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Abstract. The increasing use of wireless iot devices and edge servers in maritime

environments has sparked interest in distributed edge computing research. Federated

Learning (FL) has become a key solution to address communication resource

consumption and data privacy issues in distributed edge computing. Nevertheless,

current FL frameworks might not fully consider resource limitations in challenging

marine environments. In this paper, we introduce a novel FL algorithm for signal

overlapping in marine scenarios, focusing on maritime communication environment

modeling, Wireless Federated Learning Overlapping (FedOverlap) algorithm design,

and resource allocation optimization. We create a detailed wireless signal

propagation model for maritime environments and develop an iterative FL algorithm

to tackle the challenge of slow model convergence due to signal overlapping.

Moreover, we suggest a resource scheduling and allocation strategy for efficient

bandwidth, energy, and computation usage. Comprehensive experiments validate

our FedOverlap algorithm’s properties and exhibit superior performance in accuracy,

resource utilization, and convergence speed for practical network parameters and

benchmark datasets in production-ready settings.

Index Terms. Signal overlapping, Federated learning, Channel model over marine,
Resource allocated

1.   Introduction

1.1.  Background

Research in the field of sixth-generation communication technology has placed a

significant emphasis on the integration of large-scale marine IoT devices and the

potential benefits of AI capabilities for wireless networks [6]. The proliferation of IoT

devices has led to a dramatic increase in data generated at the network edge, resulting in

rapid consumption of storage space, substantial growth in communication bandwidth

demands, increased latency, and reduced service quality [3]. In the context of 6G wireless

network research, marine wireless IoT networks have emerged as a vital topic, with

numerous studies on space-air-ground integrated network being published [12]. The
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exploration and development of Marine resources is crucial, especially in optimizing the

wireless  resource scheduling of Marine wireless IoT devices and edge server clusters.

In the study of marine IoT networking, wireless communication, resource

management, and device heterogeneity are among the most critical issues. Federated

Learning (FL) has been proven to address the problem of how to optimize

communication and computational resources in large-scale IoT device networking

scenarios, including joint optimization methods for bandwidth, energy, and

computational resources, reducing communication overhead and improving model

convergence rates [8]. Furthermore, the effective utilization of the computing power of

these heterogeneous devices is essential for improving the performance of Federated

Learning. Designing algorithms for device heterogeneity is an advantage of Federated

Learning [11].

In marine IoT networking research, the main issues to be addressed generally

include channel fading, channel interference, and spectrum selection. The unpredictable

nature of marine channels, along with delayed feedback, is primarily due to the variable

ocean environment, particularly the channel interference and channel fading caused by

sea surface reflection and long-distance communication. To tackle these issues,

researchers have proposed various solutions based on Federated Learning.

1.2.  Main Contributed

As illustrated in Fig. 1, in real-world marine environments, a large number of surface or

underwater IoT devices are distributed around islands and straits. These devices are often

in working condition. Due to the varying degrees of salt water corrosion and other

external environmental interference, they are challenging to maintain frequently,

resulting in significant differences in the computing power and communication

capabilities of different iot devices. Consequently, this research considers federated

learning algorithms to be well-suited for such heterogeneous device scenarios. However,

given the substantial differences between maritime environments and terrestrial

environments, the surface channel model diverges considerably from the commonly used

terrestrial channel model [5]. To account for these differences in fitting the marine

channel modeling, we have studied the channel modeling characteristics in this scenario

and reexamined the small-scale channel modeling for marine channels.

Figure 1. Signal Overlap Area

Furthermore, based on our research of the marine wireless IoT scenarios, a common

situation is the occurrence of signal overlapping, where a single wireless IoT device may
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receive wireless signal transmissions from multiple base stations simultaneously. This

phenomenon can lead to reduced communication performance and model convergence,

as the client needs to process signals from multiple servers, potentially resulting in

weakened signal strength, distortion, or errors, making model convergence difficult. To

address this issue, we have developed a new federated learning strategy based on

federated learning to optimize resource allocation, reduce interference, and improve

communication efficiency. This approach aims to enhance the performance of IoT

devices in marine environments, ensuring more reliable and efficient communication for

various maritime applications.

