel's direction field (DF) in the image domain � is as

follows:

��(�) = � �����
|�����| , � � !"#$%#"&'*,
(0, 0), "-.$#/24$. (4)

Figure 2 illustrates the module we used to understand the aforementioned direction

field. The input channel characteristic, which is 64, is the characteristic of the section

of the network that is finely segmented. A two-channel direction field is what it

outputs.

By using the initial feature graph �6 � �7	8	9and the predicted direction field�: � �7	8	9, the improved feature graph DF � R;	<	>is  obtained step  by  step.  The

whole program form is as follows:

?@� �, FA(p) = F(AB�)(p	 + DFF(p)	, pC + DF(p)C) (5)

px (resp.py) denotes the x (resp.py) coordinate of pixel p, and 1� k � N is the

current step, N is the total step (set to 5 if no additional instructions are given), and so

forth.

After the correction process described above, we link �6 and �: and use the final

classifier to forecast the final segmentation of the heart on the connected feature map.

3. Experiments

3.1 Datasets and Implementation Details

The Automatic Cardiac Diagnostic Challenge (ACDC [6]) dataset consists of 150

cineMR images of patients.Each model trained for 180 epochs with a batch size of 10.
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The SUN09[7] dataset contains separate training datasets for each of the two categories

(endocardial and epicardial). The model trained for 120 epochs with a batch size of 4.

In this paper, the experiments were carried out on a Tian RTX GPU with 24 GB of

memory. Z-score normalization was performed on each image slice. We applied various

data augmentations . In the following sections, we will present the experimental results.

3.2 Experimental Results

Comparative experiments were conducted under the experimental settings of the paper

[8]. As  shown  in  Table  1  below,  we  evaluate  the  effectiveness  of  the  network  using

several models. The performance of our model has significantly improved without

pre-training weight, as shown in the table, particularly in MYO. This is attributable to

the combination of fine segmentation and direction distance prediction fields, which

significantly increase the network's capacity to detect and correct boundary details. The
dice scores of Endocardium and Epicardium in Table 2 under identical experimental

settings showed novel results in comparison to existing network segmentation models.

Table 1. ACDC test set results.

Model LV RV MYO

UNet 0.910 0.901 0.888

ResUNet 0 .921 0.904 0.891

SAUN et 0.925 0.914 0.887

UN etD F 0.935 0.920 0.903

Table 2. Test set Dice scores for SUN09.

Model Endocar dium Epic ar dium

SAUN et 0.933 0.941

UN etD F 0.943 0.949

4. Conclusion

This article investigates a new interpretable medical image segmentation model that

applies directional distance information and utilizes a novel U-shaped framework for
simple and effective segmentation of cardiac MRI. The technique is more interpretable

than earlier techniques that used built-in saliency maps and learned robust form

characteristics of objects. The segmentation feature mapping is improved, leading to

increased segmentation accuracy with the help of directional information. The

effectiveness and strong generalizability of the strategy are demonstrated by the

experimental results.
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