In this paper, we introduce a novel federated learning (FL) algorithm for marine

wireless IoT communication, which addresses the distinct challenges associated with

signal overlapping in ocean environments. Our contributions include:

� A comprehensive model of wireless signal propagation in marine

environments, taking into account factors such as path loss, shadowing, and

channel disturbances.

� A resource scheduling and allocation strategy that optimizes the utilization of

bandwidth, energy, and computational resources to improve the performance

of the federated reinforcement learning (FRL) framework in marine wireless

IoT communication scenarios with signal overlap.

� An innovative marine wireless reinforcement learning framework that

efficiently addresses the unique challenges of ocean surface communication,

including overlapping regions and variable channel conditions.

By tackling these challenges and enhancing the performance of distributed learning

in marine wireless communication environments, our proposed algorithm contributes to

the progress of edge computing research and the effective implementation of IoT devices

in maritime settings.

1.3.  Related Work

Recent progress in federated learning and wireless communication research has tackled

a variety of challenges, such as efficiency, privacy, and overall performance. However,

the incorporation of federated learning within marine wireless communication remains

largely unexplored, providing opportunities for innovative research and breakthroughs.

Federated learning typically divides data into smaller, manageable clusters and

performs learning on these subsets rather than the entire dataset. This approach has been

shown to increase efficiency by decreasing communication overhead and enhancing

model update accuracy [7]. A recent study by Zhang et al. [13] proposes a personal

cluster federated learning framework that employs wireless communication to reduce

communication overhead and improve federated learning privacy. This method

demonstrates increased accuracy and faster convergence compared to traditional

federated learning techniques. The concept was initially introduced and its effectiveness

was proven in healthcare settings [9].

Another study by Ahn et al. [10] investigates wireless communication in federated

learning, proposing an innovative optimization algorithm to enhance federated learning

communication efficiency. The authors show that this method significantly reduces data

transmission volume over the network while maintaining high model accuracy. A

comprehensive review of the current state of wireless federated learning is provided by

Ahn et al. [1]. Joint optimization of communication and computation resources in

federated learning is evaluated by Li et al. [9].
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On the other hand, marine environments present unique challenges due to their

dynamic nature, extensive coverage areas, and the requirement for robust communication

systems to manage various IoT devices with limited network connectivity. Marine

environment characteristics, such as water absorption, propagation delays, and the

influence of weather conditions, can significantly impact wireless communication [4].

Research in marine wireless communication system modeling aims to understand these

factors and develop strategies to mitigate their effect on communication quality and

efficiency [2] .

Despite advances in both federated learning and marine wireless communication,

their combination remains relatively uncharted. This may be due to the complexity of

marine environments, the scarcity of available datasets, and the interdisciplinary nature

of this research field. As a result, there is an opportunity for groundbreaking research

that addresses the unique challenges and opportunities in this emerging field, such as

balancing the trade-off between communication efficiency and privacy and managing

communication overhead as the number of participating devices increases.

In conclusion, while significant progress has been made in federated learning and

marine wireless communication, the application of federated learning in marine

environments remains largely uncharted territory. This presents an opportunity for

innovative research to address the unique challenges and opportunities in this emerging

field. Our work aims to contribute to this area of research by investigating the potential

of federated learning in marine wireless communication, acknowledging the limited

available literature for reference and recognizing that our efforts represent a novel and

pioneering direction in this domain.

2.   System Model

2.1.  Federated Learning

Consider a federated learning system consisting of K devices, denoted as K= 1,2,...,K ,

and a central server. Each device k K has a local dataset D k of size n_k, with a total

of � = � ������  data points across all devices. The devices collaborate to learn a shared

model parameterized by a weight vector W, while keeping their local data private. The

goal of federate learning is to solve the optimization problme:

min	 
(	) = min	 � �� 
�(	)�
��� (1)

We assume that the devices communicate with the central server over a wireless

network, where the communication links may be subject to delays and losses. The central

server. coordinates the federated learning process and aggregates the local model updates.

The federated learning process involves the following steps, Initialization: The central

server initializes the global model with random weights �� and broadcasts it to all

devices. Local Training: Each device k trains its local model on its data ��for E epochs

using mini-batch stochastic gradient descent (SGD) or any other optimization algorithm.

For each mini-batch � � ��, the device computes the gradient of the local loss function��(�) with respect to the model weights: ���(�) = (1/|�|) ���,���� ��(�; ��, ��)where �(�; ��, ��) is the per-example loss function for data

J. Kang et al. / A Novel Algorithm for Wireless Marine Internet of Things 503



point (��, ��) . The local model weights are updated according to the optimization

algorithm, e.g., for SGD:

��� + 1 = ��� �  ���(���) (2)

where � is the learning rate, and t is the current iteration. Model Aggregation: After local

training, each device k sends its local model updates !�� = ��� + 1 � ��� to the central

server. The server aggregates the updates by taking a weighted average: !�"#$%&# ='1 �* - � ������ .��.Global Model Update: The central server updates the global model

using the aggregated updates: �"#$%&# + 1 = �"#$%&#� + .�"#$%&# Model Dissemination:

The updated global model is sent back to the devices, and the process repeats for T

communication rounds or until a predetermined convergence criterion is met. After every

processing, the federated learning process allows devices to collaboratively learn a

shared model while preserving data privacy. The performance of this federated learning

system can be further enhanced by incorporating techniques such as adaptive learning

rates, model compression, and secure aggregation.

2.2.  Communication Over Marine

In actual mobile communication network planning, channels can be classified into three

categories according to their conditions: Line of Sight (LoS), Non-Line of Sight (NLoS),

and broad Line of Sight (b-LoS), with different path loss models being applied for

different channel models. The LoS channel model occurs when there are no obstructions

between two base stations or between a mobile terminal and a base station. As the

attenuation is lower, the LoS channel model offers better signal quality and higher

throughput compared to NLoS channels. In NLoS channel models, multipath effects are

common due to obstructions such as buildings and vegetation, causing reflection,

diffraction, and penetration losses in addition to attenuation. Lastly, in high humidity

coastal areas, ducting is more likely to form, and in such cases, ducted channel b-LoS

communication can connect distances of 500-1000 kilometers in maritime environments.

Research on maritime communication models mainly focuses on statistical average

characteristics such as path loss. Large-scale channel fading refers to channel parameters

that change slowly over time, such as path loss and angle of arrival. Small-scale channel

fading, on the other hand, is dynamically affected by factors such as sea surface reflection,

refraction, and scattering, reflecting the complex randomness of maritime wireless

channels.

Large-scale Channel Model: Taking into account the influence of sea surface

reflection signals, antenna height, wave fluctuation height, and tidal height, a

continuously modified two-path model can generally better fit experimental data. The

various modified two-path models can achieve good fitting results in certain scenarios

but are only applicable to relatively short-distance maritime communication. Special

atmospheric refractivity structures in the marine atmosphere easily form evaporation

ducts, providing conditions for longdistance communication. Previous work has

measured the nearshore maritime channel in line-of-sight scenarios, and the analysis

results indicate that the presence of evaporation ducts affects the path loss model when

the distance between the transmitting and receiving ends exceeds a certain threshold

(related to the height of the transmitting and receiving antennas). Based on this, a three-

path path loss model has been proposed, which is closely related to the evaporation duct

J. Kang et al. / A Novel Algorithm for Wireless Marine Internet of Things504



height and the height of the transmitting and receiving antennas. The effect of

evaporation duct height on signal attenuation and diversity has also been simulated and

analyzed. The measured results show that the evaporation duct three-path model can

provide significant communication performance gains compared to the two-path model.

Small-scale Channel Model: In addition to path loss, maritime channel models also need

to consider small-scale fading caused by factors such as sea surface fluctuations and

atmospheric scattering. Maritime channel models are not only related to signal frequency,

transmission distance, antenna height, and moving speed but are also affected by marine

meteorological and hydrological environments. Depending on the direct link and

multipath reflection link conditions, Rician fading and Rayleigh fading are typically used

to represent channel fading. However, when Rician and Rayleigh distributions do not fit

the experimental data well, a more general channel fading distribution, the Nakagami-m

fading, has been proposed.

Figure 2. (a) Defined the signal overlapping problem            (b) Iot device distribution map drawn from data

In our research, as the Fig.1 shown, we can observe that most of the maritime IoT

devices are located near the sea surface, within a Line of Sight (LoS) range. Therefore,

we will focus more on the small-scale channel models in this context. In the case of LoS

communication scenarios, Rician fading is often used to model small-scale fading effects.

Rician fading accounts for the presence of a dominant direct path between the transmitter

and receiver, along with the multipath components that result from reflections, scattering,

and refraction.

02&�#3�"4(5) = 6 578 9�: <� 58278? , 5 @ 0
0, 5 < 0

(3)

The Rician fading model is defined by the Rician K-factor, which is the ratio of the

power in the direct path to the power in the multipath components. A higher K-factor

indicates a stronger direct path and less fading, leading to better communication

performance. In maritime environments, the K-factor can vary depending on factors such

as the distance between devices, the height of the antennas, and the sea state.
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0Rice (5) = C DEF exp G� DFHIF
8EF J K� GIDEFJ , 5 @ 00, 5 < 0 (4)

The Rician random variable h can be modeled as:L = �M59NO:POLNQR:Q�9�O + TP��9MUL5P�VQRWP5MPX�9 hi, First, determine

the K-factor, which is the ratio of the power of the direct path component (a constant) to

the power of the Rayleigh random variable, i.e., Y = �M59NO:POLNQR:Q�9�O:QZ95/TP��9MUL:QZ95. According to the channel normalization requirement [ |L|8  = 1,

can be normalized as follows: Y = \]5O GY (Y + 1)* J  + \]5O G1 (Y + 1)* J  ^ TP��9MULD&�_$`
The Nakagami-m fading channel model can better fit a wider range of experimental

data:

:a(b) = 8`cbFcdf
g(`)hjc exp k� l`bF

hj o (5)

where 0D represents the average power, q(R) is the gamma function, and  is the

fading parameter. When m = 1, the equation reduces to the Rayleigh fading model. If we

set R = (Y + 1)2/(2Y + 1), the equation approximates the Rician fading model

with a K-factor of Y. When R = r, it represents no fading. By changing the value of

, the Nakagami fading model can be transformed into various fading models.

To better understand and model maritime communication channels, researchers

should continue to focus on the statistical average characteristics of these channels, such

as path loss and large-scale fading, while also considering small-scale fading effects due

to environmental factors like sea surface fluctuations and atmospheric scattering. By

developing more accurate and robust channel models, it is possible to optimize the

design and deployment of maritime communication systems to meet the growing demand

for high-speed data transmission in coastal and offshore environments.

3.  Problem Formulation and Algorithm Design

Based on Fig. 1, the problem is abstracted as depicted in Fig. 2, where the signal

overlapping issue can be regarded as a federated multi-cluster resource allocation

challenge. Assuming there are L clusters, each has its respective IoT devices and Base

Stations (BS). Contrasting with traditional cloud-based FL systems with a central cloud

Figure 3. Algorithm iteration result
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AAlgorithm 1: Federate learning over signal overlapping

Initialization: Number of device Y , Channel model parameters �, System parameters s , Larger weightt u
Output: Optimal resource allocation T^; User selection vector t u ; Transmit power vector 0^
1: Calculate uplink and downlink capacities for different channel models

          For each device from 1 to � v
                if R � TP��9MUL:: = :D&� s5QR 3
                if R � TMNMP�:: = :2�z�&� s5QR 9]. 4
                if R � �P~PUPRM:: = :�&�&"&`� s5QR 9]. 5
          output the User weight vector t u
2: Optimize the signal overlapping and resource allocated

          For O = 1 to round do:

                 For each Iot device ~ = {1,2,3, . . . , Y} do:��� + 1 � ��� �  ���(���)// local model update

          Else: (Iot M randomly selects �(M)O + 1 to receive the

updated models from other area)

                   For each Iot device ~ � ��&[� do:	�(O) = �����(�) ��H����(�) �� × G�����(�) ���	(�)(O) + �����(�) ���	(�)(O)J +t u
   //

Average of two edge aggregations

      Transmission: UE � sends Z�� and �
�(Z��) for all � to the edge server

      Aggregation and Responses: The server updates model Z�and �
� ,respectively, and subsequently

provides feedback to

all UEs.

3:Evaluate system performance

server covering all clients, this paper considers L Edge Servers (ESs), each covering its

local area. These local coverage areas are referred to as cells. In marine overlapping area,

dense deployment of ESs often results in multiple ESs within a specific user’s

communication range. We term the region where a client can reliably communicate with

multiple ESs as the overlapping cell area. Let �� represent the set of indices for users in

cell M � 1,2, . . . , �. We define �� as the set of user indices for the non-overlapped region

of cell , a subset of �� . Additionally, we define [�,� as the set of user indices for the

overlapping area between cell  and cell 'M � � P�V [�,�  =  [�,�-, also a subset of ��.
Clients in [�,�  can communicate with both ES M  and ES � during model download or

upload. For simplicity, we only consider cases where the coverage of at most two ESs

overlaps. Thus, the coverage of cell M , or �� , can be expressed as:��  =  ��  � (� [�,���[�]/� ). for all M � 1,2, . . . , �. It is important to note that each ES can

only communicate with clients in its covered area. In this research, we aim to solve the

1 problem, and we can transfer the 2 to:

	�(O) = �����(�) ��H����(�) �� × G�����(�) ���	(�)(O) + �����(�) ���	(�)(O)J +t u (6)

At the onset of step O, clients in cell M obtain the current model Z�(O) from ES M. If a
client is situated in the non-overlapped region, M. 9., ~ �  ��, they set Z�(O) = Z�(O).

For clients in the overlapping region, ~ � [�,� , they download Z�(O) from ES �  and
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combine both received models as follows: Z�(O) = (1 � �) ^ Z�(O) + � ^ Z�(O) Here,��(�)
 and ��(�)

 represent the client sets that sent their results to ES M and ES �, respectively,

during the prior aggregation step. A larger weight (t u) is assigned to the aggregated

model of the ES that depend on the communication resource allocation from hybrid

derivation of 3,4,5. Consequently, clients ~ � [�,�  should obtain the value of� ������(�) from ES M and � ������(�) from ES �.

4.  Experiment Evaluation

The applications under consideration include ship guidance and cloud computing

services in a strait of islands, as well as edge computing services like convolutional

neural networks (CNN) and deep neural networks (DNN). Since the communication

environment is at the land edge and involves near-coastal communication, we utilize

high-frequency (HF) communication paradigms, with a focus on the very highfrequency

(VHF) range of 30 MHz to 300 MHz. Mobile services’ golden channels fall between 156

MHz and 152 MHz, yielding a wavelength range of 1m to 10m. Both onshore and

offshore base stations serve as fixed stations for communication nodes, eliminating the

need for mobility consideration. These stations are defined as fixed edge IoT

communication nodes in this context. With fixed nodes, shadowing attenuation is set to

0 dB, and the antenna gain is 11 dB. The VHF transmission power is 25 W, and the

frequency is set at 1.5 GHz with a 2-meter wavelength. Ten edge IoT devices are

involved in communication.

As shown in Figure.3, the Fedovlap algorithm has a slight edge in convergence

speed over the traditional FedAvg algorithm. This is due to the optimization of

communication and computational energy after integrating realistic oceanic conditions,

enabling the algorithm to attain higher accuracy in a shorter time. The performance after

200 rounds essentially demonstrates the FedOverlap algorithm’s convergence. Although

the FedOverlap algorithm’s accuracy after convergence, around 92%, is not as high as

that of the FedAvg algorithm, it is because of the strict trade-off between communication

and computational energy employed. Nonetheless, this is consistent with the rapid

convergence and reasonable accuracy scenario, which is more suited to harsh and highly

variable environments like maritime communications. This further validates the practical

applicability and value of our Fedovlap algorithm in real-world maritime

communication settings.

5.  Conclusion

In this study, we re-model the marine channel based on actual sea surface conditions,

using Rayleigh fading, Rician fading, and Nakagami fading to redefine the channel

transmission characteristics. We innovatively propose the FedOverlap algorithm,

leveraging the gradient aggregation properties of federated learning to apply weights to

IoT nodes within the overlap area. This ensures that all devices within the signal coverage

range can receive signals with sufficient strength, guaranteeing the accuracy of federated

learning. At the same time, we incorporate communication weight factors to minimize

interference with other base stations. In the future, we will consider more complex

overlap environments to make the algorithm as close as possible to real-world maritime
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wireless scenarios. We will also explore various resource optimization methods, such as

channel allocation selection, dynamic power control, scheduling slot allocation, and

federated learning collaborative filtering, for algorithm scheduling under signal

overlapping conditions.
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